1
|
Janjua TI, Cao Y, Kleitz F, Linden M, Yu C, Popat A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv Drug Deliv Rev 2023; 203:115115. [PMID: 37844843 DOI: 10.1016/j.addr.2023.115115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Silica nanoparticles (SNP) have gained tremendous attention in the recent decades. They have been used in many different biomedical fields including diagnosis, biosensing and drug delivery. Medical uses of SNP for anti-cancer, anti-microbial and theranostic applications are especially prominent due to their exceptional performance to deliver many different small molecules and recently biologics (mRNA, siRNA, antigens, antibodies, proteins, and peptides) at targeted sites. The physical and chemical properties of SNP such as large specific surface area, tuneable particle size and porosity, excellent biodegradability and biocompatibility make them an ideal drug delivery and diagnostic platform. Based on the available data and the pre-clinical performance of SNP, recent interest has driven these innovative materials towards clinical application with many of the formulations already in Phase I and Phase II trials. Herein, the progress of SNP in biomedical field is reviewed, and their safety aspects are analysed. Importantly, we critically evaluate the key structural characteristics of SNP to overcome different biological barriers including the blood-brain barrier (BBB), skin, tumour barrier and mucosal barrier. Future directions, potential pathways, and target areas towards rapid clinical translation of SNP are also recommended.
Collapse
Affiliation(s)
- Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mika Linden
- Institute of Inorganic Chemistry II, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Tollemeto M, Huang Z, Christensen JB, Mørck Nielsen H, Rønholt S. Mucoadhesive Dendrons Conjugated to Mesoporous Silica Nanoparticles as a Drug Delivery Approach for Orally Administered Biopharmaceuticals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8798-8810. [PMID: 36749788 PMCID: PMC9951175 DOI: 10.1021/acsami.2c16502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Biological drugs are increasingly important for patients and industry due to their application in the treatment of common and potentially life-threatening diseases such as diabetes, cancer, and obesity. While most marketed biopharmaceuticals today are injectables, the potential of mucoadhesive delivery systems based on dendron-coated mesoporous silica nanoparticles for oral delivery of biological drugs is explored in this project. We hypothesize that specifically designed dendrons can be employed as mucoadhesive excipients and used to decorate the surface of nanoparticles with properties to embed a drug molecule. We initially tested a novel synthesis method for the preparation of dendrons, which was successfully validated by the chemical characterization of the compounds. The interaction between dendrons and mucin was studied through isothermal titration calorimetry and quartz crystal microbalance with dissipation monitoring and proved to be spontaneous and thermodynamically favorable. Dendrons were conjugated onto 244.4 nm mesoporous silica nanoparticles and characterized for chemical composition, size, and surface charge, which all showed a successful conjugation. Finally, dynamic light scattering was used to study the interaction between nanoparticles and porcine gastric mucin, whereas the interaction between nanoparticles and porcine intestinal mucus was characterized by rheological measurements. This study shows a deeper biophysical understanding of the interaction between nanoparticles and mucin or native porcine intestinal mucus, further leveraging the current understanding of how dendrons can be used as excipients to interact with mucin. This will provide knowledge for the potential development of a new generation of mucoadhesive nanoformulations for the oral delivery of biopharmaceuticals.
Collapse
Affiliation(s)
- Matteo Tollemeto
- Department
of Chemistry, University of Copenhagen, Thovaldsensvej 40, DK-1871 Frederiksberg, Denmark
- Center
for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery),
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Zheng Huang
- Center
for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery),
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Jørn B. Christensen
- Department
of Chemistry, University of Copenhagen, Thovaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Hanne Mørck Nielsen
- Center
for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery),
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Stine Rønholt
- Center
for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery),
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Eskilson O, Zattarin E, Berglund L, Oksman K, Hanna K, Rakar J, Sivlér P, Skog M, Rinklake I, Shamasha R, Sotra Z, Starkenberg A, Odén M, Wiman E, Khalaf H, Bengtsson T, Junker JP, Selegård R, Björk EM, Aili D. Nanocellulose composite wound dressings for real-time pH wound monitoring. Mater Today Bio 2023; 19:100574. [PMID: 36852226 PMCID: PMC9958357 DOI: 10.1016/j.mtbio.2023.100574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.
Collapse
Affiliation(s)
- Olof Eskilson
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Elisa Zattarin
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Linn Berglund
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Kristiina Oksman
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Kristina Hanna
- Center for Disaster Medicine and Traumatology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Jonathan Rakar
- Center for Disaster Medicine and Traumatology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Petter Sivlér
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Mårten Skog
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Ivana Rinklake
- Center for Disaster Medicine and Traumatology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Rozalin Shamasha
- Center for Disaster Medicine and Traumatology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Zeljana Sotra
- Center for Disaster Medicine and Traumatology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Annika Starkenberg
- Center for Disaster Medicine and Traumatology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Magnus Odén
- Division of Nanostructured Materials, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183, Linköping, Sweden
| | - Emanuel Wiman
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, SE-70362, Örebro, Sweden
| | - Hazem Khalaf
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, SE-70362, Örebro, Sweden
| | - Torbjörn Bengtsson
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, SE-70362, Örebro, Sweden
| | - Johan P.E. Junker
- Center for Disaster Medicine and Traumatology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Emma M. Björk
- Division of Nanostructured Materials, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183, Linköping, Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden,Corresponding author.
