1
|
Soverina S, Gilliland HN, Olive AJ. Pathogenicity and virulence of Mycobacterium abscessus. Virulence 2025; 16:2508813. [PMID: 40415550 PMCID: PMC12118445 DOI: 10.1080/21505594.2025.2508813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
Non-tuberculous mycobacteria (NTM), such as Mycobacterium abscessus (Mab) are an increasing cause of human disease. While the majority of immunocompetent hosts control Mab infections, the robust survival of Mab within the environment has shaped survival in human cells to help drive persistence and cause inflammatory damage in susceptible individuals. With high intrinsic resistance to antibiotics, there is an important need to fully understand how Mab causes infection, define protective host pathways that control disease, and develop new strategies to treat those at high risk. This review will examine the existing literature related to host-Mab interactions with a focus on virulence, the host response, and therapy development. The goal is to highlight key gaps in our understanding and describe novel approaches to encourage new research avenues that better define the pathogenesis and host response against this increasingly important human pathogen.
Collapse
Affiliation(s)
- Soledad Soverina
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Haleigh N. Gilliland
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Andrew J. Olive
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Liu H, Wang H, Li Q, Wang Y, He Y, Li X, Sun C, Ergonul O, Can F, Pang Z, Zhang B, Hu Y. LPS adsorption and inflammation alleviation by polymyxin B-modified liposomes for atherosclerosis treatment. Acta Pharm Sin B 2023; 13:3817-3833. [PMID: 37719368 PMCID: PMC10501887 DOI: 10.1016/j.apsb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 09/19/2023] Open
Abstract
Chronic inflammation is critical in the onset and progression of atherosclerosis (AS). The lipopolysaccharide (LPS) level in the circulation system is elevated in AS patients and animal models, which is correlated with the severity of AS. Inspired by the underlying mechanism that LPS could drive the polarization of macrophages toward the M1 phenotype, aggravate inflammation, and ultimately contribute to the exacerbation of AS, LPS in the circulation system was supposed to be the therapeutic target for AS treatment. In the present study, polymyxin (PMB) covalently conjugated to PEGylated liposomes (PLPs) were formulated to adsorb LPS through specific interactions between PMB and LPS. In vitro, the experiments demonstrated that PLPs could adsorb LPS, reduce the polarization of macrophages to M1 phenotype and inhibit the formation of foam cells. In vivo, the study revealed that PLPs treatment reduced the serum levels of LPS and pro-inflammatory cytokines, decreased the proportion of M1-type macrophages in AS plaque, stabilized AS plaque, and downsized the plaque burdens in arteries, which eventually attenuated the progression of AS. Our study highlighted LPS in the circulation system as the therapeutic target for AS and provided an alternative strategy for AS treatment.
Collapse
Affiliation(s)
- Huiwen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Honglan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Qiyu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yiwei Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Ying He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Xuejing Li
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Onder Ergonul
- Koç University Iş Bank Center for Infectious Diseases (KUISCID), Lnfectious Diseases and Clinical Microbiology Department, Koç University School of Medicine and American Hospital, Istanbul 34010, Turkey
| | - Füsun Can
- Koç University Iş Bank Center for Infectious Diseases (KUISCID), Lnfectious Diseases and Clinical Microbiology Department, Koç University School of Medicine and American Hospital, Istanbul 34010, Turkey
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Soni SS, D'Elia AM, Alsasa A, Cho S, Tylek T, O'Brien EM, Whitaker R, Spiller KL, Rodell CB. Sustained release of drug-loaded nanoparticles from injectable hydrogels enables long-term control of macrophage phenotype. Biomater Sci 2022; 10:6951-6967. [PMID: 36341688 PMCID: PMC9724601 DOI: 10.1039/d2bm01113a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels may be pre-formed through dynamic crosslinks, allowing for injection and subsequent retention in the tissue by shear-thinning and self-healing processes, respectively. These properties enable the site-specific delivery of encapsulated therapeutics; yet, the sustained release of small-molecule drugs and their cell-targeted delivery remains challenging due to their rapid diffusive release and non-specific cellular biodistribution. Herein, we develop an injectable hydrogel system composed of a macrophage-targeted nanoparticle (cyclodextrin nanoparticles, CDNPs) crosslinked by adamantane-modified hyaluronic acid (Ad-HA). The polymer-nanoparticle hydrogel uniquely leverages cyclodextrin's interaction with small molecule drugs to create a spatially discrete drug reservoir and with adamantane to yield dynamic, injectable hydrogels. Through an innovative two-step drug screening approach and examination of 45 immunomodulatory drugs with subsequent in-depth transcriptional profiling of both murine and human macrophages, we identify celastrol as a potent inhibitor of pro-inflammatory (M1-like) behavior that furthermore promotes a reparatory (M2-like) phenotype. Celastrol encapsulation within the polymer-nanoparticle hydrogels permitted shear-thinning injection and sustained release of drug-laden nanoparticles that targeted macrophages to modulate cell behavior for greater than two weeks in vitro. The modular hydrogel system is a promising approach to locally modulate cell-specific phenotype in a range of applications for immunoregenerative medicine.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Abdulrahman Alsasa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Sylvia Cho
