1
|
Yang L, Liu R, Xie M, Yang F. Construction of a MIL-101-DGA (MOF) Coupling Betaine Hydrochloride System for the Green and Efficient Separation of Zirconium and Hafnium. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24369-24381. [PMID: 40209173 DOI: 10.1021/acsami.5c02082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Metal-organic framework materials (MOFs) have potential for practical applications in solid-phase separation technology. However, no studies of the separation of hafnium and zirconium using MOFs have been performed. This work synthesized MIL-101-DGA solid-phase adsorbent material, which was synthesized using amino-containing MIL-101-NH2 as a matrix material by introducing diglycolic acid (DGA) functional groups through a one-step ring-opening reaction. Betaine hydrochloride was selected as the complexing agent to establish the MIL-101-DGA coupling betaine hydrochloride push-pull system; this system could act as an alternative to the traditional MIBK-HSCN separation system. We are the first to report that this MIL-101-DGA coupling betaine hydrochloride system could obtain separation coefficients (βZr/Hf) of 19.7 at pH 0.50 and 8.2 at pH 1.46. Furthermore, the highest adsorption capacity of MIL-101-DGA for Zr was 63.7 mg/g. These results demonstrated that MIL-101-DGA had excellent separation performance for zirconium and hafnium in the betaine hydrochloride medium. This system also exhibited an outstanding cycling performance and immersion stability. After multiple adsorption/desorption cycles and 1 week of immersion in various solutions, the structure and adsorption capability essentially remained unchanged. The adsorption mechanism was thoroughly examined using a suite of analysis and detection methods, including the slope method, FT-IR, XPS, and DFT. In conclusion, we propose that the MIL-101-DGA coupling betaine hydrochloride system, which is an efficient and green separation system, could replace the traditional MIBK-HSCN separation system; our study provides a concept for the industrialization of zirconium and hafnium separation from key mineral resources.
Collapse
Affiliation(s)
- Luyao Yang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Liu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiying Xie
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
- China Rare Earth Group Research-Institute, Shenzhen 518000, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, China Rare Earth Group Research Institute, Ganzhou 341000, China
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, China
| |
Collapse
|
2
|
Bai F, Yang X, Yang C, Qian HL, Yan XP. Amidoxime covalent organic framework@Fe 3O 4 based magnetic solid-phase extraction for rapid and sensitive determination of trace uranium in seafood. J Chromatogr A 2025; 1740:465564. [PMID: 39637618 DOI: 10.1016/j.chroma.2024.465564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The unintentional dissemination of uranium into environment poses substantial risks to both food sources and human populations. An advanced method for convenient and accurate detection of uranium in food is thus a pressing need. Herein, a novel magnetic amidoxime functionalized covalent organic framework (TpDb-AO@Fe3O4), prepared with 2,5-dinitrobenzonitrile, 1,3,5-triformylphloroglucinol and hydroxylamine hydrochloride, was synthesized as adsorbent for magnetic-solid phase extraction (MSPE) of UO22+. Furthermore, a TpDb-AO@Fe3O4 based MSPE coupled with UV-vis spectrophotometer was successfully developed to realize the determination of uranyl ions with low limit of detection of 1.63 μg L-1, wide linear range of 10 - 200 μg L-1. The spiking recoveries in real seafood samples (tuna, yesso scallop, kelp, eel, hairtail) ranged from 94.1 % - 106.8 %. The intraday (n = 5) and interday (n = 5) relative standard deviation (RSD) for determination of UO22+were 3.33 % and 6.23 %, respectively. This approach represents an advancement in the rapid extraction and sensitive quantification of trace uranium contaminants in food matrices, thereby contributing to enhanced environmental monitoring and public health safeguards.
Collapse
Affiliation(s)
- Fan Bai
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Tuo K, Li J, Li Y, Liang C, Shao C, Hou W, Fan C, Li Z, Pu S, Chen Z, Deng Y. Phytic Acid Functionalized Hierarchical Porous Metal-Organic Framework Microspheres for Efficient Extraction of Uranium from Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407272. [PMID: 39529549 DOI: 10.1002/smll.202407272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Uranium is a critical resource in the development of nuclear energy, and its extraction from natural seawater has been identified as a potential solution to address uranium resource shortages. In this study, hierarchical meso-/micro- porous metal-organic framework functionalized with phytic acid (PA) microspheres (denoted H-UiO-66-PA) are rationally synthesized for efficient uranium extraction. This unique design allowed for a large adsorption capacity and fast adsorption kinetics, making it a promising material for uranium extraction. Due to the hierarchically porous structure, H-UiO-66-NH2 materials not only provide more sites for grafting PA, and thus enhance the adsorption capacity, but also facilitate the rapid diffusion of uranyl ions which can quickly and effectively access the interior of the H-UiO-66-PA adsorbent. Therefore, the obtained H-UiO-66-PA can achieve an impressive absorption efficiency of 6.76 mg g-1 in actual seawater within 15 days. Meanwhile, the H-UiO-66-PA possesses a good adsorption capacity for uranyl ions in the five adsorption/desorption cycles. This work proposes a feasible strategy for constructing functional hierarchical porous MOFs for uranium removal.
Collapse
Affiliation(s)
- Kai Tuo
- Jiangxi Province Key Laboratory Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jin Li
- Jiangxi Province Key Laboratory Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yi Li
- Jiangxi Province Key Laboratory Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Chuyao Liang
- Jiangxi Province Key Laboratory Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Cuicui Shao
- Jiangxi Province Key Laboratory Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Weifeng Hou
- Jiangxi Province Key Laboratory Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Congbin Fan
- Jiangxi Province Key Laboratory Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhijian Li
- Jiangxi Province Key Laboratory Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Shouzhi Pu
- Jiangxi Province Key Laboratory Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
- Yuzhang Normal University, Nanchang, 330103, China
| | - Zhao Chen
- Jiangxi Province Key Laboratory Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yonghui Deng
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
4
|
Chen P, Zhang Q, Yin H, Di S, Liu H, Qin H, Liu M, Liu Y, Li Z, Zhu S. Recent Progress and Applications of Advanced Nanomaterials in Solid-Phase Extraction. Electrophoresis 2024. [PMID: 39498723 DOI: 10.1002/elps.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Sample preparation maintains a key bottleneck in the whole analytical procedure. Solid-phase sorbents (SPSs) have garnered increasing attention in sample preparation research due to their crucial roles in achieving high clean-up and enrichment efficiency in the analysis of trace targets present in complex matrices. Novel nanoscale materials with improved characteristics have garnered considerable interest across different scientific disciplines due to the limited capabilities of traditional bulk-scale materials. The purpose of this review is to offer a thorough summary of the latest developments and uses of SPSs in preparing samples for chromatographic analysis, focusing on the years 2020-2024. The techniques for preparing SPSs are examined, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), carbon nanoparticles (CNPs), molecularly imprinted polymers (MIPs), and metallic nanomaterials (MNs). Examining the pros and cons of different extraction methods, including solid-phase extraction (SPE), magnetic SPE (MSPE), flow-based SPE (FBA-SPE), solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and dispersive SPE (DSPE), is the main focus. Furthermore, this article presents the utilization of SPE technology for isolating common contaminants in various environmental, biological, and food specimens. We highlight the persistent challenges in SPSs and anticipate future advancements and applications of novel SPSs.
