1
|
Pochampally SV, Letourneau E, Abdulraheem I, Monk J, Sims D, Hunyadi Murph SE, Marti EJ, Moon J. Metal-organic-framework and walnut shell biochar composites for lead and hexavalent chromium removal from aqueous environments. CHEMOSPHERE 2024; 367:143572. [PMID: 39426750 DOI: 10.1016/j.chemosphere.2024.143572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Extensive research in recent years has explored the realm of porous carbon composites for various applications, including electrochemistry, structural materials, environmental remediation, and more. In particular, the fabrication of porous carbon composites using a metal-organic framework (MOF) and biochar (BC) for aqueous remediation is a fairly new avenue of research. In this study, a MOF-BC composite was synthesized with unmodified and chemically modified BCs using solvothermal synthesis. The composites were used as adsorbents to remediate heavy metals, such as lead (II) and chromium (VI), from aqueous environments. It was verified that the MOF was homogeneously deposited onto the BC's surface using various material characterization techniques. Lead and chromium adsorption studies revealed a high adsorption capacity with greater than 99% removal for lead and ∼65% for chromium, respectively. Impressively, for lead, the highest observed experimental adsorption capacity of the MOF-chemically modified BC composite was 535 mg/g, compared to 240 mg/g for pristine BC. Meanwhile, the adsorption capacity of the same MOF-BC composite for chromium ions was low at 18 mg/g, compared to 80 mg/g for the chemically modified BC. The MOF-BC had a rapid adsorption rate, achieving equilibrium at only 150 min of reaction time for lead ions. MOF-BCs have higher adsorption for cationic lead through physisorption and ion-exchange mechanisms, whereas, for anionic chromium, removal is dominated only by physisorption mechanisms. The outcomes and methodological developments attained in this study offer a novel and compelling approach for synthesizing MOF-BC composites for aqueous remediation applications.
Collapse
Affiliation(s)
| | - Emma Letourneau
- Department of Mechanical Engineering, University of Nevada, Las Vegas, USA
| | - Ismail Abdulraheem
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, USA
| | - Joshua Monk
- Department of Chemistry, College of Southern Nevada, Las Vegas, USA
| | - Douglas Sims
- Department of Chemistry, College of Southern Nevada, Las Vegas, USA
| | - Simona E Hunyadi Murph
- Savannah River National Laboratory (SRNL), Aiken, SC, 29808, USA; University of Georgia, Athens, GA, USA
| | - Erica J Marti
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, USA
| | - Jaeyun Moon
- Department of Mechanical Engineering, University of Nevada, Las Vegas, USA.
| |
Collapse
|
2
|
Song Q, Kong F, Liu BF, Song X, Ren HY. Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100420. [PMID: 38765891 PMCID: PMC11099330 DOI: 10.1016/j.ese.2024.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Chlorinated organic pollutants constitute a significant category of persistent organic pollutants due to their widespread presence in the environment, which is primarily attributed to the expansion of agricultural and industrial activities. These pollutants are characterized by their persistence, potent toxicity, and capability for long-range dispersion, emphasizing the importance of their eradication to mitigate environmental pollution. While conventional methods for removing chlorinated organic pollutants encompass advanced oxidation, catalytic oxidation, and bioremediation, the utilization of biochar has emerged as a prominent green and efficacious method in recent years. Here we review biochar's role in remediating typical chlorinated organics, including polychlorinated biphenyls (PCBs), triclosan (TCS), trichloroethene (TCE), tetrachloroethylene (PCE), organochlorine pesticides (OCPs), and chlorobenzenes (CBs). We focus on the impact of biochar material properties on the adsorption mechanisms of chlorinated organics. This review highlights the use of biochar as a sustainable and eco-friendly method for removing chlorinated organic pollutants, especially when combined with biological or chemical strategies. Biochar facilitates electron transfer efficiency between microorganisms, promoting the growth of dechlorinating bacteria and mitigating the toxicity of chlorinated organics through adsorption. Furthermore, biochar can activate processes such as advanced oxidation or nano zero-valent iron, generating free radicals to decompose chlorinated organic compounds. We observe a broader application of biochar and bioprocesses for treating chlorinated organic pollutants in soil, reducing environmental impacts. Conversely, for water-based pollutants, integrating biochar with chemical methods proved more effective, leading to superior purification results. This review contributes to the theoretical and practical application of biochar for removing environmental chlorinated organic pollutants.