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Tina Tylek
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Erin M O'Brien
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Ricardo Whitaker
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Karakota M, Gounari E, Koliakou I, Papaioannou M, Papanikolaou NA, Koliakos G. Induced differentiation and molecular characterization of monocytes-derived multipotential cells generated from commonly discarded leukapheresis filters. Tissue Cell 2022; 77:101825. [DOI: 10.1016/j.tice.2022.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
5
|
Imidazole-Thiosemicarbazide Derivatives as Potent Anti- Mycobacterium tuberculosis Compounds with Antibiofilm Activity. Cells 2021; 10:cells10123476. [PMID: 34943984 PMCID: PMC8700351 DOI: 10.3390/cells10123476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogenic bacterium and the causative agent of tuberculosis. This disease is one of the most ancient and deadliest bacterial infections, as it poses major health, social and economic challenges at a global level, primarily in low- and middle-income countries. The lack of an effective vaccine, the long and expensive drug therapy, and the rapid spread of drug-resistant strains of Mtb have led to the re-emergence of tuberculosis as a global pandemic. Here, we assessed the in vitro activity of new imidazole-thiosemicarbazide derivatives (ITDs) against Mtb infection and their effects on mycobacterial biofilm formation. Cytotoxicity studies of the new compounds in cell lines and human monocyte-derived macrophages (MDMs) were performed. The anti-Mtb activity of ITDs was evaluated by determining minimal inhibitory concentrations of resazurin, time-kill curves, bacterial intracellular growth and the effect on biofilm formation. Mutation frequency and whole-genome sequencing of mutants that were resistant to ITDs were performed. The antimycobacterial potential of ITDs with the ability to penetrate Mtb-infected human macrophages and significantly inhibit the intracellular growth of tubercle bacilli and suppress Mtb biofilm formation was observed.
Collapse
|
6
|
O'Brien EM, Spiller KL. Pro-inflammatory polarization primes Macrophages to transition into a distinct M2-like phenotype in response to IL-4. J Leukoc Biol 2021; 111:989-1000. [PMID: 34643290 DOI: 10.1002/jlb.3a0520-338r] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tissue repair is largely regulated by diverse Mϕ populations whose functions are timing- and context-dependent. The early phase of healing is dominated by pro-inflammatory Mϕs, also known as M1, followed by the emergence of a distinct and diverse population that is collectively referred to as M2. The extent of the diversity of the M2 population is unknown. M2 Mϕs may originate directly from circulating monocytes or from phenotypic switching of pre-existing M1 Mϕs within the site of injury. The differences between these groups are poorly understood, but have major implications for understanding and treating pathologies characterized by deficient M2 activation, such as chronic wounds, which also exhibit diminished M1 Mϕ behavior. This study investigated the influence of prior M1 activation on human Mϕ polarization to an M2 phenotype in response to IL-4 treatment in vitro. Compared to unactivated (M0) Mϕs, M1 Mϕs up-regulated several receptors that promote the M2 phenotype, including the primary receptor for IL-4. M1 Mϕs also up-regulated M2 markers in response to lower doses of IL-4, including doses as low as 10 pg/mL, and accelerated STAT6 phosphorylation. However, M1 activation appeared to also change the Mϕ response to treatment with IL-4, generating an M2-like phenotype with a distinct gene and protein expression signature compared to M2 Mϕs prepared directly from M0 Mϕs. Functionally, compared to M0-derived M2 Mϕs, M1-derived M2 Mϕs demonstrated increased migratory response to SDF-1α, and conditioned media from these Mϕs promoted increased migration of endothelial cells in transwell assays, although other common Mϕ-associated functions such as phagocytosis were not affected by prior polarization state. In summary, M1 polarization appears to prime Mϕs to transition into a distinct M2 phenotype in response to IL4, which leads to increased expression of some genes and proteins and decreased expression of others, as well as functional differences. Together, these findings indicate the importance of prior M1 activation in regulating subsequent M2 behavior, and suggest that correcting M1 behavior may be a therapeutic target in dysfunctional M2 activation.
