1
|
Kucuk I, Sadak S, Kurnalı SZ, Altınöz S, Uslu B. A novel electrochemical sensor based on MIP technology for sensitive determination of cinacalcet hydrochloride in tablet dosage form and serum samples. Mikrochim Acta 2025; 192:299. [PMID: 40234287 PMCID: PMC12000225 DOI: 10.1007/s00604-025-07152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Cinacalcet hydrochloride (CIN) is a calcium-sensing receptor agonist used to treat hypercalcemia in the parathyroid. The molecularly imprinted polymer (MIP)-based sensor (CIN@MIP/GCE) was electropolymerized using cyclic voltammetry (CV) of the functional monomer o-phenylenediamine (o-PD) with a template molecule CIN on a glassy carbon electrode (GCE). The optimum performance of the MIP-based electrode for CIN detection was obtained with parameters of a 1:7 monomer ratio, a 15-min removal time, ethanol as a removal solution, and a 15-min rebinding time. The surface characterization of the CIN@MIP/GCE sensor was conducted using atomic force microscopy (AFM) and scanning electron microscopy (SEM), while CV and electrochemical impedance spectroscopy (EIS) were employed for electrochemical characterization with [Fe(CN)6]3-/4- redox probe. AFM findings show that the MIP sensor with CIN-specific voids on the surface has a root-mean-square (RMS) value of 27.95, while the non-imprinted polymer (NIP) sensor without voids has a smoother surface formation and an RMS value of 21.30 nm. The analytical efficacy of the constructed sensor was assessed using differential pulse voltammetry (DPV). The limit of detection (LOD) was 0.17 × 10-12, with a linear range of 1.0 × 10-12-1.0 × 10-11 M. The reliability of the constructed sensor was determined using CIN detection in real samples as tablet dosage form and human serum, yielding recovery results of 100.19% and 101.82%, respectively. The selectivity investigation was performed against prevalent interference substances. The relative imprinting factor (IF) values of CIN impurities confirmed the selectivity of the CIN sensor.
Collapse
Affiliation(s)
- Ipek Kucuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Başkent University, 06790, Ankara, Türkiye
- The Graduate School of Health Sciences, Ankara University, 06110, Ankara, Türkiye
| | - Selenay Sadak
- The Graduate School of Health Sciences, Ankara University, 06110, Ankara, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Türkiye
| | | | - Sacide Altınöz
- Department of Analytical Chemistry, Faculty of Pharmacy, Başkent University, 06790, Ankara, Türkiye
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Türkiye.
| |
Collapse
|
2
|
Motshakeri M, Angoro B, Phillips ARJ, Svirskis D, Kilmartin PA, Sharma M. Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications. SENSORS (BASEL, SWITZERLAND) 2025; 25:1474. [PMID: 40096308 PMCID: PMC11902859 DOI: 10.3390/s25051474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Efforts to quantify iron ion concentrations across fields such as environmental, chemical, health, and food sciences have intensified over the past decade, which drives advancements in analytical methods, particularly electrochemical sensors known for their simplicity, portability, and reliability. The development of electrochemical methods using non-mercury electrodes is increasing as alternatives to environmentally unsafe mercury-based electrodes. However, detecting iron species such as Fe(II) and Fe(III) remains challenging due to their distinct chemical properties, continuous oxidation-state interconversion, presence of interfering species, and complex behavior in diverse environments and matrixes. Selective trace detection demands careful optimization of electrochemical methods, including proper electrode materials selection, electrode surface modifications, operating conditions, and sample pretreatments. This review critically evaluates advancements over the past decade in mercury-free electrode materials and surface modification strategies for iron detection. Strategies include incorporating a variety of nanomaterials, composites, conducting polymers, membranes, and iron-selective ligands to improve sensitivity, selectivity, and performance. Despite advancements, achieving ultra-low detection limits in real-world samples with minimal interference remains challenging and emphasizes the need for enhanced sample pretreatment. This review identifies challenges, knowledge gaps, and future directions and paves the way for advanced iron electrochemical sensors for environmental monitoring, health diagnostics, and analytical precision.
