1
|
Gai X, Ding W, He J, Guo J, Song K. Furfural production from xylan using a Pueraria Residues carbon-based solid-acid catalyst. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2002-2011. [PMID: 39440832 DOI: 10.1002/jsfa.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The conversion of biomass into high value-added platform compounds is an important method of biomass utilization. The conversion of hemicellulose represented by xylan into furfural can not only reduce the consumption of fossil fuels, but also promotes the development and utilization of non-edible biomass resources. In this study, a bifunctional solid-acid catalyst prepared from agricultural and forestry waste Pueraria (P. eduli) Residues was used to convert xylan into furfural in a biphasic system. RESULTS In this study, P. eduli Residues was used as raw material to prepare a P. eduli Residues-based carbon solid-acid catalyst (PR/C-SO3H-Fe) by one-step sulfonation carbonization and impregnation. The catalyst catalyzes the conversion of xylan to furfural in a biphasic system (2-methyltetrahydrofuran/water). The physicochemical properties of the catalysts were characterized by X-ray powder diffraction, scanning electron microscopy, differential thermogravimetric analysis, Brunauer-Emmett-Teller surface area, Fourier transform infrared spectroscopy and ammonia temperature-programmed desorption. Subsequently, the experimental conditions were studied and optimized, such as metal species, iron ion concentration, reaction time and temperature, volume ratio of organic phase to water phase and ratio of substrate to catalyst. The results showed that under conditions of 160 °C, 50 mg catalyst, 100 mg xylan and 7 mL reaction solvent, the yield of furfural could reach 78.94% after 3 h of reaction. CONCLUSION This study provides an effective research method for the conversion of xylan into furfural, and provides a reference for the catalytic conversion and utilization of hemicellulose in agricultural and forestry biomass. It also provides a feasible method for the resource utilization of agricultural and forestry waste. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangtong Gai
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Wei Ding
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Jian He
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Zhangjiajie, China
| | - Jie Guo
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Zhangjiajie, China
| | - Ke Song
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Zhangjiajie, China
| |
Collapse
|
2
|
Sun LL, Sun SN, Cao XF, Yao SQ. An integrated biorefinery strategy for Eucalyptus fractionation and co-producing glucose, furfural, and lignin based on deep eutectic solvent/cyclopentyl methyl ether system. Carbohydr Polym 2024; 343:122420. [PMID: 39174113 DOI: 10.1016/j.carbpol.2024.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 08/24/2024]
Abstract
A novel biphasic system containing water-soluble deep eutectic solvent (DES) and cyclopentyl methyl ether (CPME) was developed to treat Eucalyptus for furfural production, extracting lignin and enhancing cellulose enzymatic hydrolysis. Herein effect of DES type, water content in DES, temperature and time on furfural yield in water-soluble DES/CPME pretreatment process was firstly evaluated. A maximum furfural yield of 80.6 % was attained in 10 min at 150 °C with choline chloride (ChCl)/citric acid monohydrate (CAM)/CPME system containing 30 wt% water and 2.5 wt% SnCl4·5H2O, which was higher than that obtained from ChCl/CAM/CPME system without water (55.5 %) and H2O/CPME system (49.7 %). These results demonstrated that the water-soluble DES/CPME system was a powerful method enhancing the furfural production. Under the optimal pretreatment conditions, the delignification and glucose yield were reached to 72.7 % and 94.3 %, respectively. The extracted lignin showed low molecular weight and β-aryl-ether was obviously cleaved. Additionally, water-soluble DES/CPME pretreatment led to a significant removal of hemicelluloses (100.0 %) and lignin (72.7 %) and introduced morphological changes on cell walls, especially from the cell corner (CC) and secondary wall (SW) layers. Overall, this work proposed a practical one-step fractionation strategy for co-producing furfural, lignin and fermentable sugar, providing a way to biorefinery.