Collapse
Affiliation(s)
- Erin M O'Brien
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Mycobacterium tuberculosis Binds Human Serum Amyloid A, and the Interaction Modulates the Colonization of Human Macrophages and the Transcriptional Response of the Pathogen. Cells 2021; 10:cells10051264. [PMID: 34065319 PMCID: PMC8160739 DOI: 10.3390/cells10051264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
As a very successful pathogen with outstanding adaptive properties, Mycobacterium tuberculosis (Mtb) has developed a plethora of sophisticated mechanisms to subvert host defenses and effectively enter and replicate in the harmful environment inside professional phagocytes, namely, macrophages. Here, we demonstrated the binding interaction of Mtb with a major human acute phase protein, namely, serum amyloid A (SAA1), and identified AtpA (Rv1308), ABC (Rv2477c), EspB (Rv3881c), TB 18.6 (Rv2140c), and ThiC (Rv0423c) membrane proteins as mycobacterial effectors responsible for the pathogen-host protein interplay. SAA1-opsonization of Mtb prior to the infection of human macrophages favored bacterial entry into target phagocytes accompanied by a substantial increase in the load of intracellularly multiplying and surviving bacteria. Furthermore, binding of human SAA1 by Mtb resulted in the up- or downregulation of the transcriptional response of tubercle bacilli. The most substantial changes were related to the increased expression level of the genes of two operons encoding mycobacterial transporter systems, namely, mmpL5/mmpS5 (rv0676c), and rv1217c, rv1218c. Therefore, we postulate that during infection, Mtb-SAA1 binding promotes the infection of host macrophages by tubercle bacilli and modulates the functional response of the pathogen.
Collapse
|
8
|
Hummitzsch L, Berndt R, Kott M, Rusch R, Faendrich F, Gruenewald M, Steinfath M, Albrecht M, Zitta K. Hypoxia directed migration of human naïve monocytes is associated with an attenuation of cytokine release: indications for a key role of CCL26. J Transl Med 2020; 18:404. [PMID: 33087148 PMCID: PMC7579884 DOI: 10.1186/s12967-020-02567-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Background Numerous tissue-derived factors have been postulated to be involved in tissue migration of circulating monocytes. The aim of this study was to evaluate whether a defined hypoxic gradient can induce directed migration of naïve human monocytes and to identify responsible autocrine/paracrine factors. Methods Monocytes were isolated from peripheral blood mononuclear cells, transferred into chemotaxis chambers and subjected to a defined oxygen gradient with or without the addition of CCL26. Cell migration was recorded and secretome analyses were performed. Results Cell migration recordings revealed directed migration of monocytes towards the source of hypoxia. Analysis of the monocyte secretome demonstrated a reduced secretion of 70% (19/27) of the analyzed cytokines under hypoxic conditions. The most down-regulated factors were CCL26 (− 99%), CCL1 (− 95%), CX3CL1 (− 95%), CCL17 (− 85%) and XCL1 (− 83%). Administration of recombinant CCL26 abolished the hypoxia-induced directed migration of human monocytes, while the addition of CCL26 under normoxic conditions resulted in a repulsion of monocytes from the source of CCL26. Conclusions Hypoxia induces directed migration of human monocytes in-vitro. Autocrine/paracrine released CCL26 is involved in the hypoxia-mediated monocyte migration and may represent a target molecule for the modulation of monocyte migration in-vivo.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, UKSH, Kiel, Germany
| | - Matthias Kott
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany
| | - Rene Rusch
- Department of Cardiovascular Surgery, UKSH, Kiel, Germany
| | - Fred Faendrich
- Clinic for Applied Cellular Medicine, UKSH, Kiel, Germany
| | - Matthias Gruenewald
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany.
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany
| |
Collapse
|
9
|
Gene expression profile of CD14 + blood monocytes following lifestyle-induced weight loss in individuals with metabolic syndrome. Sci Rep 2020; 10:17855. [PMID: 33082492 PMCID: PMC7576128 DOI: 10.1038/s41598-020-74973-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/06/2020] [Indexed: 11/08/2022] Open
Abstract
Lifestyle-induced weight loss is regarded as an efficient therapy to reverse metabolic syndrome (MetS) and to prevent disease progression. The objective of this study was to investigate whether lifestyle-induced weight loss modulates gene expression in circulating monocytes. We analyzed and compared gene expression in monocytes (CD14+ cells) and subcutaneous adipose tissue biopsies by unbiased mRNA profiling. Samples were obtained before and after diet-induced weight loss in well-defined male individuals in a prospective controlled clinical trial (ICTRP Trial Number: U1111-1158-3672). The BMI declined significantly (− 12.6%) in the treatment arm (N = 39) during the 6-month weight loss intervention. This was associated with a significant reduction in hsCRP (− 45.84%) and circulating CD14+ cells (− 21.0%). Four genes were differentially expressed (DEG’s) in CD14+ cells following weight loss (ZRANB1, RNF25, RB1CC1 and KMT2C). Comparative analyses of paired CD14+ monocytes and subcutaneous adipose tissue samples before and after weight loss did not identify common genes differentially regulated in both sample types. Lifestyle-induced weight loss is associated with specific changes in gene expression in circulating CD14+ monocytes, which may affect ubiquitination, histone methylation and autophagy.