Collapse
Affiliation(s)
- Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Qiuyue Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hang Yin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Engineering Research Center of Ministry of Education for Clean Production of Textile Printing and Dyeing, Wuhan Textile University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hailan Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ming Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yunkang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Zihan Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
5
|
Wang M, Sun W, Li M, Wu X, Chen C, Cai T, Zeng Q, Hua Y, Wang L, Xie H. π-electron injection activated dormant ligands in graphitic carbon nitride for efficient and stable uranium extraction. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135445. [PMID: 39116743 DOI: 10.1016/j.jhazmat.2024.135445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Graphitic carbon nitride (CN) as an adsorbent exhibit promising potential for the removal of uranium in water. However, the lack of active sites seriously restricts its practical application. In contrast to the traditional method of introducing new ligands, we propose a strategy to activate original ligands on CN by injecting π electrons, which can be realized by grafting 4-phenoxyphenol (PP) on CN (PCN). Compared with CN, the maximum adsorption capacity of PCN for uranium increased from 150.9 mg/g to 380.6 mg/g. Furthermore, PCN maintains good adsorption properties over a wide range of uranium concentrations (1 ∼ 60 mg/L) and pH (4 ∼ 8). After 5 consecutive cycles, PCN exhibited sustained uranium removal performance with a little of losses. The experimental and theoretical results show that the enhancement of adsorption performance is mainly due to the ligands activation of CN by delocalization of π electrons from PP. Furthermore, this activation can be enhanced by irradiation, as the CN can be photoexcited to provide additional photoelectrons for PP. As a result, dormant ligands such as N-CN, C-O-C, C-N-H and N-(C)3 can be activated to participate in coordination with uranium. This work provides theoretical guidance for the design and preparation of high efficiency uranium adsorbent.
Collapse
Affiliation(s)
- Minjie Wang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Wenxiu Sun
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Mi Li
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaoyan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Chaomeng Chen
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China; Boke Environmental Engineering Co., Ltd. of Hunan Province, Hengyang, Hunan 421001, PR China
| | - Tao Cai
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Qingyi Zeng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Yilong Hua
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Wenyuan Road, Nanjing 210023, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China
| |
Collapse
|
6
|
Li M, Zhao Y, Yang Y, Zhang R, Wang Y, Teng Y, Su Z, Zhang J. High-Efficiency Photocatalytic Oxidation of Benzyl Alcohol by NH 2-UiO-66-(Indole-2,3-Dione)-Fe. Chem Asian J 2024; 19:e202400346. [PMID: 38878296 DOI: 10.1002/asia.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Indexed: 08/06/2024]
Abstract
The photocatalytic oxidation of biomass-derived benzyl alcohol provides a promising way for the synthesis of benzoic acid, which is an important intermediate with wide applications. To improve the efficiency of photocatalytic benzyl alcohol oxidation to benzoic acid is of great interest. In this work, we propose the utilization of NH2-UiO-66-ID-Fe catalyst for photocatalytic oxidation of benzyl alcohol to benzoic acid, where NH2-UiO-66 is a typically used metal-organic framework, ID is indole-2,3-dione (ID) that has biocompatibility, light absorption property and can be covalently combined with amino-functionalized substances. The NH2-UiO-66-ID-Fe catalyst exhibits improved light absorption and photo-generated electron-hole separation ability compared with NH2-UiO-66. The photocatalytic performance of NH2-UiO-66-ID-Fe was examined for the oxidation of bio-based benzyl alcohol under mild conditions of air atmosphere, room temperature and no additive or additional oxidant involved. The results show that the conversion of benzyl alcohol and the selectivity to benzoic acid could both reach over 99 % in 6 h, and the generation rate of benzoic acid per gram of catalyst is 3.36 mmol g-1 h-1. The reaction mechanism was detected by radical trapping method and in situ electron paramagnetic resonance. This study presents an efficient and environmentally benign avenue for the synthesis of carboxylic acid compounds.
Collapse
Affiliation(s)
- Meiling Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingzhe Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yisen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjie Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyue Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunan Teng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Gang Z, Cao YW, Zeng ZY, Chen M, Yang ST, Su MM, Zeng YL, Tian Q, Yang ZH. Application of novel adsorbents synthesized with polypyrrole in magnetic solid-phase extraction of fungicides from fresh juice and environmental water. Food Chem 2024; 437:137949. [PMID: 37956595 DOI: 10.1016/j.foodchem.2023.137949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
In this work, a magnetic adsorption material based on a metal-organic framework (Fe3O4@PPy@MIL-53(Fe)) was designed and prepared, as well as used as an adsorbent for the extraction of fungicides from fresh juice and environmental water. The material was subjected to a series of characterization analyses, which showed that the material has good potential for application as an adsorbent. The main parameters such as adsorbent dosage, adsorption time, elution time, pH value, and elution solvent which could affect the experiment results were optimized. Under optimal conditions, the method exhibited linearity (R2 ≥ 0.9994) in the concentration range 10-1000 µg/L for three triazole fungicides, and LOD value ranged from 2.1 µg/L to 2.9 µg/L. In addition, the established method was applied to real samples of three fruit juices and two ambient waters, and satisfactory recoveries in the range of 78.6%-105.4% and RSDs of ≤ 5.7% were obtained.
Collapse
Affiliation(s)
- Zheng Gang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Wen Cao
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi-Ying Zeng
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Chen
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Tong Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Miao-Miao Su
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun-Liu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China
| | - Qin Tian
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Zhong-Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China.
| |
Collapse
|
8
|
Naik MUD. Adsorbents for the Uranium Capture from Seawater for a Clean Energy Source and Environmental Safety: A Review. ACS OMEGA 2024; 9:12380-12402. [PMID: 38524451 PMCID: PMC10956418 DOI: 10.1021/acsomega.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024]
Abstract
On the global level, uranium is considered the main nuclear energy source, and its removal from terrestrial ores is enough to last until the end of the current century. Therefore, a major focus is attracted toward the capture of uranium from a sustainable source (seawater). Uranium recovery from seawater has been reported over the last few decades, and recently many efforts have been devoted to the preparation of such adsorbents with higher selectivity and adsorption capacity. The purpose of this review is to report the advancement in adsorbent preparation and modification of porous materials. It also discusses challenges such as adsorbent selectivity, low uranium concentration in seawater, contact time, biofouling, and the solution to the problems necessary to ensure a better adsorption performance of the adsorbent.