Collapse
Affiliation(s)
- Mahsa Motshakeri
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
- School of Biological Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Barbara Angoro
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| | - Anthony R. J. Phillips
- School of Biological Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Surgical and Translational Research Center, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| | - Paul A. Kilmartin
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| |
Collapse
|
3
|
Rivera-Rivera DM, Quintanilla-Villanueva GE, Luna-Moreno D, Sánchez-Álvarez A, Rodríguez-Delgado JM, Cedillo-González EI, Kaushik G, Villarreal-Chiu JF, Rodríguez-Delgado MM. Exploring Innovative Approaches for the Analysis of Micro- and Nanoplastics: Breakthroughs in (Bio)Sensing Techniques. BIOSENSORS 2025; 15:44. [PMID: 39852095 PMCID: PMC11763714 DOI: 10.3390/bios15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks. Effective detection and quantification of MPs and NPs are essential for understanding and mitigating their impacts. Current analytical methods include physical and chemical techniques. Physical methods, such as optical and electron microscopy, provide morphological details but often lack specificity and are time-intensive. Chemical analyses, such as Fourier transform infrared (FTIR) and Raman spectroscopy, offer molecular specificity but face challenges with smaller particle sizes and complex matrices. Thermal analytical methods, including pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), provide compositional insights but are destructive and limited in morphological analysis. Emerging (bio)sensing technologies show promise in addressing these challenges. Electrochemical biosensors offer cost-effective, portable, and sensitive platforms, leveraging principles such as voltammetry and impedance to detect MPs and their adsorbed pollutants. Plasmonic techniques, including surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS), provide high sensitivity and specificity through nanostructure-enhanced detection. Fluorescent biosensors utilizing microbial or enzymatic elements enable the real-time monitoring of plastic degradation products, such as terephthalic acid from polyethylene terephthalate (PET). Advancements in these innovative approaches pave the way for more accurate, scalable, and environmentally compatible detection solutions, contributing to improved monitoring and remediation strategies. This review highlights the potential of biosensors as advanced analytical methods, including a section on prospects that address the challenges that could lead to significant advancements in environmental monitoring, highlighting the necessity of testing the new sensing developments under real conditions (composition/matrix of the samples), which are often overlooked, as well as the study of peptides as a novel recognition element in microplastic sensing.
Collapse
Affiliation(s)
- Denise Margarita Rivera-Rivera
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico;
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Nuevo León, Mexico
| | | | - Donato Luna-Moreno
- Centro de Investigaciones en Óptica AC, Div. de Fotónica, Loma del Bosque 115, Lomas del Campestre, León 37150, Guanajuato, Mexico; (G.E.Q.-V.); (D.L.-M.)
| | - Araceli Sánchez-Álvarez
- Universidad Tecnológica de León, Electromecánica Industrial, Blvd. Universidad Tecnológica 225, Col. San Carlos, León 37670, Guanajuato, Mexico;
| | - José Manuel Rodríguez-Delgado
- Tecnológico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada Sur 2501, Col. Tecnológico, Monterrey 64849, Nuevo León, Mexico;
| | - Erika Iveth Cedillo-González
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy;
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India;
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico;
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Nuevo León, Mexico
| | - Melissa Marlene Rodríguez-Delgado
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico;
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Nuevo León, Mexico
| |
Collapse
|
4
|
Thapa S, Singh KRB, Natarajan A, Kerry RG, Singh J, Pandey SS, Singh RP. MXenes‐based
Biosensors. MXENES 2024:171-188. [DOI: 10.1002/9781119874027.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
|
5
|
Sheikh TA, Ismail M, Rabbee MF, Khan H, Rafique A, Rasheed Z, Siddique A, Rafiq MZ, Khattak ZAK, Jillani SMS, Shahzad U, Akhtar MN, Saeed M, Alzahrani KA, Uddin J, Rahman MM, Verpoort F. 2D MXene-Based Nanoscale Materials for Electrochemical Sensing Toward the Detection of Hazardous Pollutants: A Perspective. Crit Rev Anal Chem 2024:1-46. [PMID: 39046991 DOI: 10.1080/10408347.2024.2379851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
MXenes (Mn+1XnTx), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Ali Sheikh
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ismail
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Hira Khan
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ayesha Rafique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zeerak Rasheed