Collapse
|
10
|
Hummitzsch L, Albrecht M, Zitta K, Hess K, Parczany K, Rusch R, Cremer J, Steinfath M, Haneya A, Faendrich F, Berndt R. Human monocytes subjected to ischaemia/reperfusion inhibit angiogenesis and wound healing in vitro. Cell Prolif 2020; 53:e12753. [PMID: 31957193 PMCID: PMC7048205 DOI: 10.1111/cpr.12753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The sequence of initial tissue ischaemia and consecutive blood flow restoration leads to ischaemia/reperfusion (I/R) injury, which is typically characterized by a specific inflammatory response. Migrating monocytes seem to mediate the immune response in ischaemic tissues and influence detrimental as well as regenerative effects during I/R injury. MATERIALS AND METHODS To clarify the role of classical monocytes in I/R injury, isolated human monocytes were subjected to I/R in vitro (3 hours ischaemia followed by 24 hours of reperfusion). Cellular resilience, monocyte differentiation, cytokine secretion, as well as influence on endothelial tube formation, migration and cell recovery were investigated. RESULTS We show that I/R supported an enhanced resilience of monocytes and induced intracellular phosphorylation of the prosurvival molecules Erk1/2 and Akt. FACS analysis showed no major alteration in monocyte subtype differentiation and surface marker expression under I/R. Further, our experiments revealed that I/R changes the cytokine secretion pattern, release of angiogenesis associated proteins and MMP-9 activity in supernatants of monocytes exposed to I/R. Supernatants from monocytes subjected to I/R attenuated endothelial tube formation as indicator for angiogenesis as well as endothelial cell migration and recovery. CONCLUSION In summary, monocytes showed no significant change in cellular integrity and monocyte subtype after I/R. Functionally, monocytes might have a rather detrimental influence during the initial phase of I/R, suppressing endothelial cell migration and neoangiogenesis.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Katharina Hess
- Institute of NeuropathologyUniversity Hospital MuensterMuensterGermany
| | - Kerstin Parczany
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - René Rusch
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Jochen Cremer
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Assad Haneya
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Fred Faendrich
- Department of Applied Cell TherapyUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Rouven Berndt
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| |
Collapse
|
11
|
Hopewell EL, Cox C. Manufacturing Dendritic Cells for Immunotherapy: Monocyte Enrichment. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:155-160. [PMID: 32055643 PMCID: PMC7005329 DOI: 10.1016/j.omtm.2019.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells play a key role in activation of the immune system as potent antigen-presenting cells. This pivotal position, along with the ability to generate dendritic cells from monocytes and ready uptake of antigen, makes them an intriguing vehicle for immunotherapy for a variety of indications. Since the first reported trial using dendritic cells in 1995, they have been used in trials all over the world for a plethora of indications. Monocyte-derived dendritic cells are generated from whole blood or apheresis products by culturing enriched monocytes in the presence of interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF). A variety of methods can be used for enrichment of monocytes for generation of clinical-grade dendritic cells and are summarized herein.
Collapse
Affiliation(s)
- Emily L Hopewell
- Cell and Gene Therapy Manufacturing, Indiana University, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Cheryl Cox
- Cellular Therapy Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
12
|
Sauter A, Yi DH, Li Y, Roersma S, Appel S. The Culture Dish Surface Influences the Phenotype and Cytokine Production of Human Monocyte-Derived Dendritic Cells. Front Immunol 2019; 10:2352. [PMID: 31632415 PMCID: PMC6783514 DOI: 10.3389/fimmu.2019.02352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Monocyte-derived dendritic cells (moDC) are an important scientific and clinical source of functional dendritic cells (DC). However, the optimization of the generation process has to date mainly been limited to the variation of soluble factors. In this study, we investigated the impact of the cell culture dish surface on phenotype and cytokine profile. We compared a standard cell culture dish to a non-adherent culture dish for two immunogenic maturation conditions, two tolerogenic conditions, and an unstimulated control. Phenotype, cytokine profile and T cell stimulatory capacity were determined after a 3-day culture. Light microscopy revealed an increase in homotypic cluster formation correlated with the use of non-adherent surfaces, which could be reduced by using blocking antibodies against CD18. All surface markers analyzed showed moderate to strong differences depending on the culture dish surface, including significantly decreased expression of key maturation markers such as CD80, CD86, and CCR7 as well as PD-L1 on cells stimulated with the Jonuleit cytokine cocktail cultured on a non-adherent surface. Significant differences in the secretion of many cytokines were observed, especially for cells stimulated with LPS, with over 10-fold decreased secretion of IL-10, IL12-p40, and TNF-α from the cells cultured on the non-adherent surface. All immunogenic moDC populations showed similar capacity to induce antigen-specific T cells. These results provide evidence that the DC phenotype depends on the surface used during moDC generation. This has important implications for the optimization of DC-based immunotherapy development and underlines that the local surrounding can interfere with the final DC population beyond the soluble factors.