Collapse
Affiliation(s)
- Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
3
|
Haider MIS, Liu G, Yousaf B, Arif M, Aziz K, Ashraf A, Safeer R, Ijaz S, Pikon K. Synergistic interactions and reaction mechanisms of biochar surface functionalities in antibiotics removal from industrial wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124365. [PMID: 38871166 DOI: 10.1016/j.envpol.2024.124365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Biochar, a carbon-rich material with a unique surface chemistry (high abundance of surface functional groups, large surface area, and well-distributed), has shown great potential as a sustainable solution for industrial wastewater treatment as compared to conventional industrial wastewater treatment techniques demand substantial energy consumption and generate detrimental byproducts. This critical review emphasizes the surface functionalities formation and development in biochar to enhance its physiochemical properties, for utilization in antibiotics removal. Factors affecting the formation of functionalities, including carbonization processes, feedstock materials, operating parameters, and the influence of pre-post treatments, are thoroughly highlighted to understand the crucial role of factors influencing biochar properties for optimal antibiotics removal. Furthermore, the research explores the removal mechanisms and interactions of biochar-based surface functionalities, hydrogen bonding, encompassing electrostatic interactions, hydrophobic interactions, π-π interactions, and electron donor and acceptor interactions, to provide insights into the adsorption/removal behavior of antibiotics on biochar surfaces. The review also explains the mechanism of factors influencing the removal of antibiotics in industrial wastewater treatment, including particle size and pore structure, nature and types of surface functional groups, pH and surface charge, temperature, surface modification strategies, hydrophobicity/hydrophilicity, biochar dose, pollutant concentration, contact time, and the presence of coexisting ions and other substances. Finally, the study offers reusability and regeneration, challenges and future perspectives on the development of biochar-based adsorbents and their applications in addressing antibiotics. It concludes by summarizing the key findings and emphasizing the significance of biochar as a sustainable and effective solution for mitigating antibiotics contamination in industrial wastewater.
Collapse
Affiliation(s)
- Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Muhammad Arif
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Kiran Aziz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Krzysztof Pikon
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
4
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
5
|
Wystalska K, Kowalczyk M, Kamizela T, Worwąg M, Zabochnicka M. Properties and Possibilities of Using Biochar Composites Made on the Basis of Biomass and Waste Residues Ferryferrohydrosol Sorbent. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2646. [PMID: 38893909 PMCID: PMC11173671 DOI: 10.3390/ma17112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Biochar enriched with metals has an increased potential for sorption of organic and inorganic pollutants. The aim of the research was to identify the possibility of using biochar composites produced on the basis of waste plant biomass and waste FFH (ferryferrohydrosol) containing iron atoms, after CO2 capture. The composites were produced in a one-stage or two-stage pyrolysis process. Their selected properties were determined as follows: pH, ash content, C, H, N, O, specific surface area, microstructure and the presence of surface functional groups. The produced biochar and composites had different properties resulting from the production method and the additive used. The results of experiments on the removal of methylene blue (MB) from solutions allowed us to rank the adsorbents used according to the maximum dye removal value achieved as follows: BC1 (94.99%), B (84.61%), BC2 (84.09%), BC3 (83.23%) and BC4 (83.23%). In terms of maximum amoxicillin removal efficiency, the ranking is as follows: BC1 (55.49%), BC3 (23.51%), BC2 (18.13%), B (13.50%) and BC4 (5.98%). The maximum efficiency of diclofenac removal was demonstrated by adsorbents BC1 (98.71), BC3 (87.08%), BC4 (74.20%), B (36.70%) and BC2 (30.40%). The most effective removal of metals Zn, Pb and Cd from the solution was demonstrated by BC1 and BC3 composites. The final concentration of the tested metals after sorption using these composites was less than 1% of the initial concentration. The highest increase in biomass on prepared substrates was recorded for the BC5 composite. It was higher by 90% and 54% (for doses of 30 g and 15 g, respectively) in relation to the biomass growth in the soil without additives. The BC1 composite can be used in pollutant sorption processes. However, BC5 has great potential as a soil additive in crop yield and plant growth.