| |
Collapse
|
4
|
Sohaib M, Iqbal T, Afsheen S, Almohammedi A, Khan H, Masood A, Yousaf M, Mansha MS, Farooq M, Naseer H, Riaz K, Sayed M, El-Rehim AA, Ali AM. Simple synthesis of lanthanum and molybdenum doped ZnO for their application to enhance the shelf life of apple. OPTICAL MATERIALS 2022; 134:113195. [DOI: 10.1016/j.optmat.2022.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Mesoporous Bioactive Glasses Incorporated into an Injectable Thermosensitive Hydrogel for Sustained Co-Release of Sr2+ Ions and N-Acetylcysteine. Pharmaceutics 2022; 14:pharmaceutics14091890. [PMID: 36145638 PMCID: PMC9504849 DOI: 10.3390/pharmaceutics14091890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022] Open
Abstract
An injectable delivery platform for promoting delayed bone healing has been developed by combining a thermosensitive polyurethane-based hydrogel with strontium-substituted mesoporous bioactive glasses (MBG_Sr) for the long-term and localized co-delivery of pro-osteogenic Sr2+ ions and an osteogenesis-enhancing molecule, N-Acetylcysteine (NAC). The incorporation of MBG_Sr microparticles, with a final concentration of 20 mg/mL, did not alter the overall properties of the thermosensitive hydrogel, in terms of sol-to-gel transition at a physiological-like temperature, gelation time, injectability and stability in aqueous environment at 37 °C. In particular, the hydrogel formulations (15% w/v polymer concentration) showed fast gelation in physiological conditions (1 mL underwent complete sol-to-gel transition within 3–5 min at 37 °C) and injectability in a wide range of temperatures (5–37 °C) through different needles (inner diameter in the range 0.4–1.6 mm). In addition, the MBG_Sr embedded into the hydrogel retained their full biocompatibility, and the released concentration of Sr2+ ions were effective in promoting the overexpression of pro-osteogenic genes from SAOS2 osteoblast-like cells. Finally, when incorporated into the hydrogel, the MBG_Sr loaded with NAC maintained their release properties, showing a sustained ion/drug co-delivery along 7 days, at variance with the MBG particles as such, showing a strong burst release in the first hours of soaking.
Collapse
|
6
|
Kim WH, Shin YC, Lee SH, Kang MS, Lee MS, Lee JH, Lee JH, Han DW, Kim B. Dental implants with electrochemical nanopattern formation to increase osseointegration. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Silicon Oxycarbide Porous Particles and Film Coating as Strategies for Tenofovir Controlled Release in Vaginal Tablets for HIV Prevention. Pharmaceutics 2022; 14:pharmaceutics14081567. [PMID: 36015193 PMCID: PMC9416175 DOI: 10.3390/pharmaceutics14081567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Sustained release of antiretroviral drugs is currently the most encouraging strategy for the prevention of the sexual transmission of HIV. Vaginal tablets based on hydrophilic gelling polymers are an interesting dosage form for this purpose, since they can be developed to modify the release of the drug depending on the tablet swelling. Tenofovir is a drug with proven activity in the prevention of HIV-1 infection, and it is possible to have it loaded in the surface of γ-aminopropyl trimethoxy silane-functionalized oxycarbide particles. These particles can be incorporated into the tablets, thus providing a sustained release of the drug. Moreover, the presence of the particles modifies the microstructure of the gel formed, as observed in scanning electron microscopy and Hg porosimetry studies, resulting into a gel with a narrow pore size distribution between 10 and 100 µm. This implies a lower volume of fluid incorporated into the gel during swelling studies, and therefore improved mucoadhesion times in ex vivo test. The coating of the formulations with Eudragit® RS modifies the swelling behavior of the tablets, which not only is decreased in magnitude but also extended in time, and as consequence the drug release is also prolonged for up to 7 days.
Collapse
|
8
|
Mamai M, Giasafaki D, Salvanou EA, Charalambopoulou G, Steriotis T, Bouziotis P. Biodistribution of Mesoporous Carbon Nanoparticles via Technetium-99m Radiolabelling after Oral Administration to Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3260. [PMID: 34947611 PMCID: PMC8703805 DOI: 10.3390/nano11123260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
The use of ordered mesoporous matrices, and in particular carbon-based mesoporous nanoparticles has shown great potential towards enhancing the bioavailability of orally administered drugs. Nevertheless, elucidation of the in vivo absorption, distribution, and excretion of such carriers is essential for understanding their behaviour, and radiolabelling provides a very useful way to track their occurrence inside the body. In this work, uniform spherical CMK-1-type ordered mesoporous carbon nanoparticles have been radiolabelled with Technetium-99m (99mTc) and traced after oral administration to mice. Ex vivo biodistribution studies showed that the radiolabelled nanoparticles accumulated almost exclusively in the gastrointestinal tract; complete elimination of the radiotracer was observed within 24 h after administration, with practically no uptake into other main organs. These findings along with the results from in vitro stability studies indicate that the spherical carbon nanoparticles examined could be safely used as drug carriers with minimal side effects, but also support the great value of radiolabelling methods for monitoring the particles' behaviour in vivo.
Collapse
Affiliation(s)
- Maria Mamai
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (M.M.); (E.-A.S.)
- Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (D.G.); (T.S.)
| | - Dimitra Giasafaki
- Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (D.G.); (T.S.)
| | - Evangelia-Alexandra Salvanou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (M.M.); (E.-A.S.)
| | - Georgia Charalambopoulou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (M.M.); (E.-A.S.)
| | - Theodore Steriotis
- Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (D.G.); (T.S.)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (M.M.); (E.-A.S.)
| |
Collapse
|