Collapse
Affiliation(s)
| | - Dag Heiro Yi
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yayan Li
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sabine Roersma
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Hummitzsch L, Zitta K, Rusch R, Cremer J, Steinfath M, Gross J, Fandrich F, Berndt R, Albrecht M. Characterization of the Angiogenic Potential of Human Regulatory Macrophages (Mreg) after Ischemia/Reperfusion Injury In Vitro. Stem Cells Int 2019; 2019:3725863. [PMID: 31341483 PMCID: PMC6614961 DOI: 10.1155/2019/3725863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemia/reperfusion- (I/R-) induced organ damage represents one of the main causes of death worldwide, and new strategies to reduce I/R injury are urgently needed. We have shown that programmable cells of monocytic origin (PCMO) respond to I/R with the release of angiogenic mediators and that transplantation of PCMO results in increased neovascularization. Human regulatory macrophages (Mreg), which are also of monocytic origin, have been successfully employed in clinical transplantation studies due to their immunomodulatory properties. Here, we investigated whether Mreg also possess angiogenic potential in vitro and could represent a treatment option for I/R-associated illnesses. Mreg were differentiated using peripheral blood monocytes from different donors (N = 14) by incubation with M-CSF and human AB serum and stimulation with INF-gamma. Mreg cultures were subjected to 3 h of hypoxia and 24 h of reoxygenation (resembling I/R) or the respective nonischemic control. Cellular resilience, expression of pluripotency markers, secretion of angiogenic proteins, and influence on endothelial tube formation as a surrogate marker for angiogenesis were investigated. Mreg showed resilience against I/R that did not lead to increased cell damage. Mreg express DHRS9 as well as IDO and display a moderate to low expression pattern of several pluripotency genes (e.g., NANOG, OCT-4, and SOX2). I/R resulted in an upregulation of IDO (p < 0.001) while C-MYC and KLF4 were downregulated (p < 0.001 and p < 0.05). Proteome profiling revealed the secretion of numerous angiogenic proteins by Mreg of which several were strongly upregulated by I/R (e.g., MIP-1alpha, 19.9-fold; GM-CSF, 19.2-fold; PTX3, 5.8-fold; IL-1β, 5.2-fold; and MCP-1, 4.7-fold). The angiogenic potential of supernatants from Mreg subjected to I/R remains inconclusive. While Mreg supernatants from 3 donors induced tube formation, 2 supernatants were not effective. We suggest that Mreg may prove beneficial as a cell therapy-based treatment option for I/R-associated illnesses. However, donor characteristics seem to crucially influence the effectiveness of Mreg treatment.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rene Rusch
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Justus Gross
- Clinic for Vascular Surgery, Bad Segeberg, Germany
| | - Fred Fandrich
- Department of Applied Cell Therapy, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
14
|
Meital LT, Coward AS, Windsor MT, Bailey TG, Kuballa A, Russell FD. A simple and effective method for the isolation and culture of human monocytes from small volumes of peripheral blood. J Immunol Methods 2019; 472:75-78. [PMID: 31229469 DOI: 10.1016/j.jim.2019.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022]
Abstract
Innate immune cell defects contribute to severe autoimmunity and the pathogenesis of inflammatory disease. Monocyte-derived macrophages typically retain disease related signatures and represent an excellent in vitro model to uncover and validate mechanisms contributing to specific pathological states. Monocyte isolation procedures vary widely in terms of purity, yield, cost, degree of technical difficulty and volume of peripheral blood needed. This paper outlines a novel isolation method that yields monocytes through density gradient centrifugation (Ficoll® and hyperosmotic Percoll®). The protocol has been optimised for small volumes of blood (42 ml) and is simple, reproducible and inexpensive compared to other methods. Monocyte recovery is 70% (relative to monocyte numbers within the buffy coat) and the highly functional macrophages produced are characterised by excellent purity (98.6 ± 0.6%) and intact activation and phagocytic capacities. The method is well suited to investigations involving patient populations where a particular subset of immune cells is known to contribute to the pathogenesis of a specific disease or is aberrant as a consequence of that disease.
Collapse
Affiliation(s)
- Lara T Meital
- Centre for Genetics, Ecology & Physiology, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia; VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia
| | - Alexander S Coward
- Centre for Genetics, Ecology & Physiology, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia; VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia
| | - Mark T Windsor
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia
| | - Tom G Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, QLD, Australia
| | - Anna Kuballa
- Centre for Genetics, Ecology & Physiology, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia
| | - Fraser D Russell
- Centre for Genetics, Ecology & Physiology, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia; VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, QLD, Australia.