Collapse
Affiliation(s)
- Katarzyna Wystalska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (M.K.); (T.K.); (M.W.); (M.Z.)
| | | | | | | | | |
Collapse
|
6
|
Nadarajah K, Rodriguez-Narvaez OM, Ramirez J, Bandala ER, Goonetilleke A. Lab-scale engineered hydrochar production and techno-economic scaling-up analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:568-574. [PMID: 38141374 DOI: 10.1016/j.wasman.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Despite the extensive use of engineered hydrochar (EHC) for contaminants adsorption in water, little is known about the scaling-up of EHC production which has kept the technology at a low readiness level (TRL). Full-scale EHC production was simulated to help bridge this knowledge gap. A systematic analysis was performed where EHC was produced from rice straw using hydrothermal carbonization (HTC) at 200 °C with iron addition. A techno-economic evaluation model was employed to simulate the production process and to estimate energy requirements, configuration, and cost scenarios for the HTC process. The minimum selling price (MSP) analysis of the engineered hydrochar was found to be almost half compared to the market price for other similar sorbents ($ 76/t vs. $136/t) suggesting that EHC production is feasible for scaling up. Finally, as a trial, the resulting material was tested for its efficacy in the adsorption of an anionic organic contaminant (e.g., Congo Red, C32H22N6Na2O6S2) in water to identify its potential for water treatment. Experimental results showed that EHC adsorbed > 95% CR suggesting significant adsorption capability and feasibility for production scale-up.
Collapse
Affiliation(s)
- Kannan Nadarajah
- Department of Agricultural Engineering, Faculty of Agriculture, University of Jaffna, Sri Lanka
| | - Oscar M Rodriguez-Narvaez
- CIATEC, A.C., Dirección de investigación y soluciones tecnológicas, Omega 201, Col. Industrial Delta, León, Guanajuato C.P. 37545, Mexico.
| | - Jerome Ramirez
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia
| | - Erick R Bandala
- Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas NV89119-7363, USA
| | - Ashantha Goonetilleke
- School of Civil and Environmental Engineering, Queensland University of Technology, GPO Box 2344, Brisbane 4001, Queensland, Australia
| |
Collapse
|
7
|
Wang Y, Wang K, Wang X, Zhao Q, Jiang J, Jiang M. Effect of different production methods on physicochemical properties and adsorption capacities of biochar from sewage sludge and kitchen waste: Mechanism and correlation analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132690. [PMID: 37801977 DOI: 10.1016/j.jhazmat.2023.132690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Different pyrolysis methods, parameters and feedstocks result in biochars with different properties, structures and removal capacities for heavy metals. However, the role of each property on adsorption capacity and corresponding causal relationships remain unclear. Here, we investigated various physicochemical properties of biochar produced via three different methods and two different feedstocks to clarify influences of biomass sources and pyrolysis processes on biochar properties and its heavy metal adsorption performance. Experimental results showed biochars were more aromatic and contained more functional groups after hydrothermal carbonization, while they had developed pores and higher surface areas produced by anaerobic pyrolysis. The inclusion of oxygen resulted in more complete carbonization and higher CEC biochar. Different biochar properties resulted in different adsorption capacities. Biochar produced by aerobic calcination showed higher adsorption efficiency for Cu and Pb. Correlation analysis proved that pH, cation exchange capacity and degree of carbonization positively affected adsorption, while organic matter content and aromaticity were unfavorable for adsorption. Microstructure and components determined biochar macroscopic properties and ultimate adsorption efficiency for metal ions. This study identifies the degree of correlation and pathways of each property on adsorption, which provides guidance for targeted modification of biochar to enhance its performance in heavy metal removal.
Collapse
Affiliation(s)
- Yipeng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuchan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Jiang Y, Liu A. Cornstalk biochar-TiO 2 composites as alternative photocatalyst for degrading methyl orange. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31923-31934. [PMID: 36459321 DOI: 10.1007/s11356-022-24490-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Dye wastewater is one of the most harmful wastewater types generated during industrial processes. Effectively treating dye wastewater is essential. This study used TiO2 and cornstalk biochar to prepare biochar-TiO2 composites in order to treat methyl orange (MO) in the water. It is found that composites prepared using biochar generated at 700 ℃ and TiO2/biochar mass ratio values of 0.75/1 showed the best performance on decolorization efficiency and mineralization efficiency of MO while low pH, low initial MO concentration, and 1 g/L of composite amount added can enhance MO degradation efficiency. Additionally, it is also noted that biochar-TiO2 composites were easier to separate from water compared to pure TiO2. This benefits the recycling of biochar-TiO2 composites after application. Furthermore, the study indicated that the biochar-TiO2 composites degrade MO by a combination of adsorption and photocatalysis while photoelectron (e-) and ·O2- are the key species participating in photocatalytic degradation of MO. These research outcomes suggest that cornstalk biochar and TiO2 can be used to prepare composites, which can be seen as an alternative photocatalyst for dye wastewater treatment. However, further investigations related to their long-term applications and in real scale projects are recommended.