Collapse
Affiliation(s)
- Mehraj-ud-din Naik
- Department of Chemical Engineering,
College of Engineering, Jazan University, Jazan 45142, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Heaney MP, Johnson HM, Knapp JG, Bang S, Seifert S, Yaw NS, Li J, Farha OK, Zhang Q, Moreau LM. Uranyl uptake into metal-organic frameworks: a detailed X-ray structural analysis. Dalton Trans 2024; 53:5495-5506. [PMID: 38415508 DOI: 10.1039/d3dt04284g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Metal-organic frameworks (MOF) are a subclass of porous framework materials that have been used for a wide variety of applications in sensing, catalysis, and remediation. Among these myriad applications is their remarkable ability to capture substances in a variety of environments ranging from benign to extreme. Among the most common and problematic substances found throughout the world's oceans and water supplies is [UO2]2+, a common mobile ion of uranium, which is found both naturally and as a result of anthropogenic activities, leading to problematic environmental contamination. While some MOFs possess high capability for the uptake of [UO2]2+, many more of the thousands of MOFs and their modifications that have been produced over the years have yet to be studied for their ability to uptake [UO2]2+. However, studying the thousands of MOFs and their modifications presents an incredibly difficult task. As such, a way to narrow down the numbers seems imperative. Herein, we evaluate the binding behaviors as well as identify the specific binding sites of [UO2]2+ incorporated into six different Zr MOFs to elucidate specific features that improve [UO2]2+ uptake. In doing so, we also present a method for the determination and verification of these binding sites by Anomalous wide-angle X-ray scattering, X-ray fluorescence, and X-ray absorption spectroscopy. This research not only presents a way for future research into the uptake of [UO2]2+ into MOFs to be conducted but also a means to evaluate MOFs more generally for the uptake of other compounds to be applied for environmental remediation and improvement of ecosystems globally.
Collapse
Affiliation(s)
- Matthew P Heaney
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Shinhyo Bang
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Soenke Seifert
- X-ray sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Natalie S Yaw
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Jiahong Li
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Liane M Moreau
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| |
Collapse
|
10
|
Bi C, Zhang C, Wang C, Zhu L, Zhu R, Liu L, Wang Y, Ma F, Dong H. Construction of oxime-functionalized PCN-222 based on the directed molecular structure design for recovering uranium from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16554-16570. [PMID: 38319420 DOI: 10.1007/s11356-024-32208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The directed construction of productive adsorbents is essential to avoid damaging human health from the harmful radioactive and toxic U(VI)-containing wastewater. Herein, a sort of Zr-based metal organic framework (MOF) called PCN-222 was synthesized and oxime functionalized based on directed molecular structure design to synthesize an efficient adsorbent with antimicrobial activity, named PCN-222-OM, for recovering U(VI) from wastewater. PCN-222-OM unfolded splendid adsorption capacity (403.4 mg·g-1) at pH = 6.0 because of abundant holey structure and mighty chelation for oxime groups with U(VI) ions. PCN-222-OM also exhibited outstanding selectivity and reusability during the adsorption. The XPS spectra authenticated the -NH and oxime groups which revealed a momentous function. Concurrently, PCN-222-OM also possessed good antimicrobial activity, antibiofouling activity, and environmental safety; adequately decreased detrimental repercussions about bacteria and Halamphora on adsorption capacity; and met non-toxic and non-hazardous requirements for the application. The splendid antimicrobial activity and antibiofouling activity perhaps arose from the Zr6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 clusters and rich functional groups within PCN-222-OM. Originally proposed PCN-222-OM was one potentially propitious material to recover U(VI) in wastewater on account of outstanding adsorption capacity, antimicrobial activity, antibiofouling activity, and environmental safety, meanwhile providing a newfangled conception on the construction of peculiar efficient adsorbent.
Collapse
Affiliation(s)
- Changlong Bi
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China.
| | - Chao Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China
| | - Lien Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Ruiqi Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lijia Liu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China
| | - Yudan Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Fuqiu Ma
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| |
Collapse
|
11
|
Boussouga YA, Joseph J, Stryhanyuk H, Richnow HH, Schäfer AI. Adsorption of uranium (VI) complexes with polymer-based spherical activated carbon. WATER RESEARCH 2024; 249:120825. [PMID: 38118222 DOI: 10.1016/j.watres.2023.120825] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 12/22/2023]
Abstract
Adsorption processes with carbon-based adsorbents have received substantial attention as a solution to remove uranium from drinking water. This study investigated uranium adsorption by a polymer-based spherical activated carbon (PBSAC) characterised by a uniformly smooth exterior and an extended surface of internal cavities accessible via mesopores. The static adsorption of uranium was investigated applying varying PBSAC properties and relevant solution chemistry. Spatial time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to visualise the distribution of the different uranium species in the PBSAC. The isotherms and thermodynamics calculations revealed monolayer adsorption capacities of 28-667 mg/g and physical adsorption energies of 13-21 kJ/mol. Increasing the surface oxygen content of the PBSAC to 10 % enhanced the adsorption and reduced the equilibrium time to 2 h, while the WHO drinking water guideline of 30 µgU/L could be achieved for an initial concentration of 250 µgU/L. Uranium adsorption with PBSAC was favourable at the pH 6-8. At this pH range, uranyl carbonate complexes (UO2CO3(aq), UO2(CO3)22-, (UO2)2CO3(OH)3-) predominated in the solution, and the ToF-SIMS analysis revealed that the adsorption of these complexes occurred on the surface and inside the PBSAC due to intra-particle diffusion. For the uranyl cations (UO22+, UO2OH+) at pH 2-4, only shallow adsorption in the outermost PBSAC layers was observed. The work demonstrated the effective removal of uranium from contaminated natural water (67 µgU/L) and meeting both German (10 µgU/L) and WHO guideline concentrations. These findings also open opportunities to consider PBSAC in hybrid treatment technologies for uranium removal, for instance, from high-level radioactive waste.