| |
Collapse
|
15
|
Kipkeu BJ, Shyian ML, da Silveira Cavalcante L, Duong TT, Yeung RS, Binnington B, Branch DR, Acker JP, Holovati JL. Evaluation of the functional properties of cryopreserved buffy coat-derived monocytes for monocyte monolayer assay. Transfusion 2018; 58:2027-2035. [DOI: 10.1111/trf.14650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Betty J. Kipkeu
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta Canada
| | - Melissa L. Shyian
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta Canada
| | | | | | - Rae S.M. Yeung
- The Hospital for Sick Children; Toronto Ontario Canada
- Department of Paediatrics; University of Toronto; Toronto Ontario Canada
| | - Beth Binnington
- Centre for Innovation; Canadian Blood Services; Toronto Ontario Canada
| | - Donald R. Branch
- Centre for Innovation; Canadian Blood Services; Toronto Ontario Canada
- Department of Medicine; University of Toronto; Toronto Ontario Canada
| | - Jason P. Acker
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta Canada
- Centre for Innovation; Canadian Blood Services; Edmonton Alberta Canada
| | - Jelena L. Holovati
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta Canada
- Centre for Innovation; Canadian Blood Services; Edmonton Alberta Canada
| |
Collapse
|
16
|
Zang GH, Li R, Zhou RS, Hao L, He HG, Zhang WD, Dong Y, Han CH. Effects of disodium cantharidinate on dendritic cells of patients with bladder carcinoma. Oncol Lett 2018; 15:2273-2277. [PMID: 29434934 PMCID: PMC5777130 DOI: 10.3892/ol.2017.7589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022] Open
Abstract
The present study explored the effects of disodium cantharidinate (DC) on the peripheral blood-derived dendritic cells of patients with bladder carcinoma. The peripheral blood mononuclear cells from the 15 cases of urinary bladder carcinoma of middle and advanced stage were separated, and dendritic cells were prepared. The morphological changes of dendritic cells were observed. Flow cytometry was used to detect the expression levels of CD1a and CD83 on dendritic cell surface. MTT assay was utilized to measure the proliferation ability of allogeneic lymphocyte stimulated by DC. Annexin V-FITC/propidium iodide (PI) double staining flow cytometry method was carried out to detect cell apoptosis after treatment with DC. The changes in caspase-3 and PARP expression levels were investigated by western blot method. The high-dose DC resulted in a significant increase in the expressions of dendritic cell phenotyptic molecules CDla and CD83 as compared to control group. In addition, the proliferation index of allogenic lymphocyte stimulated by DC was significantly higher than that of control group. Moreover, MTT assay showed significant inhibition of the growth of BIU-87 cells. After 24 h of DC treatment, double staining flow cytometry confirmed the ability of DC to induce cell apoptosis. Further, western blot method showed a significant elevation of caspase-3 and PARP protein expression after DC treatment. In conclusion, DC treatment could induce dendritic cell maturation of patient with carcinoma of urinary bladder and promote its functional changes. Furthermore, DC was able to inhibit the proliferation of cell BIU-87 and also has the ability to induce cell apoptosis.
Collapse
Affiliation(s)
- Guang-Hui Zang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Rui Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Rong-Sheng Zhou
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Hou-Guang He
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen-Da Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
17
|
Evaluation of the Mycobactericidal Effect of Thio-functionalized Carbohydrate Derivatives. Molecules 2017; 22:molecules22050812. [PMID: 28509874 PMCID: PMC6154314 DOI: 10.3390/molecules22050812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/05/2017] [Accepted: 05/11/2017] [Indexed: 11/25/2022] Open
Abstract
Sugars with heteroatoms other than oxygen have attained considerable importance in glycobiology and in drug design since they are often more stable in blood plasma due to their resistance to enzymes, such as glycosidases, phosphorylases and glycosyltransferases. The replacement of oxygen atoms in sugars with sulfur forms thio-sugars, which are potentially useful for the treatment of diabetes and some bacterial and viral infections. Here, we evaluated the antibacterial activity of thio-functionalized carbohydrate derivatives. A set of 21 compounds was screened against acid-fast Mycobacterium tuberculosis (Mtb), gram-negative Escherichia coli and gram-positive Staphylococcus aureus. The tested carbohydrate derivatives were most effective against tubercle bacilli, with as many as five compounds (thioglycoside 6, thiosemicarbazone 16A, thiosemicarbazone 20, aminothiadiazole 23, and thiazoline 26) inhibiting its growth with MIC50 ≤ 50 µM/CFU. Only two compounds (aminothiadiazole 23 and thiazoline 26) were able to inhibit the growth of E. coli at concentrations below 1 mM, and one of them, aminothiadiazole 23, inhibited the growth of S. aureus at a concentration ≤1 mM. The five compounds affecting the growth of mycobacteria were either thiodisaccharides (6, 16A, and 20) or thioglycosides (23 and 26). All of these compounds (6, 16A, 20, 23, and 26) were able to inhibit the growth of Mtb deposited within human macrophages. However, three of the five selected compounds (6, 23, and 26) exhibited relatively high cytotoxicity in mouse fibroblasts at micromolar concentrations. The selected thio-sugars are very promising compounds, thus making them candidates for further modifications that would decrease their cytotoxicity against eukaryotic cells without affecting their antimycobacterial potential.