Collapse
Affiliation(s)
- Ying Jiang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- College of Chemistry and Environmental Engineering, Water Science and Environmental Engineering Research Center, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
9
|
Preparation and characterization of bimetallic zero-valent iron nanocatalysts for nitrophenol degradation. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
10
|
Yu J, Zhang X, Zhao X, Ma R, Du Y, Zuo S, Dong K, Wang R, Zhang Y, Gu Y, Sun J. Heterogeneous Fenton oxidation of 2,4-dichlorophenol catalyzed by PEGylated nanoscale zero-valent iron supported by biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41333-41347. [PMID: 36630031 DOI: 10.1007/s11356-023-25182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The excessive use of herbicides and fungicides containing 2,4-dichlorophenol (2,4-DCP) has led to serious environmental water pollution; 2,4-DCP is chemically stable and difficult to be degraded effectively by biological and physical methods. And the degradation of 2,4-DCP using advanced oxidation techniques has been a hot topic. Biochar, polyethylene glycol, ferrous sulfate, and sodium borohydride were used to synthesize the heterogeneous catalyst PEGylated nanoscale zero-valent iron supported by biochar (PEG-nZVI@BC). The catalyst was characterized using scanning electron microscope (SEM) and other means to determine its physicochemical properties. Catalytic performance and mechanism of this catalyst with hydrogen peroxide for the oxidation of 2,4-DCP were investigated. The results showed that PEG-nZVI@BC had good dispersibility, stability, and inoxidizability; the degradation efficiency of 50 mg/L 2,4-DCP by PEG-nZVI@BC/H2O2 system 92.94%, 1.68 times higher than that of nZVI/H2O2 system; there are both free radical and non-free radical pathways in PEG-nZVI@BC/H2O2 system; the degradation process of 2,4-DCP includes hydroxylation, dechlorination, and ring-opening. Overall, PEG-nZVI@BC is a promising heterogeneous catalyst for the degradation of 2,4-DCP.
Collapse
Affiliation(s)
- Junlong Yu
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Xiuxia Zhang
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Xiaodong Zhao
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Ruojun Ma
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yi Du
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Shuai Zuo
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Kangning Dong
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Ruirui Wang
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yupeng Zhang
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yingying Gu
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Juan Sun
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| |
Collapse
|
11
|
"Green" nZVI-Biochar as Fenton Catalyst: Perspective of Closing-the-Loop in Wastewater Treatment. Molecules 2023; 28:molecules28031425. [PMID: 36771092 PMCID: PMC9921900 DOI: 10.3390/molecules28031425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
In the framework of wastewater treatment plants, sewage sludge can be directed to biochar production, which when coupled with an external iron source has the potential to be used as a carbon-iron composite material for treating various organic pollutants in advanced oxidation processes. In this research, "green" synthesized nano zero-valent iron (nZVI) supported on sewage sludge-based biochar (BC)-nZVI-BC was used in the Fenton process for the degradation of the recalcitrant organic molecule. In this way, the circular economy principles were supported within wastewater treatment with immediate loop closing; unlike previous papers, where only the water treatment was assessed, the authors proposed a new approach to wastewater treatment, combining solutions for both water and sludge. The following phases were implemented: synthesis and characterization of nano zero-valent iron supported on sewage sludge-based biochar (nZVI-BC); optimization of organic pollutant removal (Reactive Blue 4 as the model pollutant) by nZVI-BC in the Fenton process, using a Definitive Screening Design (DSD) model; reuse of the obtained Fenton sludge, as an additional catalytic material, under previously optimized conditions; and assessment of the exhausted Fenton sludge's ability to be used as a source of nutrients. nZVI-BC was used in the Fenton treatment for the degradation of Reactive Blue 4-a model substance containing a complex and stable anthraquinone structure. The DSD model proposes a high dye-removal efficiency of 95.02% under the following optimal conditions: [RB4] = 50 mg/L, [nZVI] = 200 mg/L, [H2O2] = 10 mM. pH correction was not performed (pH = 3.2). Afterwards, the remaining Fenton sludge, which was thermally treated (named FStreated), was applied as a heterogeneous catalyst under the same optimal conditions with a near-complete organic molecule degradation (99.56% ± 0.15). It could be clearly noticed that the cumulative amount of released nutrients significantly increased with the number of leaching experiments. The highest cumulative amounts of released K, Ca, Mg, Na, and P were therefore observed at the fifth leaching cycle (6.40, 1.66, 1.12, 0.62, 0.48 and 58.2 mg/g, respectively). According to the nutrient release and toxic metal content, FStreated proved to be viable for agricultural applications; these findings illustrated that the "green" synthesis of nZVI-BC not only provides innovative and efficient Fenton catalysts, but also constitutes a novel approach for the utilization of sewage sludge, supporting overall process sustainability.