Collapse
Affiliation(s)
- Youssef-Amine Boussouga
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| | - James Joseph
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, ProVIS-Centre for Chemical Microscopy, Helmholtz, Center for Environmental Research (UFZ), Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, ProVIS-Centre for Chemical Microscopy, Helmholtz, Center for Environmental Research (UFZ), Leipzig, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
12
|
Rani L, Srivastav AL, Kaushal J, Shukla DP, Pham TD, van Hullebusch ED. Significance of MOF adsorbents in uranium remediation from water. ENVIRONMENTAL RESEARCH 2023; 236:116795. [PMID: 37541412 DOI: 10.1016/j.envres.2023.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Uranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach. MOFs possess unique properties like high surface area, high porosity, adjustable pore size, etc. This makes them promising adsorbents for the removal of uranium from contaminated water. In this paper, sources of uranium in the water environment, human health disorders, and application of the different types of MOFs as well as the mechanisms of uranium removal have been discussed meticulously.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India; Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Dericks P Shukla
- Department of Civil Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi-19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
13
|
Aydın ES, Zaman BT, Bozyiğit GD, Bakırdere S. Analytical application of flower-shaped nickel nanomaterial for the preconcentration of manganese in domestic wastewater samples. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1358. [PMID: 37870665 DOI: 10.1007/s10661-023-11989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
In this study, detection sensitivity of the conventional flame atomic absorption spectrophotometer (FAAS) for the determination of manganese (Mn2+) was enhanced by employing a preconcentration method from wastewater samples. Flower-shaped Ni(OH)2 nanomaterials were synthesized and used as sorbent material in preconcentration procedure. With the aim of attaining optimum experimental conditions, effective parameters of extraction method were optimized and these included pH of buffer solution, desorption solvent concentration and volume, mixing type and period, nanoflower amount, and sample volume. The detection limit of the optimized method was determined to be 2.2 μg L-1, and this correlated to about 41-fold enhancement in detection power relative to direct FAAS measurement. Domestic wastewater was used to test the feasibility of the proposed method to real samples by performing spike recovery experiments. The wastewater sample was spiked at four different concentrations of manganese, and the percent recoveries determined were in the range of 95-120%.
Collapse
Affiliation(s)
- Efe Sinan Aydın
- Department of Chemical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Buse Tuğba Zaman
- Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Gamze Dalgıç Bozyiğit
- Department of Environmental Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Turkey.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No:112, Çankaya, 06670, Ankara, Turkey.
| |
Collapse
|
14
|
Pu Y, Qiang T, Li G, Ruan X, Ren L. Efficient adsorption of low-concentration uranium from aqueous solutions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115053. [PMID: 37224785 DOI: 10.1016/j.ecoenv.2023.115053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
The development of nuclear energy has led to the depletion of uranium resources and now presents the challenge of treating radioactive wastewater. Extracting uranium from seawater and nuclear wastewater has been identified as an effective strategy for addressing these issues. However, extracting uranium from nuclear wastewater and seawater is still extremely challenging. In this study, an amidoxime-modified feather keratin aerogel (FK-AO aerogel) was prepared using feather keratin for efficient uranium adsorption. The FK-AO aerogel showed an impressive adsorption capacity of 585.88 mg·g-1 in an 8 ppm uranium solution, with a calculated maximum adsorption capacity of 990.10 mg·g-1. Notably, the FK-AO aerogel demonstrated excellent selectivity for U(VI) in simulated seawater that contained coexisting heavy metal ions. In a uranium solution having a salinity of 35 g·L-1 and a concentration of 0.1-2 ppm, the FK-AO aerogel achieved a uranium removal rate of greater than 90 %, indicating its effectiveness in adsorbing uranium in environments having high salinity and low concentration. This suggests that FK-AO aerogel is an ideal adsorbent for extracting uranium from seawater and nuclear wastewater, and it is also expected that it could be used in industrial applications for extracting uranium from seawater.
Collapse
Affiliation(s)
- Yadong Pu
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, PR China; Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, Hubei, PR China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Guoxiang Li
- Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, Hubei, PR China
| | - Xiaonan Ruan
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, PR China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, PR China.
| |
Collapse
|
15
|
Chang PH, Mukhopadhyay R, Zhong B, Yang QY, Zhou S, Tzou YM, Sarkar B. Synthesis and characterization of PCN-222 metal organic framework and its application for removing perfluorooctane sulfonate from water. J Colloid Interface Sci 2023; 636:459-469. [PMID: 36641821 DOI: 10.1016/j.jcis.2023.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Poly- and perfluoro alkyl substances (PFAS) are a group of man-made, notoriously persistent, and highly toxic contaminants in the environment reported worldwide. Many adsorbents including granular activated carbon, graphene, biochar, zeolites, and clay minerals have been tested for PFAS removal from water, but most of these materials suffer from high cost and/or poor removal performance. Here, we synthesized, characterized, and examined the efficiency of PCN-222(Fe), a new porous metal organic framework (MOF) with high water stability, for adsorptive removal of a frequently occurring PFAS, perfluorooctane sulfonate (PFOS), from water. The adsorption isotherm and kinetic studies revealed high PFOS adsorption capacity of PCN-222 (2257 mg/g), with rapid PFOS removal rate (within 30 min). The structure of PCN-222 was unaffected in water in the pH range of 2-10 but disintegrated and lost its PFOS removal ability at pH > 10. The PFOS adsorption on PCN-222 was an endothermic reaction. Electrostatic attraction was a dominant mechanism for PFOS adsorption at < 1694 mg/g PFOS concentration, while hydrophobic interaction accompanied with hydrogen-bonding was responsible at ≥ 1694 mg/g PFOS concentration. The interlayer morphology of PCN-222 did not change due to increasing PFOS loading. The findings of this study demonstrated superior features of PCN-222 over other conventional adsorbents for its potential application in removing PFOS from contaminated water to reduce PFOS transfer from water to living organisms.
Collapse
Affiliation(s)
- Po-Hsiang Chang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Bo Zhong
- Shaanxi Provincial Land Engineering Construction Group Co. Ltd., Xi'an, Shaanxi 710075, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, PR China
| | - Shungui Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
16
|
Seuffert MT, Granath T, Kasper T, Maile R, Pujales-Paradela R, Prieschl J, Wintzheimer S, Mandel K, Müller-Buschbaum K. Tuning Magnetic and Photophysical Properties of Luminomagnetic Metal-Organic Framework Composites in an Inverse Core-Satellite Structure. Chempluschem 2023; 88:e202200395. [PMID: 36563109 DOI: 10.1002/cplu.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Luminomagnetic composites have been synthesized that allow for an individual tuning of luminescence intensity, chromaticity and magnetization by combination of superparamagnetic, citrate-stabilized iron oxide nanoparticles with the luminescent MOFs 3 ∞ [Ln2 (BDC)3 (H2 O)4 ] (Ln=Eu, Tb; BDC2- =terephthalate). The components are arranged to a concept of inverse structuring compared to previous luminomagnetic composites with MOF@magnetic particle (shell@core) composition so that the luminescent MOF now acts as core and is covered by magnetic nanoparticles forming the satellite shell. Thereby, the magnetic and photophysical properties are individually tuneable between high emission intensity (1.2 ⋅ 106 cps mg-1 ) plus low saturation magnetization (6 emu g-1 ) and the direct opposite (0.09 ⋅ 106 cps mg-1 ; 42 emu g-1 ) by adjusting the particle coverage of the MOF. This is not achievable with a core-shell structure having a magnetic core and a dense MOF shell. The composition of the composites and the influence of different synthesis conditions on their properties were investigated by SEM/EDX, PXRD, magnetization measurements and photoluminescence spectroscopy.