Collapse
Affiliation(s)
- Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Shuang-Quan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
3
|
Salgado-Ramos M, José Huertas-Alonso A, Lorente A, Prado Sánchez-Verdú M, Moreno A, Cabañas B. One-pot, microwave (MW)-assisted production of furfural from almond-, oil-, and wine-derived co-products through biorefinery-based approaches. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:280-292. [PMID: 38954920 DOI: 10.1016/j.wasman.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
This work outlines the first microwave (MW)-assisted protocol for the production of biofuel precursor furfural (FF) from the raw agricultural waste almond hull (AH), olive stone (OS), and the winemaking-derived grape stalk (GS), grape marc (GM) and exhausted grape marc (EGM) through a one-pot synthesis process. To enhance the overall yield, a catalytic process was firstly developed from xylose, major constituent of hemicellulose present in lignocellulosic biomass. This method afforded FF with 100 % selectivity, yielding over 85 % in isolated product when using H2SO4, as opposed to a 37 % yield with AlCl3·6H2O, at 150 °C in only 10 min. For both catalysts, the developed methodology was further validated, proving adaptable and efficient in producing the targeted FF from the aforementioned lignocellulosic raw materials. More specifically, the employment of AlCl3·6H2O resulted in the highest selectivity (up to 89 % from GM) and FF yield (42 % and 39 % molar from OS and AH, respectively), maintaining notable selectivity for the latter (61 and 48 % from AH and OS). At this regard, and considering the environmental factor of sustainability, it is important to point out the role of AlCl3·6H2O in contrast to H2SO4, thus mitigating detrimental substances. This study provides an important management of agricultural waste through sustainable practises for the development of potential bio-based chemicals, aligning with Green Chemistry and process intensification principles.
Collapse
Affiliation(s)
- Manuel Salgado-Ramos
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Alberto José Huertas-Alonso
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Almudena Lorente
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - María Prado Sánchez-Verdú
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Andrés Moreno
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain.
| | - Beatriz Cabañas
- Universidad de Castilla La Mancha, Departamento de Química Física, Instituto de Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
4
|
Soukup-Carne D, López-Porfiri P, Bragagnolo FS, Funari CS, Fan X, González-Miquel M, Esteban J. Extraction of 5-Hydroxymethylfurfural and Furfural in Aqueous Biphasic Systems: A COSMO-RS Guided Approach to Greener Solvent Selection. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:3766-3779. [PMID: 38456191 PMCID: PMC10915861 DOI: 10.1021/acssuschemeng.3c07894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
5-Hydroxymethylfurfural (HMF) and furfural (Fur) are promising biobased platform chemicals, derived from the dehydration of carbohydrate feedstocks, normally conducted in an aqueous phase. Plagued by side-reactions in such phase, such as the rehydration to levulinic acid (LA) and formic acid (FA) or self-condensation to humins, HMF and Fur necessitates diversification from monophasic aqueous reaction systems toward biphasic systems to mitigate undesired side-reactions. Here, a methodology based on the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) method was used to screen solvent candidates based on the predicted partition coefficients (Ki). Hansen solubility parameters in conjunction with excess thermodynamic quantities determined by COSMO-RS were employed to assess solvent compatibility. Experimental validation of the COSMO-RS values highlighted only minor deviations from the predictions with root-mean-square-error (RMSE) values of HMF and Fur at 0.76 and 5.32, respectively, at 298 K. The combined effort suggested cyclohexanone, isophorone, and methyl isobutyl ketone (MIBK) as the best candidates. Finally, extraction solvent reuse demonstrated cyclohexanone suitability for HMF extraction with KHMF of 3.66 and MIBK for Fur with KFur 7.80 with consistent partitioning across four total runs. Both solvents are classified as recommended by the CHEM21 solvent selection guide, hence adding to the sustainability of the process.