Collapse
|
18
|
Pardali E, Schmitz T, Borgscheiper A, Iking J, Stegger L, Waltenberger J. Cryopreservation of primary human monocytes does not negatively affect their functionality or their ability to be labelled with radionuclides: basis for molecular imaging and cell therapy. EJNMMI Res 2016; 6:77. [PMID: 27778311 PMCID: PMC5078113 DOI: 10.1186/s13550-016-0232-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Background Circulating white blood cells crucially contribute to maintenance and repair of solid organs. Therefore, certain cell populations such as monocytes are attractive targets for use in molecular imaging and cell imaging, e.g. after labelling with radionuclides, as well as for cell therapies. However, the preparation of monocytes may require freezing and thawing to preserve cells for timely and standardised applications. Additional modifications of these cells such as radioisotope labelling are necessary prior to their application in vivo. We therefore tested the hypothesis whether cryopreservation of freshly isolated circulating human monocytes affects their functional phenotype or their suitability for radionuclide labelling. Results CD14+CD16− monocytes were isolated from human peripheral blood. They were either directly used for cellular assays and labelling or frozen down using cryoprotectants. In the latter case, cells were thawed prior to further use and analysed for survival, chemotactic responses to various growth factors and adhesion on endothelial cells. In addition, both fresh and cryopreserved monocytes were labelled with radiotracers followed by assessment of survival and chemotactic responses. In all functional assays performed, cryopreserved monocytes did not significantly differ from freshly isolated monocytes with regard to their functionality. Cryopreservation did not affect cell survival. There was no effect on the chemotactic response of monocytes towards different growth factors. Likewise, adhesion properties remained unchanged following cryopreservation. Moreover, the labelling efficiency was similar for freshly isolated and cryopreserved monocytes. Labelling did not negatively affect monocyte survival and function. Conclusions Our data indicate that cryopreservation of freshly isolated human primary monocytes is feasible and does not negatively affect their functionality when used for labelling and functional assessment.
Collapse
Affiliation(s)
- Evangelia Pardali
- Department of Cardiovascular Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Timo Schmitz
- Department of Cardiovascular Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Andreas Borgscheiper
- Department of Cardiovascular Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Janette Iking
- Department of Cardiovascular Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany. .,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, 48149, Münster, Germany.
| |
Collapse
|
19
|
Jin X, Kruth HS. Culture of Macrophage Colony-stimulating Factor Differentiated Human Monocyte-derived Macrophages. J Vis Exp 2016. [PMID: 27404952 DOI: 10.3791/54244] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A protocol is presented for cell culture of macrophage colony-stimulating factor (M-CSF) differentiated human monocyte-derived macrophages. For initiation of experiments, fresh or frozen monocytes are cultured in flasks for 1 week with M-CSF to induce their differentiation into macrophages. Then, the macrophages can be harvested and seeded into culture wells at required cell densities for carrying out experiments. The use of defined numbers of macrophages rather than defined numbers of monocytes to initiate macrophage cultures for experiments yields macrophage cultures in which the desired cell density can be more consistently attained. Use of cryopreserved monocytes reduces dependency on donor availability and produces more homogeneous macrophage cultures.
Collapse
Affiliation(s)
- Xueting Jin
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Howard S Kruth
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health;
| |
Collapse
|
20
|
Oliveira SDS, Oliveira NF, Meyer-Fernandes JR, Savio LEB, Ornelas FGI, Ferreira ZS, Coutinho-Silva R, Silva CLM. Increased expression of NTPDases 2 and 3 in mesenteric endothelial cells during schistosomiasis favors leukocyte adhesion through P2Y1 receptors. Vascul Pharmacol 2016; 82:66-72. [PMID: 26924460 DOI: 10.1016/j.vph.2016.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/22/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Schistosomiasis is caused by an intravascular parasite and linked to phenotypic changes in endothelial cells that favor inflammation. Endothelial cells express P2Y1 receptors (P2Y1R), and their activation by ADP favors leukocyte adhesion to the endothelial monolayer. We aimed to evaluate the influence of schistosomiasis upon endothelial purinergic signaling-mediated leukocyte adhesion. Mesenteric endothelial cells and mononuclear cells from control and Schistosoma mansoni-infected mice were used in co-culture. P2Y1R levels were similar in both groups. Basal leukocyte adhesion was higher in the infected than in the control group; leukocyte adhesion increased after treatment with the P2Y1R agonist 2-MeSATP in both groups, though it only marginally increased in the infected group. Pre-incubation with the selective P2Y1R antagonist MRS2179 (0.3μM) prevented the agonist effect. However, in the infected group it also reduced the basal leukocyte adhesion, suggesting endothelial cell pre-activation. The endothelial expressions of NTPDases 2 and 3 were significantly increased in the infected group, increasing extracellular ATP hydrolysis and ADP formation by endothelial cells. Therefore, mesenteric endothelial cells are primed by schistosomiasis to a pro-inflammatory phenotype characterized by an increased expression of NTPDases 2 and 3, favoring ADP accumulation and mononuclear cell adhesion, possibly contributing to mesenteric inflammation and schistosomiasis morbidity.