Collapse
Affiliation(s)
- Marcel T Seuffert
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Tim Granath
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Thomas Kasper
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Ruben Maile
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Rosa Pujales-Paradela
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Johannes Prieschl
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany.,Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany.,Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082, Würzburg, Germany
| | - Klaus Müller-Buschbaum
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Center for Materials Research, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| |
Collapse
|
17
|
Duel P, Piña MDLN, Morey J. One-Pot Environmentally Friendly Synthesis of Nanomaterials Based on Phytate-Coated Fe 3O 4 Nanoparticles for Efficient Removal of the Radioactive Metal Ions 90Sr, 90Y and (UO 2) 2+ from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4383. [PMID: 36558236 PMCID: PMC9781934 DOI: 10.3390/nano12244383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
We report the fast (three minutes) synthesis of green nanoparticles based on nanoparticles coated with the natural organic receptor phytate for the recognition and capture of 90Sr, 90Y, and (UO2)2+. The new material shows excellent retention for (UO2)2+, 97%; these values were 73% and 100% for 90Sr and 90Y, respectively. Recovery of the three radioactive metal ions occurs through a non-competitive process. The new hybrid material is harmless, easy to prepare, and immobilizes these radioactive contaminants in water with great efficiency.
Collapse
|
18
|
Synergistic adsorption of U(VI) from seawater by MXene and amidoxime mixed matrix membrane with high efficiency. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Li M, Yuan J, Wang G, Yang L, Shao J, Li H, Lu J. One-step construction of Ti-In bimetallic MOFs to improve synergistic effect of adsorption and photocatalytic degradation of bisphenol A. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Li Q, Xiong T, Liao J, Zhang Y. Explorations on efficient extraction of uranium with porous coal fly ash aerogels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156365. [PMID: 35640754 DOI: 10.1016/j.scitotenv.2022.156365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In order to explore a suitable uranium adsorbent with the advantages of low-cost, recyclability and high efficiency, porous coal fly ash aerogels with different size of coal fly ash were synthesized. Among them, PCFAA-1250 (prepared with 1250 mesh coal fly ash (CFA)) showed better adsorption performance and the maximum adsorption efficiency even approached 96.5% (C0 = 10 mg L-1, m/V = 1.0 g L-1, T = 298 K, t = 24 h and pH = 3.0), which was higher than most of previous adsorbents. Langmuir and pseudo-second-order models were more likely to be used to determine the removal behavior of uranium on PCFAA, illustrating that the adsorption reaction was uniform chemisorption. Meanwhile, the adsorption process on PCFAA was spontaneous. Notably, the desorption efficiencies of all of PCFAA were more than 80% after five cycles, which suggested that PCFAA possessed good recyclability, especially PCFAA-1250. Besides, the adsorption mechanism was further revealed via XPS and the uranium ions were immobilized on the surface of adsorbents through complexation. Based on above conclusions, it could be concluded that PCFAA-1250 had the potential to be a candidate for the extraction of uranium from wastewater.
Collapse
Affiliation(s)
- Qichen Li
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ting Xiong
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China; Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
21
|
Nanocomposites of functionalized Metal−Organic frameworks and magnetic graphene oxide for selective adsorption and efficient determination of Lead(II). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Zheng M, Xu L, Chen C, Labiadh L, Yuan B, Fu ML. MOFs and GO-based composites as deliberated materials for the adsorption of various water contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Wang X, Long H, Li L, Zhan L, Zhang X, Cui H, Shen J. Efficiently selective extraction of iron (III) in an aluminum‐based metal–organic framework with native N adsorption sites. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xu Wang
- College of Materials Science and Engineering Chongqing University of Technology Chongqing China
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Haijun Long
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Lu Li
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
| | - Li Zhan
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Xin Zhang
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Hengqing Cui
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Jun Shen
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| |
Collapse
|
24
|
Chen L, Sun Y, Wang J, Ma C, Peng S, Cao X, Yang L, Ma C, Duan G, Liu Z, Wang H, Yuan Y, Wang N. A wood-mimetic porous MXene/gelatin hydrogel for electric field/sunlight bi-enhanced uranium adsorption. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Although diverse uranium (U) adsorbents have been explored, it is still a great challenge for high-efficient uranium extraction form seawater. Herein a wood-mimetic oriented porous Ti3C2T
x
-MXene/gelatin hydrogel (MGH) has been explored through growing directional ice crystals cooled by liquid nitrogen and subsequently forming pores by freeze-dry (Ice-template) method, for ultrafast and high-efficient U-adsorption from seawater with great enhancement by both electric field and sunlight. Different from disperse Ti3C2T
x
-MXene powder, this MGH not only can be easily utilized but also can own ultrahigh specific surface area for high-efficient U-adsorption. The U-adsorbing capacity of this MGH (10 mg) can reach 4.17 mg·g−1 after only 1 week in 100 kg of seawater, which is outstanding in existing adsorbents. Furthermore, on the positive pole of 0.4 V direct current source or under 1-sun irradiation, the U-adsorbing capacity of the MGH can increase by 57.11% and 13.57%, respectively. Most importantly, the U-adsorption of this hydrogel can be greatly enhanced by simultaneously using the above two methods, which can increase the U-adsorbing capacity by 79.95% reaching 7.51 mg·g−1. This work provides a new biomimetic porous MXene-based hydrogel for electric field/sunlight bi-enhanced high-efficient U-extraction from seawater, which will inspire new strategy to design novel U-adsorbents and systems.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Jiawen Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chao Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Lang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Zhenzhong Liu
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| | - Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| |
Collapse
|
25
|
Dhanya V, Arunraj B, Rajesh N. Prospective application of phosphorylated carbon nanofibers with a high adsorption capacity for the sequestration of uranium from ground water. RSC Adv 2022; 12:13511-13522. [PMID: 35520136 PMCID: PMC9066443 DOI: 10.1039/d2ra02031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
In this study carbon nanofibers (CNF) were phosphorylated by using ortho-phosphoric acid and applied for adsorptive remediation of uranium from water. The phosphorylated carbon nanofibers (PCNF) showed 96% removal of uranium as compared to 79% by CNF. The adsorption data from batch adsorption studies fitted well with the Langmuir model and a maximum adsorption capacity of 512.8 mg g-1 was obtained at pH 6.0 while the adsorption followed pseudo second order kinetics. A detailed characterisation of the adsorbent has been carried out using various analytical and spectroscopic tools. The application of the adsorbent to ground water samples exhibited promising results even in the presence of other interfering cations and anions which is imperative considering the toxic effects of uranium in ground water.