Collapse
Affiliation(s)
- Dominik Soukup-Carne
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo López-Porfiri
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Felipe Sanchez Bragagnolo
- Multidisciplinary
Laboratory of Food and Health (LabMAS), School of Applied Sciences
(FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Cristiano Soleo Funari
- Green
Biotech Network, School of Agricultural Sciences, São Paulo State University, Av. Universitária 3780, Botucatu, 18610-034 São Paulo, Brazil
| | - Xiaolei Fan
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - María González-Miquel
- Department
of Chemical and Environmental Engineering, ETSI Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal
2, 28006 Madrid, Spain
| | - Jesús Esteban
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
5
|
Cheng MH, Singh S, Carr Clennon AN, Dien BS, Singh V. Production of Designer Xylose-Acetic Acid Enriched Hydrolysate from Bioenergy Sorghum, Oilcane, and Energycane Bagasses. BIORESOURCE TECHNOLOGY 2023; 380:129104. [PMID: 37121520 DOI: 10.1016/j.biortech.2023.129104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Xylan accounts for up to 40% of the structural carbohydrates in lignocellulosic feedstocks. Along with xylan, acetic acid in sources of hemicellulose can be recovered and marketed as a commodity chemical. Through vibrant bioprocessing innovations, converting xylose and acetic acid into high-value bioproducts via microbial cultures improves the feasibility of lignocellulosic biorefineries. Enzymatic hydrolysis using xylanase supplemented with acetylxylan esterase (AXE) was applied to prepare xylose-acetic acid enriched hydrolysates from bioenergy sorghum, oilcane, or energycane using sequential hydrothermal-mechanical pretreatment. Various biomass solids contents (15 to 25%, w/v) and xylanase loadings (140 to 280 FXU/g biomass) were tested to maximize xylose and acetic acid titers. The xylose and acetic acid yields were significantly improved by supplementing with AXE. The optimal yields of xylose and acetic acid were 92.29% and 62.26% obtained from hydrolyzing energycane and oilcane at 25% and 15% w/v biomass solids using 280 FXU xylanase/g biomass and AXE, respectively.
Collapse
Affiliation(s)
- Ming-Hsun Cheng
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Department of Natural Resources and Society, College of Natural Resources, University of Idaho, 995 MK Simpson Blvd, Idaho Falls, ID 83401, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuchi Singh
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aidan N Carr Clennon
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA
| | - Bruce S Dien
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, 1815 North University Street, Peoria, IL 61604, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Tang Z, Li Q, Di J, Ma C, He YC. An efficient chemoenzymatic cascade strategy for transforming biomass into furfurylamine with lobster shell-based chemocatalyst and mutated ω-transaminase biocatalyst in methyl isobutyl ketone-water. BIORESOURCE TECHNOLOGY 2023; 369:128424. [PMID: 36464000 DOI: 10.1016/j.biortech.2022.128424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
To date, an efficient process for manufacturing valuable furan compounds from available renewable resources has gained great attention via a chemoenzymatic route. In this study, a sulfonated tin-loaded heterogeneous catalyst CLUST-Sn-LS using lobster shell as biobased carrier was prepared to convert corncob (75.0 g/L) into furfural (122.5 mM) at 170 °C for 30 min in methyl isobutyl ketone (MIBK)-H2O biphasic system (2:1, v/v). To improve furfurylamine yield, a novel recombinant E. coli TFTS harboring robust mutant Aspergillus terreus ω-transaminase [hydrophilic threonine (T) at position 130 was site-directed mutated to hydrophobic phenylalanine (F)] was constructed to transform 300-500 mM furfural into furfurylamine (90.1-93.6 % yield) at 30 °C and pH 7.5 in MIBK-H2O. Corncob was converted to furfurylamine in MIBK-H2O with a high productivity of 0.461 g furfurylamine/(g xylan). This constructed chemoenzymatic method coupling bio-based chemocatalyst CLUST-Sn-LS and mutant ω-transaminase biocatalyst in a biphasic system could efficiently convert lignocellulose into furfurylamine.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Qing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Junhua Di
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Cuiluan Ma
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
7
|
Cousin E, Namhaed K, Pérès Y, Cognet P, Delmas M, Hermansyah H, Gozan M, Alaba PA, Aroua MK. Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157599. [PMID: 35901885 DOI: 10.1016/j.scitotenv.2022.157599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
As mentioned in several recent reviews, biomass-based furfural is attracting increasing interest as a feasible alternative for the synthesis of a wide range of non-petroleum-derived compounds. However, the lack of environmentally friendly, cost-effective, and sustainable industrial procedures is still evident. This review describes the chemical and biological routes for furfural production. The mechanisms proposed for the chemical transformation of xylose to furfural are detailed, as are the current advances in the manufacture of furfural from biomass. The main goal is to overview the different ways of improving the furfural synthesis process. A pretreatment process, particularly chemical and physico-chemical, enhances the digestibility of biomass, leading to the production of >70 % of available sugars for the production of valuable products. The combination of heterogeneous (zeolite and polymeric solid) catalyst and biphasic solvent system (water/GVL and water/CPME) is regarded as an attractive approach, affording >75 % furfural yield for over 80 % of selectivity with the possibility of catalyst reuse. Microwave heating as an activation technique reduces reaction time at least tenfold, making the process more sustainable. The state of the art in industrial processes is also discussed. It shows that, when sulfuric acid is used, the furfural yields do not exceed 55 % for temperatures close to 180 °C. However, the MTC process recently achieved an 83 % yield by continuously removing furfural from the liquid phase. Finally, the CIMV process, using a formic acid/acetic acid mixture, has been developed. The economic aspects of furfural production are then addressed. Future research will be needed to investigate scaling-up and biological techniques that produce acceptable yields and productivities to become commercially viable and competitive in furfural production from biomass.