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Siddique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Zeeshan Rafiq
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Akhtar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- National Research Tomsk Polytechnic University, Tomsk, Russian
| |
Collapse
|
6
|
Ganesh PS, Dhand V, Kim SY, Kim S. Design and synthesis of active site rich cobalt tin sulfide nano cubes: An effective electrochemical sensing interface to monitor environmentally hazardous phenolic isomers. Microchem J 2024; 200:110308. [DOI: 10.1016/j.microc.2024.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
7
|
Pattan-Siddappa G, Ko HU, Kim SY. Active site rich MXene as a sensing interface for brain neurotransmitter's and pharmaceuticals: One decade, many sensors. Trends Analyt Chem 2023; 164:117096. [DOI: 10.1016/j.trac.2023.117096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
8
|
Yang M, Wang L, Lu H, Dong Q. Advances in MXene-Based Electrochemical (Bio)Sensors for Neurotransmitter Detection. MICROMACHINES 2023; 14:mi14051088. [PMID: 37241710 DOI: 10.3390/mi14051088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Neurotransmitters are chemical messengers that play an important role in the nervous system's control of the body's physiological state and behaviour. Abnormal levels of neurotransmitters are closely associated with some mental disorders. Therefore, accurate analysis of neurotransmitters is of great clinical importance. Electrochemical sensors have shown bright application prospects in the detection of neurotransmitters. In recent years, MXene has been increasingly used to prepare electrode materials for fabricating electrochemical neurotransmitter sensors due to its excellent physicochemical properties. This paper systematically introduces the advances in MXene-based electrochemical (bio)sensors for the detection of neurotransmitters (including dopamine, serotonin, epinephrine, norepinephrine, tyrosine, NO, and H2S), with a focus on their strategies for improving the electrochemical properties of MXene-based electrode materials, and provides the current challenges and future prospects for MXene-based electrochemical neurotransmitter sensors.
Collapse
Affiliation(s)
- Meiqing Yang
- Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China
| | - Lu Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haozi Lu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qizhi Dong
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Maurya KK, Singh K, Malviya M. Effect of palladium and its nanogeometry on the redox electrochemistry of tetracyanoquinodimethane modified electrode; application in electrochemical sensing of ascorbic acid. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Constructing NaX Nanozeolite Modified Carbon Paste Electrode for Electro-Catalytic Measurement of Gentamicin Sulfate in Pharmaceutical Samples. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
11
|
Yang G, Liu F, Zhao J, Fu L, Gu Y, Qu L, Zhu C, Zhu JJ, Lin Y. MXenes-based nanomaterials for biosensing and biomedicine. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215002] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Simonenko EP, Simonenko NP, Mokrushin AS, Simonenko TL, Gorobtsov PY, Nagornov IA, Korotcenkov G, Sysoev VV, Kuznetsov NT. Application of Titanium Carbide MXenes in Chemiresistive Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:850. [PMID: 36903729 PMCID: PMC10004978 DOI: 10.3390/nano13050850] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/14/2023]
Abstract
The titanium carbide MXenes currently attract an extreme amount of interest from the material science community due to their promising functional properties arising from the two-dimensionality of these layered structures. In particular, the interaction between MXene and gaseous molecules, even at the physisorption level, yields a substantial shift in electrical parameters, which makes it possible to design gas sensors working at RT as a prerequisite to low-powered detection units. Herein, we consider to review such sensors, primarily based on Ti3C2Tx and Ti2CTx crystals as the most studied ones to date, delivering a chemiresistive type of signal. We analyze the ways reported in the literature to modify these 2D nanomaterials for (i) detecting various analyte gases, (ii) improving stability and sensitivity, (iii) reducing response/recovery times, and (iv) advancing a sensitivity to atmospheric humidity. The most powerful approach based on designing hetero-layers of MXenes with other crystals is discussed with regard to employing semiconductor metal oxides and chalcogenides, noble metal nanoparticles, carbon materials (graphene and nanotubes), and polymeric components. The current concepts on the detection mechanisms of MXenes and their hetero-composites are considered, and the background reasons for improving gas-sensing functionality in the hetero-composite when compared with pristine MXenes are classified. We formulate state-of-the-art advances and challenges in the field while proposing some possible solutions, in particular via employing a multisensor array paradigm.