Collapse
Affiliation(s)
- V Dhanya
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| | - Balasubramanian Arunraj
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| | - N Rajesh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| |
Collapse
|
26
|
Kocot K, Pytlakowska K, Talik E, Krafft C, Sitko R. Sensitive determination of uranium using β-cyclodextrin modified graphene oxide and X-ray fluorescence techniques: EDXRF and TXRF. Talanta 2022; 246:123501. [PMID: 35525057 DOI: 10.1016/j.talanta.2022.123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
β-cyclodextrin/graphene oxide (GO-β-CD) was applied for dispersive micro-solid phase extraction (DMSPE) of uranyl ions (UO22+) from water samples and their determination by energy-dispersive (EDXRF) and total-reflection X-ray fluorescence spectrometry (TXRF). The structure of GO-β-CD was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The results of batch adsorption experiment indicate that the maximum recoveries for UO22+ ions are observed at pH 4.5. The Langmuir isotherm model fits the adsorption data, which stands for the chemisorption mechanism. The obtained adsorption capacity of 87.7 mg g-1 indicates a great potential of the synthesized adsorbent in the UO22+ ions preconcentration. The GO-β-CD exhibits high resistance to high ionic strength (up to 2 mol L-1), indicating that high salinity samples can be treated with the evaluated preconcentration procedure. The obtained limit of detection values were 0.40 μg L-1 for the EDXRF and only 0.014 μg L-1 for TXRF analysis. The accuracy of the method was verified by analyzing certified reference material (spring water NIST-SRM 1640a) and spiked water samples (mineral, lake, river, and artificial sea water).
Collapse
Affiliation(s)
- Karina Kocot
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland.
| | | | - Ewa Talik
- Institute of Physics, University of Silesia, 75 Pułku Piechoty, 41-500, Chorzów, Poland
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Member of Research Alliance "Health Technologies", Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Rafał Sitko
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| |
Collapse
|
27
|
Sharifi-Rad M, Kaykhaii M, Khajeh M, Oveisi A. Synthesis, characterization and application of a zirconium-based MOF-808 functionalized with isonicotinic acid for fast and efficient solid phase extraction of uranium(VI) from wastewater prior to its spectrophotometric determination. BMC Chem 2022; 16:27. [PMID: 35429981 PMCID: PMC9013465 DOI: 10.1186/s13065-022-00821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background A zirconium-based metal-organic framework (Zr-MOF), named MOF-808, was synthesized and fully characterized by solvo-thermal method and functionalized by isonicotinic acid and employed as an efficient adsorbent for selective extraction and preconcentration of uranyl ions from water and waste water samples in a batch solid phase extraction. Results Parameters affecting extraction such as volume and pH of the sample solution, the amount of sorbent, type and volume of eluting solvent, and adsorption and desorption times were investigated and optimized. Under the optimized conditions, high extraction efficiency was observed with a limit of detection of 0.9 µg L− 1 for uranyl ions and relative standard deviations were found to be better than 2.1% in the range of 0.07–1000 µg L− 1. Conclusions These results indicated that the above procedure is fast, inexpensive, effective, reliable, applicable and organic solvent-free and showed the highly performance and stability of the Zr-MOF in SPE based analytical techniques.
Collapse
|
28
|
Wu N, Guo H, Wang M, Peng L, Chen Y, Liu B, Pan Z, Liu Y, Yang W. A ratiometric sensor for selective detection of Hg 2+ ions by combining second-order scattering and fluorescence signals of MIL-68(In)-NH 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120858. [PMID: 35016060 DOI: 10.1016/j.saa.2022.120858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Ratio fluorescence has attracted much attention because of its self-calibration properties. However, it is difficult to obtain suitable fluorescent materials with well-resolved signals simultaneously under one excitation. In this work, we report a different strategy, using MIL-68(In)-NH2 as both the fluorescence element and the scattered light unit, and coupling the fluorescence and the scattered light to construct the fluorescence and scattered light ratio system. Based on the optical properties and the second-order scattering (SOS) of the material nanoparticles, the synthesized MIL-68(In)-NH2 can be used to realize the ratio detection of Hg2+. Because the scattering intensity of small particle MIL-68(In)-NH2 is weak, SOS is not obvious. When Hg2+ is introduced the coordination reaction between the amino nitrogen atoms of MIL-68(In)-NH2 and Hg2+ make the particles larger, resulting in the decrease of fluorescence and the enhancement of SOS. As a result, a novel Hg2+ ratiometric detection method is developed by using the dual signal responses of the fluorescence and scattering. Under the optimal conditions (pH = 6, reaction time 5 min, room temperature, and the maximum excitation wavelength 365 nm), the linear range of the method is 0-100 μM, and the detection limit is 5.8 nM (Ksv = 9.89 × 109 M-1). In addition, the probe is successfully used to evaluate Hg2+ in actual water samples. Compared with the traditional method of recording only the fluorescence signal, the proposed fluorescence-scattering method provides a new strategy for the design of ratiometric sensors.
Collapse
Affiliation(s)
- Ning Wu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Hao Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Mingyue Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Liping Peng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yuan Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Bingqing Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhilan Pan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yinsheng Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Wu Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
29
|
Zhao P, Gao D, Lyu B, Zhu J, Zhou Y, Li Y, Ma J. A new type of multistage structure hydrotalcite material: To promote the absorption of chemicals in wet leather processing. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ping Zhao
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| | - Bin Lyu
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| | - Jiamin Zhu
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| | - Yingying Zhou
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| | - Yun Li
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| |
Collapse
|
30
|
Xu M, Zhou L, Zhang L, Zhang S, Chen F, Zhou R, Hua D. Two-Dimensional Imprinting Strategy to Create Specific Nanotrap for Selective Uranium Adsorption with Ultrahigh Capacity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9408-9417. [PMID: 35147033 DOI: 10.1021/acsami.1c20543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Uranium extraction is highly challenging because of low uranium concentration, high salinity, and a large number of competing ions in different environments. The template strategy is developed to address the defect of poor selectivity, but the adsorption capacity is limited by cavity blocking during the preparation of materials. Herein, a two-dimensional (2D) imprinting strategy is adopted to design 2D imprinted networks with specific nanotraps for effective uranium capture. The imprinted networks are established through the condensation polymerization of uranyl complexes, which are formed by aromatic building units coordinating with uranyl ions on the equatorial plane. Different from traditional imprinting materials that contain many invalid cavities (buried cavities or unreleased cavities), the as-prepared adsorbents possess tailored 2D nanotraps, which are open and specific to uranyl. Thus, the optimized networks not only show excellent selectivity for uranium (Kd = 964,500 mL/g in multi-ion solution) and slight disturbance of high salinity but also possess an ultrahigh adsorption capacity of 1365.7 mg/g. In addition, this adsorbent shows a high extraction efficiency for uranium under a wide range of pH conditions and exhibits good regeneration performance. This work proposes a pioneering strategy of 2D imprinting networks to capture uranium specifically with high capacity and can be applied to material design in many other fields.