Collapse
|
12
|
Chen C, Yang F, Beesley L, Trakal L, Ma Y, Sun Y, Zhang Z, Ding Y. Removal of cadmium in aqueous solutions using a ball milling-assisted one-pot pyrolyzed iron-biochar composite derived from cotton husk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12571-12583. [PMID: 36112289 DOI: 10.1007/s11356-022-22828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
A novel iron-biochar composite adsorbent was produced via ball milling-assisted one-pot pyrolyzed BM-nZVI-BC 800. Characterization proved that nano zero valent iron was successfully embedded in the newly produced biochar, and the nZVI payload was higher than that of traditional one-pot pyrolyzed methods. BM-nZVI-BC 800 provided a high adsorption performance of cadmium reaching 96.40 mg·g-1 during batch testing. Alkaline conditions were beneficial for cadmium removal of BM-nZVI-BC 800. The pseudo-second-order kinetic model and Langmuir isotherm fitted better, demonstrating that the Cd adsorption on the BM-nZVI-BC 800 was a chemical and surface process. The intraparticle diffusion controlled the adsorption of BM-nZVI-BC 800. The physisorption dominated by high specific surface area and mesoporous structure was the primary mechanism in the removal of cadmium, though electrostatic attraction and complexation also played a secondary role in cadmium adsorption. Compared to adsorbents prepared by more traditional methods, the efficiencies of the ball milling-assisted one-pot pyrolyzed method appears superior.
Collapse
Affiliation(s)
- Chen Chen
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Fengxia Yang
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Luke Beesley
- The James Hutton Institute, Aberdeen, AB15 8QH, UK
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, Prague, Suchdol, 165 00, Czech Republic
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, Prague, Suchdol, 165 00, Czech Republic
| | - Yongfei Ma
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuebing Sun
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zulin Zhang
- The James Hutton Institute, Aberdeen, AB15 8QH, UK
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongzhen Ding
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
13
|
Rong K, Li X, Yang Q, Li R, Zhang Z, Zou M, Zheng H, Liu J. Removal of aqueous vanadium(V) by green synthesized iron nanoparticles supported on corn straw biochar. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Mortazavian S, Murph SEH, Moon J. Biochar Nanocomposite as an Inexpensive and Highly Efficient Carbonaceous Adsorbent for Hexavalent Chromium Removal. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15176055. [PMID: 36079435 PMCID: PMC9457831 DOI: 10.3390/ma15176055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 05/27/2023]
Abstract
Biochar is commonly used for soil amendment, due to its excellent water-holding capacity. The Cr(VI) contamination of water is a current environmental issue in industrial regions. Here, we evaluated the effects of two-step modifications on boosting biochar's performance in terms of the removal of aqueous hexavalent chromium (Cr(VI)), along with investigating the alterations to its surface properties. The first modification step was heat treatment under air at 300 °C, producing hydrophilic biochar (HBC). The resulting HBC was then impregnated with zero-valent iron nanoparticles (nZVI), creating an HBC/nZVI composite, adding a chemical reduction capability to the physical sorption mechanism. Unmodified biochar (BC), HBC, and HBC/nZVI were characterized for their physicochemical properties, including surface morphology and elemental composition, by SEM/EDS, while functional groups were ascertained by FTIR and surface charge by zeta potential. Cr(VI) removal kinetic studies revealed the four-time greater sorption capacity of HBC than BC. Although unmodified BC showed faster initial Cr(VI) uptake, it rapidly worsened and started desorption. After nZVI impregnation, the Cr(VI) removal rate of HBC increased by a factor of 10. FTIR analysis of biochars after Cr(VI) adsorption showed the presence of Cr(III) oxide only on the used HBC/nZVI and demonstrated that the carbonyl and carboxyl groups were the main groups involved in Cr(VI) sorption. Modified biochars could be considered an economical substitute for conventional methods.