Collapse
Affiliation(s)
- Elsa Cousin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Kritsana Namhaed
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Yolande Pérès
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Patrick Cognet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Michel Delmas
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Heri Hermansyah
- Biorefinery Lab, Bioprocess Engineering Program, Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.
| | - Misri Gozan
- Biorefinery Lab, Bioprocess Engineering Program, Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.
| | - Peter Adeniyi Alaba
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohamed Kheireddine Aroua
- Centre for Carbon Dioxide Capture and Utilization (CCDCU), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Malaysia; Department of Engineering, Lancaster University, Lancaster LA1 4YW, United Kingdom; Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
8
|
Almhofer L, Bischof RH, Madera M, Paulik C. Kinetic and Mechanistic Aspects of Furfural Degradation in Biorefineries. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Almhofer
- Wood K plus – Competence Center for Wood Composites & Wood Chemistry, Kompetenzzentrum Holz GmbH Linz Austria
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz Linz Austria
| | | | | | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz Linz Austria
| |
Collapse
|
9
|
Zhang T, Li W, Xiao H, Jin Y, Wu S. Recent progress in direct production of furfural from lignocellulosic residues and hemicellulose. BIORESOURCE TECHNOLOGY 2022; 354:127126. [PMID: 35398210 DOI: 10.1016/j.biortech.2022.127126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Furfural is a vital biomass-derived platform molecule, which can be used to synthesize a wide range of value-added chemicals. Furfural and its derivatives are promising alternatives to conventional petroleum chemicals. However, recent industrial production of furfural existed some thorny problems, including low efficiency, energy waste, and environmental pollution. Therefore, tremendous and continuous efforts have been made by researchers to develop novel furfural production processes with high economic viability, production efficiency, and sustainability. This review summarized the merits and shortcomings of disparate catalytic systems for the synthesis of furfural from biomass and biomass pretreatment hydrolysate on the basis of recently published literature. Furthermore, the suggestions for furfural production research were put forward.
Collapse
Affiliation(s)
- Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wenzhi Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
10
|
Guo W, Bruining HC, Heeres HJ, Yue J. Efficient synthesis of furfural from xylose over
HCl
catalyst in slug flow microreactors promoted by
NaCl
addition. AIChE J 2022. [DOI: 10.1002/aic.17606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wenze Guo
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Herman Carolus Bruining
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Hero Jan Heeres
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Jun Yue
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| |
Collapse
|
11
|
Dávila I, Diaz E, Labidi J. Acid hydrolysis of almond shells in a biphasic reaction system: Obtaining of purified hemicellulosic monosaccharides in a single step. BIORESOURCE TECHNOLOGY 2021; 336:125311. [PMID: 34049166 DOI: 10.1016/j.biortech.2021.125311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work is to comprehend the biphasic reaction systems through another perspective; the simultaneous purification and production of carbohydrates during the pretreatment of biomass. A dilute acid hydrolysis of almond shells in a 2-Methyltetrahydrofuran/H2O system was optimised to maximise the obtaining of hemicellulose-derived monosaccharides with the minimum formation of degradation products. The optimised conditions of the biphasic reaction system, which produced 205.3 g hemicellulose-derived monosaccharides/Kg almond shells, were replicated in a monophasic reaction system to assess the benefits of the biphasic reaction systems. The latest system allowed the removal of 85.3% of the furans generated during the dilute acid hydrolysis, creating antioxidant extract, together with the catalysis of the hydrolysis of the hemicelluloses in a 20%. Therefore, the proposed process could become a promising method to purify carbohydrates with an environmentally friendly procedure that allowed the obtaining of multiple added-value products in a single step.