Collapse
Affiliation(s)
- Meiyun Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lei Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shitong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fulong Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
31
|
Phouthavong V, Yan R, Nijpanich S, Hagio T, Ichino R, Kong L, Li L. Magnetic Adsorbents for Wastewater Treatment: Advancements in Their Synthesis Methods. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1053. [PMID: 35160996 PMCID: PMC8838955 DOI: 10.3390/ma15031053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
The remediation of water streams, polluted by various substances, is important for realizing a sustainable future. Magnetic adsorbents are promising materials for wastewater treatment. Although numerous techniques have been developed for the preparation of magnetic adsorbents, with effective adsorption performance, reviews that focus on the synthesis methods of magnetic adsorbents for wastewater treatment and their material structures have not been reported. In this review, advancements in the synthesis methods of magnetic adsorbents for the removal of substances from water streams has been comprehensively summarized and discussed. Generally, the synthesis methods are categorized into five groups, as follows: direct use of magnetic particles as adsorbents, attachment of pre-prepared adsorbents and pre-prepared magnetic particles, synthesis of magnetic particles on pre-prepared adsorbents, synthesis of adsorbents on preprepared magnetic particles, and co-synthesis of adsorbents and magnetic particles. The main improvements in the advanced methods involved making the conventional synthesis a less energy intensive, more efficient, and simpler process, while maintaining or increasing the adsorption performance. The key challenges, such as the enhancement of the adsorption performance of materials and the design of sophisticated material structures, are discussed as well.
Collapse
Affiliation(s)
- Vanpaseuth Phouthavong
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Ruixin Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Supinya Nijpanich
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Takeshi Hagio
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryoichi Ichino
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| |
Collapse
|
32
|
Bi C, Zhang C, Ma F, Zhu L, Zhu R, Qi Q, Liu L, Dong H. Development of 3D porous Ag+ decorated PCN-222 @ graphene oxide-chitosan foam adsorbent with antibacterial property for recovering U(VI) from seawater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Guo Y, Xia M, Shao K, Xu G, Cheng W, Shang Z, Peng H, Teng YG, Dou J. Theoretical and experimental investigations of enhanced uranium(VI) adsorption by nitrogen doping strategy. Phys Chem Chem Phys 2022; 24:17163-17173. [DOI: 10.1039/d2cp01386j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the ongoing development and utilization of nuclear energy, uranium pollution has become an increasingly serious issue. Although many adsorbents are able to remove hexavalent uranium (U(VI)) from aqueous solution,...
Collapse
|
34
|
Pei J, Chen Z, Wang Y, Xiao B, Zhang Z, Cao X, Liu Y. Preparation of phosphorylated iron-doped ZIF-8 and their adsorption application for U(VI). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Peng Y, Zhang X, Wu X, Li M, Zhang Y, Zhou C, Hua Y. Synthesis of core-shell magnetic metal organic frameworks composite for efficient uranium (VI) removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj00132b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of magnetic nanoparticles and metal-organic frameworks (MOFs) has demonstrated their prospective for pollutant sequestration. In this work, Fe3O4@SiO2@UiO-66 core-shell magnetic microspheres were synthesized and used for the removal...
Collapse
|
36
|
Nezhad MM, Semnani A, Tavakkoli N, Shirani M. Selective and highly efficient removal of uranium from radioactive effluents by activated carbon functionalized with 2-aminobenzoic acid as a new sorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113587. [PMID: 34479154 DOI: 10.1016/j.jenvman.2021.113587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study was modification of activated carbon (AC) to prepare a new selective sorbent for removal of uranium ion. The modification was performed by introducing carboxyl groups onto AC using ammonium persulfate (APS) in sulfuric acid solution followed by functionalization with 2-aminobenzoic acid (ABA) as a selective ligand for U (VI) ion (UO22+) adsorption. The characterization of the synthetized sorbent (AC-ABA) was carried out through several methods including potentiometry, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction and FT-IR to confirm successful functionalization of the sorbent surface with oxygen and amine groups. The sorption of U (VI) on the unmodified AC and AC-ABA was investigated as a function of contact time, sorbent content, initial uranium concentration, solution pH, and temperature using batch sorption technique. In addition, the effect of various parameters on the U (VI) sorption capacity was optimized by the response surface methodology as a potent experimental design method. The results indicated that sorption of U (VI) under the optimal conditions was significantly improved onto AC-ABA compared to AC. Kinetic studies displayed that the sorption process reached equilibrium after 100 min and followed the pseudo-second-order rate equation. The isothermal data fitted better with the Langmuir model than the Freundlich model. The maximum sorption capacity of AC-ABA for U(VI) was obtained to be 194.2 mg g-1 by the Langmuir model under optimum conditions, which demonstrates the sorption capacity has been improved by the modification process. The thermodynamic parameters (ΔH, ΔS and ΔG) indicated that sorption of uranium onto AC-ABA was an endothermic and spontaneous process. The sorption studies on radioactive effluents of the nuclear fuel plant represented high selectivity of AC-ABA for removal of uranium in the presence of other metal ions, and the selectivity coefficients significantly improved after modification of the sorbent. Application of AC-ABA for treatment of industrial effluents containing heavy and radioactive metal ions show high potential and capability of the proposed method.
Collapse
Affiliation(s)
- Majid Mohammad Nezhad
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran
| | - Abolfazl Semnani
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran.
| | - Nahid Tavakkoli
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran
| | - Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 7867161167, Iran.
| |
Collapse
|
37
|
Cui G, Liu W, Wang L, Wu R, Bi C, Zhang D, Fan Y. Two novel Co (II) bifunctional MOFs: Syntheses and applications in photocatalytic degradation of dyes and electrocatalytic water oxidation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Liu YP, Lv YT, Guan JF, Khoso FM, Jiang XY, Chen J, Li WJ, Yu JG. Rational design of three-dimensional graphene/graphene oxide-based architectures for the efficient adsorption of contaminants from aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Wu Y, Liu Z, Bakhtari MF, Luo J. Preparation of GO/MIL-101(Fe,Cu) composite and its adsorption mechanisms for phosphate in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51391-51403. [PMID: 33983606 DOI: 10.1007/s11356-021-14206-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
In this study, MIL-101(Fe), MIL-101(Fe,Cu), and graphene oxide (GO)/MIL-101(Fe,Cu) were synthesized to compose a novel sorbent. The adsorption properties of these three MOF-based composites were compared toward the removal of phosphate. Furthermore, the influencing factors including adsorption time, pH, temperature, and initial concentration on the adsorption capacity of phosphate on these materials as well as the reusability of the material were discussed. The structure of fabricated materials and the removal mechanism of phosphate on the composite material were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis, and zeta potential. The results show that the maximum adsorption capacity of phosphate by the composite GO/MIL-101(Fe,Cu)-2% was 204.60 mg·g-1, which is higher than that of MIL-101(Fe,Cu) and MIL-101(Fe). likewise the specific surface area of GO/MIL-101(Fe,Cu)-2% is 778.11 m2/g is higher than that of MIL-101(Fe,Cuand MIL-101(Fe),which are 747.75 and 510.66 m2/g, respectively. The adsorption mechanism of phosphate is electrostatic attraction, forming coordination bonds and hydrogen bonds. The fabricated material is a promising adsorbent for the removal of phosphate with good reusability.