Collapse
Affiliation(s)
- Soroosh Mortazavian
- Department of Mechanical Engineering, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | | | - Jaeyun Moon
- Department of Mechanical Engineering, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
15
|
Yang Y, Zhang X, Ngo HH, Guo W, Li Z, Wang X, Zhang J, Long T. A new spent coffee grounds based biochar - Persulfate catalytic system for enhancement of urea removal in reclaimed water for ultrapure water production. CHEMOSPHERE 2022; 288:132459. [PMID: 34619254 DOI: 10.1016/j.chemosphere.2021.132459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The demand for ultrapure water (UPW) in the semiconductor industry has increased in recent years, while the idea to use reclaimed water instead of tap water for UPW production has also attracted more attention. However, since urea concentration in reclaimed water is higher than that in tap water, UPW production has not been efficient. To resolve this problem, this study aims to develop a new spent coffee grounds based biochar (SCG-BC)/persulfate catalytic system as a pretreatment unit. The objective is to enhance urea removal from reclaimed water so that UPW production is more effective. In this study, the biochar used was prepared from spent coffee grounds with detailed characterization. Results strongly suggested that the urea removed by SCG-BC/persulfate catalytic system was very encouraging (up to 73%). The best possible dosages for SCG-BC and persulfate for urea removal were 0.2 and 2.0 g L-1, respectively. Furthermore, this system could remove urea effectively in a wide range of pH (3-10). Moreover, the characterizations of SCG-BC (graphite C, defective edges and functional groups, i.e. -OH, CO, carboxyl C-O) helped to activate persulfate in the catalytic process. OH• and SO4• - were all involved in this process, while the SO4• - was the main radical for urea degradation.
Collapse
Affiliation(s)
- Yuanying Yang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China.
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Zening Li
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Xiao Wang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing, 100000, China
| | - Jianqing Zhang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing, 100000, China
| | - Tianwei Long
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| |
Collapse
|
16
|
Tang Y, Li Y, Zhan L, Wu D, Zhang S, Pang R, Xie B. Removal of emerging contaminants (bisphenol A and antibiotics) from kitchen wastewater by alkali-modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150158. [PMID: 34537708 DOI: 10.1016/j.scitotenv.2021.150158] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 05/11/2023]
Abstract
Using current wastewater treatment technologies, it can be challenging to remove the emerging contaminants (ECs) present in kitchen wastewater (KW) of complex compositions and high organic content. In this study, biochar, derived from straw, was modified as an adsorbent to remove ECs such as bisphenol A (BPA), tetracycline (TC) and ofloxacin (OFL) from a complex KW system. An alkali-modified biochar, having larger specific surface areas and stronger hydrophobicity, was found to exhibit a higher adsorption capacity, with more than 95% of the target ECs being removed. Indeed, in a static operation mode, the alkali-modified biochar had maximum adsorption capacities of 71.43, 101.01 and 54.05 mg/g for BPA, TC, and OFL, respectively. The adsorption kinetics and isotherms models indicated that the adsorption process was controlled by chemisorption, as well as the monolayer adsorption of contaminants onto the external and internal surfaces of the alkali-modified biochar. The adsorption of TC and OFL was significantly affected by the initial pH values of KW. However, the presence of different environmental factors (COD, NH4+ and PO43-) had little effects on the adsorption of the contaminants. The alkali-modified biochar was further tested in a fixed-bed column where the maximum dynamic adsorption capacities for BPA and OFL were 55 and 45 mg/g, representing about 75% and 83% of the static saturated adsorption capacities. These findings can be of major significance for the application of alkali-modified biochar in the removal of ECs from complex KW systems.
Collapse
Affiliation(s)
- Ye Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ye Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lu Zhan
- Shanghai Jiaotong University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Suhua Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
17
|
Fu D, Kurniawan TA, Li H, Wang H, Wang Y, Li Q. Co-oxidative removal of arsenite and tetracycline based on a heterogeneous Fenton-like reaction using iron nanoparticles-impregnated biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118062. [PMID: 34482246 DOI: 10.1016/j.envpol.2021.118062] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
A highly efficient, eco-friendly and relatively low-cost catalyst is necessary to tackle bottlenecks in the treatment of industrial wastewater laden with heavy metals and antibiotic such as livestock farm and biogas liquids. This study investigated co-oxidative removal of arsenite (As(III)) and tetracycline (TC) by iron nanoparticles (Fe NP)-impregnated carbons based on heterogeneous Fenton-like reactions. The composites included Fe NP@biochar (BC), Fe NP@hydrochar (HC), and Fe NP@HC-derived pyrolysis char (HDPC). The functions of N and S atoms and the loading mass of the Fe NP in the Fe NP@BC in heterogeneous Fenton-like reactions were studied. To sustain its cost-effectiveness, the spent Fe NP@BC was regenerated using NaOH. Among the composites, the Fe NP@BC achieved an almost complete removal of As(III) and TC under optimized conditions (1.0 g/L of dose; 10 mM H2O2; pH 6; 4 h of reaction; As(III): 50 μM; TC: 50 μM). The co-oxidative removal of As(III) and TC by the Fe NP@ BC was controlled by the synergistic interactions between the Fe NPs and the active N and S sites of the BC for generating reactive oxygen species (ROS). After four consecutive regeneration cycles, about 61 and 95% of As(III) and TC removal were attained. This implies that the spent carbocatalyst still has reasonable catalytic activities for reuse. Overall, this suggests that adding technological values to unused biochar as a carbocatalyst like Fe NP@BC was promising for co-oxidative removal of As(III) and TC from contaminated water.