Collapse
Affiliation(s)
- Izaskun Dávila
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, San Sebastián 20018, Spain
| | - Estelle Diaz
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, San Sebastián 20018, Spain
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, San Sebastián 20018, Spain.
| |
Collapse
|
12
|
Catalytic Conversion of Xylose to Furfural by p-Toluenesulfonic Acid ( pTSA) and Chlorides: Process Optimization and Kinetic Modeling. Molecules 2021; 26:molecules26082208. [PMID: 33921241 PMCID: PMC8070381 DOI: 10.3390/molecules26082208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
Furfural is one of the most promising precursor chemicals with an extended range of downstream derivatives. In this work, conversion of xylose to produce furfural was performed by employing p-toluenesulfonic acid (pTSA) as a catalyst in DMSO medium at moderate temperature and atmospheric pressure. The production process was optimized based on kinetic modeling of xylose conversion to furfural alongwith simultaneous formation of humin from xylose and furfural. The synergetic effects of organic acids and Lewis acids were investigated. Results showed that the catalyst pTSA-CrCl3·6H2O was a promising combined catalyst due to the high furfural yield (53.10%) at a moderate temperature of 120 °C. Observed kinetic modeling illustrated that the condensation of furfural in the DMSO solvent medium actually could be neglected. The established model was found to be satisfactory and could be well applied for process simulation and optimization with adequate accuracy. The estimated values of activation energies for xylose dehydration, condensation of xylose, and furfural to humin were 81.80, 66.50, and 93.02 kJ/mol, respectively.
Collapse
|
13
|
Improving Biocatalytic Synthesis of Furfuryl Alcohol by Effective Conversion of D-Xylose into Furfural with Tin-Loaded Sulfonated Carbon Nanotube in Cyclopentylmethyl Ether-Water Media. Catal Letters 2021. [DOI: 10.1007/s10562-021-03570-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Weidener D, Leitner W, Domínguez de María P, Klose H, Grande PM. Lignocellulose Fractionation Using Recyclable Phosphoric Acid: Lignin, Cellulose, and Furfural Production. CHEMSUSCHEM 2021; 14:909-916. [PMID: 33244874 PMCID: PMC7898823 DOI: 10.1002/cssc.202002383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/25/2020] [Indexed: 05/05/2023]
Abstract
The conversion of lignocellulose into its building blocks and their further transformation into valuable platform chemicals (e. g., furfural) are key technologies to move towards the use of renewable resources. This paper explored the disentanglement of lignocellulose into hemicellulose-derived sugars, cellulose, and lignin in a biphasic solvent system (water/2-methyltetrahydrofuran) using phosphoric acid as recyclable catalyst. Integrated with the biomass fractionation, in a second step hemicellulose-derived sugars (mainly xylose) were converted to furfural, which was in situ extracted into 2-methyltetrahydrofuran with high selectivity (70 %) and yield (56 wt %). To further increase the economic feasibility of the process, a downstream and recycling strategy enabled recovery of phosphoric acid without loss of process efficiency over four consecutive cycles. This outlines a more efficient and sustainable use of phosphoric acid as catalyst, as its inherent costs can be significantly lowered.