Collapse
Affiliation(s)
- You Wu
- College of Geology and Environment, Xi'an University of science and technology, Xi'an, 710054, People's Republic of China.
| | - Zhuannian Liu
- College of Geology and Environment, Xi'an University of science and technology, Xi'an, 710054, People's Republic of China
| | - Mohammad Fahim Bakhtari
- College of Geology and Environment, Xi'an University of science and technology, Xi'an, 710054, People's Republic of China
| | - Junnan Luo
- College of Geology and Environment, Xi'an University of science and technology, Xi'an, 710054, People's Republic of China
| |
Collapse
|
40
|
Synthesis of MoS2/P-g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of uranium (VI). J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Zhao Z, Cheng G, Zhang Y, Han B, Wang X. Metal-Organic-Framework Based Functional Materials for Uranium Recovery: Performance Optimization and Structure/Functionality-Activity Relationships. Chempluschem 2021; 86:1177-1192. [PMID: 34437774 DOI: 10.1002/cplu.202100315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/06/2021] [Indexed: 11/09/2022]
Abstract
Uranium recovery has profound significance in both uranium resource acquisition and pollution treatment. In recent years, metal-organic frameworks (MOFs) have attracted much attention as potential uranium adsorbents owing to their tunable structural topology and designable functionalities. This review explores the research progress in representative classic MOFs (MIL-101, UiO-66, ZIF-8/ZIF-67) and other advanced MOF-based materials for efficient uranium extraction in aqueous or seawater environments. The uranium uptake mechanism of the MOF-based materials is refined, and the structure/functionality-property relationship is further systematically elucidated. By summarizing the typical functionalization and structure design methods, the performance improvement strategies for MOF-based adsorbents are emphasized. Finally, the present challenges and potential opportunities are proposed for the breakthrough of high-performance MOF-based materials in uranium extraction.
Collapse
Affiliation(s)
- Zhiwei Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China.,The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Gong Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Yizhe Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Bing Han
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China.,The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
42
|
Wang N, Liu S, Sun Z, Han Y, Xu J, Xu Y, Wu J, Meng H, Zhang B, Zhang X. Synergistic adsorption and photocatalytic degradation of persist synthetic dyes by capsule-like porphyrin-based MOFs. NANOTECHNOLOGY 2021; 32:465705. [PMID: 34284373 DOI: 10.1088/1361-6528/ac162e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The synergistic effects involving surface adsorption and photocatalytic degradation commonly play significant roles in the removal of persistent synthetic organics from wastewater in the case of porous semiconductors. Inspired by the visible-light harvesting advantages of porphyrin-based MOFs, a capsule-like bimetallic porphyrin-based MOF (PCN-222(Ni/Hf)) has been successfully constructed through a facile hydrothermal method. In which, the Hf (IV) ions were exactly bonded to the carboxyl groups substituted on the porphyrin rings, meanwhile the Ni (II) ions were finely bonded to the -N inside the porphyrin rings. The adsorption/photocatalytic performances were assessed by using four persistent dyes including rhodamine B (RhB), basic violet 14 (BV14), crystal violet, and acid black 210 (AB210) as the target substances, and enhanced total removal efficiency was obtained by the bimetallic PCN-222(Ni/Hf) in comparison with that of single PCN-222(Hf). The electrochemical analyses and the sacrificial agent capture experiments were carried out to elucidate the photocatalytic mechanism, and the adsorption/photocatalytic stability of PCN-222(Ni/Hf) is also investigated. The work has broadened the applications of porphyrin-based MOFs in the removal of organics by combining their excellent surface adsorption capacity and photocatalytic activities.
Collapse
Affiliation(s)
- Na Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Siyang Liu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China
| | - Zhongqiao Sun
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Yide Han
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Junli Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Yan Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Junbiao Wu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Hao Meng
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China
| | - Xia Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| |
Collapse
|
43
|
Ahmadijokani F, Tajahmadi S, Haris MH, Bahi A, Rezakazemi M, Molavi H, Ko F, Arjmand M. Fe 3O 4@PAA@UiO-66-NH 2 magnetic nanocomposite for selective adsorption of Quercetin. CHEMOSPHERE 2021; 275:130087. [PMID: 33676279 DOI: 10.1016/j.chemosphere.2021.130087] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 05/16/2023]
Abstract
In the present study, a magnetic core-shell metal-organic framework (Fe3O4@PAA@UiO-66-NH2) nanocomposite was synthesized by a facile step-by-step self-assembly technique and used for selective adsorption of the anti-cancer Quercetin (QCT) drug. The synthesized nanocomposite was well characterized using FTIR, XRD, BET, FESEM, and TEM techniques. The adsorption kinetics and isotherms of the magnetic nanocomposites for QCT were investigated in detail at different initial concentrations and temperatures. It was found that the experimental adsorption kinetic and isotherm data were precisely explained by the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the selective adsorption ability of the synthesized nanocomposite against various drugs in the single, binary, and ternary solutions containing QCT, Curcumin (CUR), and Methotrexate (MTX) drugs was also studied. The synthesized adsorbent showed good adsorption selectivity for QCT against CUR and MTX. The adsorption mechanism of QCT on the nanocomposite might be related to the hydrogen bonding and hydrophobic-hydrophobic interactions via π-π stacking interactions between the benzene ring skeleton of QCT and the aromatic structure of the adsorbent nanoparticles. The regeneration and reusability studies demonstrated that the developed adsorbent sustained good structural stability and adequate adsorption capacity for QCT after ten consecutive adsorption-desorption cycles.
Collapse
Affiliation(s)
- Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada; Department of Materials Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Mahdi Heidarian Haris
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Addie Bahi
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Frank Ko
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
44
|
Peng Y, Zhang Y, Tan Q, Huang H. Bioinspired Construction of Uranium Ion Trap with Abundant Phosphate Functional Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27049-27056. [PMID: 34076417 DOI: 10.1021/acsami.1c04892] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Highly efficient extraction of radioactive uranium from aqueous solution remains a serious task in the nuclear energy field. To address this, we here create an effective uranium ion trap by using a novel and facile strategy that introduces bioinspired moiety phytic acid (PA) into highly robust PCN-222. The resultant metal-organic framework (MOF)-based uranium ion trap (PCN-222-PA) with a high density of accessible phosphate groups exhibits a remarkable U(VI) uptake capacity (401.6 mg·g-1), surpassing most of the reported phosphorus-modified MOFs and various other MOF adsorbents. Kinetics study reveals that PCN-222-PA can reduce the uranium concentration from 10 mg L-1 to 21 μg L-1, below the acceptable limit defined by the US Environmental Protection Agency. In addition, PCN-222-PA also shows good selectivity and high stability as well as excellent recyclability toward uranium capture. Our work demonstrates a new strategy to design functional MOFs with abundant phosphate groups and provides a new perspective for extracting uranium from aqueous solution.
Collapse
Affiliation(s)
- Yaguang Peng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuxi Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Tan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
45
|
Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|