Collapse
Affiliation(s)
- Dun Fu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, School of Resources and Civil Engineering, Suzhou University, Suzhou, 234000, Anhui, PR China
| | - Tonni Agustiono Kurniawan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China
| | - Heng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China
| | - Haitao Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China.
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China; College of Food and Biology Engineering, Jimei University, Xiamen, 361021, Fujian, PR China
| |
Collapse
|
18
|
Başer B, Yousaf B, Yetis U, Abbas Q, Kwon EE, Wang S, Bolan NS, Rinklebe J. Formation of nitrogen functionalities in biochar materials and their role in the mitigation of hazardous emerging organic pollutants from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126131. [PMID: 34492923 DOI: 10.1016/j.jhazmat.2021.126131] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Emerging organic pollutants (EOPs) are serious environmental concerns known for their prominent adverse and hazardous ecological effects, and persistence in nature. Their detrimental impacts have inspired researchers to develop the strategic tools that reduce and overcome the challenges caused by EOPs' rising concentration. As such, biochar becomes as a promising class of biomass-derived functional materials that can be used as low-cost and environmentally-friendly emerging catalysts to remove EOPs. Herein, in-depth synthetic strategies and formation mechanisms of biochar-based nitrogen functionalities during thermochemical conversion are presented. Most prominently, the factors affecting N-surface functionalities in biochar are discussed, emphasizing the most effective N-doping approach, including intrinsic N-doping from biomass feedstock and extrinsic N-doping from exogenous sources. Moreover, biochar-assisted EOPs removal in line with interactions of nitrogen functionalities and contaminants are discussed. The possible reaction mechanisms, i.e., radical and non-radical degradation, physical adsorption, Lewis acid-base interaction, and chemisorption, driven by N-functionalities, are addressed. The unresolved challenges of the potential applications of biochar-mediated functionalities for EOPs removal are emphasized and the outlooks of future research directions are proposed at the end.
Collapse
Affiliation(s)
- Begüm Başer
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Balal Yousaf
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Ulku Yetis
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Qumber Abbas
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, 196W Huayang Rd, Yangzhou, Jiangsu, PR China
| | - Nanthi S Bolan
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW - 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, South Korea
| |
Collapse
|
19
|
Fabrication of microwave assisted biogenic magnetite-biochar nanocomposite: A green adsorbent from jackfruit peel for removal and recovery of nutrients in water sample. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Li X, Qin Y, Jia Y, Li Y, Zhao Y, Pan Y, Sun J. Preparation and application of Fe/biochar (Fe-BC) catalysts in wastewater treatment: A review. CHEMOSPHERE 2021; 274:129766. [PMID: 33529955 DOI: 10.1016/j.chemosphere.2021.129766] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 05/15/2023]
Abstract
The removal of organic pollutants from water environments is a challenging problem. Fe-based BC (Fe-BC) composites are promising catalysts for generating reactive oxygen species (ROS) for environmental remediation considering their low costs and excellent physicochemical surface characteristics. The synthesis methods, properties, applications, and the mechanism of Fe-BC for removing pollutants are reviewed. Various methods have been used to prepare Fe-BC composites, and the synthetic methods and conditions used affect the properties of the Fe-BC material, thereby influencing its pollutant removal performance. The mechanisms of pollutant removal by Fe-BC are intricate and include adsorption, degradation and reduction. Fe loading on BC could improve the performance of BC by affecting its surface area, surface functional groups and electron transfer rate. Moreover, research gaps and uncertainties that exist in the use of Fe-BC were identified. Finally, the problems that need to be solved to make Fe-BC suitable for future applications are described.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| | - Yang Qin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Yan Jia
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Yanyan Li
- Resources & Environment College, Tibet Key Laboratory of Forest Ecology in Plateau Area, Ministry of Education, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Yixuan Zhao
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jianhui Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
21
|
Feng Z, Yuan R, Wang F, Chen Z, Zhou B, Chen H. Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142673. [PMID: 33071122 DOI: 10.1016/j.scitotenv.2020.142673] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 05/12/2023]
Abstract
In recent years, magnetic biochar (MBC) has been greatly concerned because of its magnetic separation characteristics, and has been successfully used as a catalyst in the catalytic degradation of organic pollutants. However, there is currently a lack of a more systematic summary of MBC preparation methods, and no detailed overview of the catalytic mechanism of MBC catalysts for the degradation of organic pollutants. Therefore, we carry out this work to fill the above gaps. At first, we summarize the raw materials, preparation methods, and types of MBC in detail, and emphasize the MBC prepared by iron-containing sludge. Then, the catalytic mechanisms of MBC in peroxydisulfate, peroxymonosulfate, Fenton-like, photocatalysis, and NaBH4 systems are carefully summarized, highlighting the contribution of various parts of MBC in catalysis. The degradation efficiency of organic pollutants in the above systems is evaluated. Finally, the stability and reusability of MBC catalysts are evaluated. In conclusion, this review contributes a meager force to the future development of MBC.