Collapse
Affiliation(s)
- Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Artem S. Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Tatiana L. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Philipp Yu. Gorobtsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ilya A. Nagornov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, 2009 Chisinau, Moldova
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
13
|
Ganesh PS, Kim SY. A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: A concise review. CHEMOSPHERE 2022; 307:135645. [PMID: 35817176 PMCID: PMC9270057 DOI: 10.1016/j.chemosphere.2022.135645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are a serious threat to human wellbeing that can cause pandemic disease. As a result, it is critical to identify virus in a timely, sensitive, and precise manner. The present novel coronavirus-2019 (COVID-19) disease outbreak has increased these concerns. The research of developing various methods for COVID-19 virus identification is one of the most rapidly growing research areas. This review article compares and addresses recent improvements in conventional and advanced electroanalytical approaches for detecting COVID-19 virus. The popular conventional methods such as polymerase chain reaction (PCR), loop mediated isothermal amplification (LAMP), serology test, and computed tomography (CT) scan with artificial intelligence require specialized equipment, hours of processing, and specially trained staff. Many researchers, on the other hand, focused on the invention and expansion of electrochemical and/or bio sensors to detect SARS-CoV-2, demonstrating that they could show a significant role in COVID-19 disease control. We attempted to meticulously summarize recent advancements, compare conventional and electroanalytical approaches, and ultimately discuss future prospective in the field. We hope that this review will be helpful to researchers who are interested in this interdisciplinary field and desire to develop more innovative virus detection methods.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| |
Collapse
|
14
|
Vasyukova IA, Zakharova OV, Kuznetsov DV, Gusev AA. Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1797. [PMID: 35683652 PMCID: PMC9182201 DOI: 10.3390/nano12111797] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
MXenes are a family of two-dimensional (2D) composite materials based on transition metal carbides, nitrides and carbonitrides that have been attracting attention since 2011. Combination of electrical and mechanical properties with hydrophilicity makes them promising materials for biomedical applications. This review briefly discusses methods for the synthesis of MXenes, their potential applications in medicine, ranging from sensors and antibacterial agents to targeted drug delivery, cancer photo/chemotherapy, tissue engineering, bioimaging, and environmental applications such as sensors and adsorbents. We focus on in vitro and in vivo toxicity and possible mechanisms. We discuss the toxicity analogies of MXenes and other 2D materials such as graphene, mentioning the greater biocompatibility of MXenes. We identify existing barriers that hinder the formation of objective knowledge about the toxicity of MXenes. The most important of these barriers are the differences in the methods of synthesis of MXenes, their composition and structure, including the level of oxidation, the number of layers and flake size; functionalization, test concentrations, duration of exposure, and individual characteristics of biological test objects Finally, we discuss key areas for further research that need to involve new methods of nanotoxicology, including predictive computational methods. Such studies will bring closer the prospect of widespread industrial production and safe use of MXene-based products.
Collapse
Affiliation(s)
- Inna A. Vasyukova
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
| | - Olga V. Zakharova
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Denis V. Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Alexander A. Gusev
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| |
Collapse
|
15
|
SINGHAL AYUSHI, Yadav S, Sadique MA, Khan R, Kaushik A, Sathish N, Srivastava AK. MXene-modified molecularly imprinted polymer as an artificial bio-recognition platform for efficient electrochemical sensing: progress and perspectives. Phys Chem Chem Phys 2022; 24:19164-19176. [DOI: 10.1039/d2cp02330j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of efficient electrochemical sensors of exceptional features, molecularly imprinted polymers (MIPs) have been extensively utilized due to their great vitality as an alternative to bio-recognition elements. MIPs as...
Collapse
|