Collapse
Affiliation(s)
- Dennis Weidener
- Institute of Bio- and Geosciences, Plant Sciences Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringer Weg 152074AachenGermany
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum JülichWilhelm-Johnen-Straße52428JülichGermany
| | - Walter Leitner
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringer Weg 152074AachenGermany
- Max-Planck-Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an derRuhrGermany
| | | | - Holger Klose
- Institute of Bio- and Geosciences, Plant Sciences Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
- Institute for Biology IRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum JülichWilhelm-Johnen-Straße52428JülichGermany
| | - Philipp M. Grande
- Institute of Bio- and Geosciences, Plant Sciences Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum JülichWilhelm-Johnen-Straße52428JülichGermany
| |
Collapse
|
15
|
Abstract
In the pursuit of establishing a sustainable biobased economy, valorization of lignocellulosic biomass is increasing its value as a feedstock. Nevertheless, to achieve the integrated biorefinery paradigm, the selective fractionation of its complex matrix to its single constituents must be complete. This review presents and examines the novel catalytic pathways to form furfuryl alcohol (FuOH) from xylose in a one-pot system. This production concept takes on chemical, thermochemical and biochemical transformations or a combination of them. Still, the bulk of the research is targeted to develop heterogeneous catalytic systems to synthesize FuOH from furfural and xylose. The present review includes an overview of the economic aspects to produce this platform chemical in an industrial manner. In the last section of this review, an outlook and summary of catalytic processes to produce FuOH are highlighted.
Collapse
|
16
|
Ricciardi L, Verboom W, Lange J, Huskens J. Reactive Extraction Enhanced by Synergic Microwave Heating: Furfural Yield Boost in Biphasic Systems. CHEMSUSCHEM 2020; 13:3589-3593. [PMID: 32449294 PMCID: PMC7496589 DOI: 10.1002/cssc.202000966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Reactive extraction is an emerging operation in the industry, particularly in biorefining. Here, reactive extraction was demonstrated, enhanced by microwave irradiation to selectively heat the reactive phase (for efficient reaction) without unduly heating the extractive phase (for efficient extraction). These conditions aimed at maximizing the asymmetries in dielectric constants and volumes of the reaction and extraction phases, which resulted in an asymmetric thermal response of the two phases. The efficiency improvement was demonstrated by dehydrating xylose (5 wt % in water) to furfural with an optimal yield of approximately 80 mol % compared with 60-65 mol % under conventional biphasic conditions, which corresponds to approximately 50 % reduction of byproducts.
Collapse
Affiliation(s)
- Luca Ricciardi
- Molecular NanoFabrication groupMESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
| | - Willem Verboom
- Molecular NanoFabrication groupMESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
| | - Jean‐Paul Lange
- Sustainable Process Technology groupUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
- Shell Technology CenterGrasweg 311031 HWAmsterdamThe Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication groupMESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
| |
Collapse
|
17
|
Morais ES, Freire MG, Freire CSR, Coutinho JAP, Silvestre AJD. Enhanced Conversion of Xylan into Furfural using Acidic Deep Eutectic Solvents with Dual Solvent and Catalyst Behavior. CHEMSUSCHEM 2020; 13:784-790. [PMID: 31846225 DOI: 10.1002/cssc.201902848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
An efficient process for the production of furfural from xylan by using acidic deep eutectic solvents (DESs), which act both as solvents and catalysts, is developed. DESs composed of cholinium chloride ([Ch]Cl) and malic acid or glycolic acid at different molar ratios, and the effects of water and γ-valerolactone (GVL) contents, solid/liquid (S/L) ratio, and microwave heating are investigated. The best furfural yields are obtained with the DES [Ch]Cl:malic acid (1:3 molar ratio)+5 wt % water, under microwave heating for 2.5 min at 150 °C, a S/L ratio of 0.050, and GVL at a weight ratio of 2:1. Under these conditions, a remarkable furfural yield (75 %) is obtained. Direct distillation of furfural from the DES/GVL solvent and distillation from 2-methyltetrahydrofuran (2-MeTHF) after a back-extraction step enable 89 % furfural recovery from 2-MeTHF. This strategy allows recycling of the DES/GVL for at least three times with only small losses in furfural yield (>69 %). This is the fastest and highest-yielding process reported for furfural production using bio-based DESs as solvents and catalysts, paving the way for scale-up of the process.
Collapse
Affiliation(s)
- Eduarda S Morais
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João A P Coutinho
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|