Collapse
Affiliation(s)
- Zhuqing Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
22
|
Abstract
Biochar is a porous material obtained by biomass thermal degradation in oxygen-starved conditions. It is nowadays applied in many fields. For instance, it is used to synthesize new materials for environmental remediation, catalysis, animal feeding, adsorbent for smells, etc. In the last decades, biochar has been applied also to soils due to its beneficial effects on soil structure, pH, soil organic carbon content, and stability, and, therefore, soil fertility. In addition, this carbonaceous material shows high chemical stability. Once applied to soil it maintains its nature for centuries. Consequently, it can be considered a sink to store atmospheric carbon dioxide in soils, thereby mitigating the effects of global climatic changes. The literature contains plenty of papers dealing with biochar’s environmental effects. However, a discrepancy exists between studies dealing with biochar applications and those dealing with the physical-chemistry behind biochar behavior. On the one hand, the impression is that most of the papers where biochar is tested in soils are based on trial-and-error procedures. Sometimes these give positive results, sometimes not. Consequently, it appears that the scientific world is divided into two factions: either supporters or detractors. On the other hand, studies dealing with biochar’s physical-chemistry do not appear helpful in settling the factions’ problem. This review paper aims at collecting all the information on physical-chemistry of biochar and to use it to explain biochar’s role in different fields of application.
Collapse
|
23
|
Vilardi G, Verdone N, Bubbico R. Combined production of metallic-iron nanoparticles: exergy and energy analysis of two alternative processes using Hydrazine and NaBH4 as reducing agents. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2020.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Chaturvedi NK, Katoch SS. Evaluation and comparison of Fenton-like oxidation with Fenton’s oxidation for hazardous methoxyanilines in aqueous solution. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Huang K, Bian H, Zhang M, Zhan C, Li C, Zhang W, Cui C, Lu Q, Lin K, Zhao J. Characterization of bimetallic Fe/Ni nanoparticles supported by amphiphilic block copolymer and its application in removal of 1,1,1-trichloroethane in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34503-34512. [PMID: 32557070 DOI: 10.1007/s11356-020-09399-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The iron and nickel bimetallic nanoparticles supported by the block copolymer polystyrene-block-poly (acrylic acid) (PS-b-PAA-nZVI-Ni) were synthesized successfully and were applied to assess the degradation of 1,1,1-trichloroethane (1,1,1-TCA) in water. An optimal dose of Ni loading was 2 wt%, while an optimal mass ratio of PS-b-PAA to Ni/Fe, i.e., 0.5:1, at which the dechlorination efficiency was a maximum. The size of PS-b-PAA-nZVI-Ni nanoparticles (average size ~ 50 nm) was three times smaller than that of nZVI-Ni due to the prevention of agglomeration of the resultant zerovalent iron nanoparticles by PS-b-PAA. In the applying aspect, the pseudo-first-order rate constant (Kobs) of 1,1,1-TCA removal by PS-b-PAA-nZVI-Ni was 0.0142 min-1 within 240 min, which was approximately five times higher than nZVI. Meanwhile, PS-b-PAA-supported nZVI-Ni nanoparticles penetrated much deeper in quartz sand columns than nZVI-Ni nanoparticles, indicating PS-b-PAA had significant influence on nZVI transport. The findings from this study suggested that PS-b-PAA-nZVI-Ni, with its high reactivity, selective screening for 1,1,1-TCA, could be one significant potential for use as remedial agent to treat chlorinated solvents in water.
Collapse
Affiliation(s)
- Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Bian
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Cong Zhan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Can Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiang Lu
- Shanghai Prestige Environmental Engineering Co. Ltd., Gaofeng Road 899, Shanghai, 201499, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jianhua Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China
| |
Collapse
|
26
|
Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER. Biochar-supported nanomaterials for environmental applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|