Collapse
Affiliation(s)
- Suellen Darc Santos Oliveira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Nathália F Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - José R Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Luiz Eduardo Baggio Savio
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Flavia G I Ornelas
- Institute of Bioscience, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Zulma S Ferreira
- Institute of Bioscience, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Claudia Lucia Martins Silva
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
21
|
Lu Z, Zhang X, Li Y, Lopes-Virella MF, Huang Y. TLR4 antagonist attenuates atherogenesis in LDL receptor-deficient mice with diet-induced type 2 diabetes. Immunobiology 2015; 220:1246-54. [PMID: 26162692 DOI: 10.1016/j.imbio.2015.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/05/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
Although a large number of studies have well documented a key role of toll-like receptor (TLR)4 in atherosclerosis, it remains undetermined if TLR4 antagonist attenuates atherogenesis in mouse model for type 2 diabetes. In this study, we induced type 2 diabetes in low-density lipoprotein receptor-deficient (LDLR(-/-)) mice by high-fat diet (HFD). At 8 weeks old, 20 mice were fed HFD and 20 mice fed regular chow (RC) for 24 weeks. In the last 10 weeks, half HFD-fed mice and half RC-fed mice were treated with Rhodobacter sphaeroides lipopolysaccharide (Rs-LPS), an established TLR4 antagonist. After the treatment, atherosclerotic lesions in aortas were analyzed. Results showed that the HFD significantly increased bodyweight, glucose, lipids including total cholesterol, triglycerides and free fatty acids, and insulin resistance, indicating that the HFD induced type 2 diabetes in LDLR(-/-) mice. Results also showed that Rs-LPS had no effect on HFD-increased metabolic parameters in both nondiabetic and diabetic mice. Lipid staining of aortas and histological analysis of cross-sections of aortic roots showed that diabetes increased atherosclerotic lesions, but Rs-LPS attenuated atherogenesis in diabetic mice. Furthermore, immunohistochemical studies showed that Rs-LPS reduced infiltration of monocytes/macrophages and expression of interleukin (IL)-6 and matrix metalloproteinase-9 in atherosclerotic lesions of diabetic mice. Finally, the antagonistic effect of Rs-LPS on TLR4 was demonstrated by our in vitro studies showing that Rs-LPS inhibited IL-6 secretion from macrophages and endothelial cells stimulated by LPS or LPS plus saturated fatty acid palmitate. Taken together, our study demonstrated that TLR4 antagonist was capable of attenuating vascular inflammation and atherogenesis in mice with HFD-induced type 2 diabetes.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiaoming Zhang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F Lopes-Virella
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA; Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yan Huang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA; Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
22
|
Sharma S, Patnaik SK, Taggart RT, Kannisto ED, Enriquez SM, Gollnick P, Baysal BE. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat Commun 2015; 6:6881. [PMID: 25898173 PMCID: PMC4411297 DOI: 10.1038/ncomms7881] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/10/2015] [Indexed: 01/01/2023] Open
Abstract
The extent, regulation and enzymatic basis of RNA editing by cytidine deamination are incompletely understood. Here we show that transcripts of hundreds of genes undergo site-specific C>U RNA editing in macrophages during M1 polarization and in monocytes in response to hypoxia and interferons. This editing alters the amino acid sequences for scores of proteins, including many that are involved in pathogenesis of viral diseases. APOBEC3A, which is known to deaminate cytidines of single-stranded DNA and to inhibit viruses and retrotransposons, mediates this RNA editing. Amino acid residues of APOBEC3A that are known to be required for its DNA deamination and anti-retrotransposition activities were also found to affect its RNA deamination activity. Our study demonstrates the cellular RNA editing activity of a member of the APOBEC3 family of innate restriction factors and expands the understanding of C>U RNA editing in mammals. Aberrant RNA editing is linked to a range of neuropsychiatric and chronic diseases. Here Sharma et al. show that APOBEC3A can function as an RNA editing protein in response to physiological stimuli, significantly expanding our understanding of RNA editing and the role this may play in diseases.
Collapse
Affiliation(s)
- Shraddha Sharma
- Department of Pathology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14203, USA
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14203, USA
| | - R Thomas Taggart
- Department of Pathology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14203, USA
| | - Eric D Kannisto
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14203, USA
| | - Sally M Enriquez
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Paul Gollnick
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Bora E Baysal
- Department of Pathology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14203, USA
| |
Collapse
|
23
|
In situ Delivery of Antigen to DC-SIGN(+)CD14(+) Dermal Dendritic Cells Results in Enhanced CD8(+) T-Cell Responses. J Invest Dermatol 2015; 135:2228-2236. [PMID: 25885805 DOI: 10.1038/jid.2015.152] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 12/24/2022]
Abstract
CD14(+) dendritic cells (DCs) present in the dermis of human skin represent a large subset of dermal DCs (dDCs) that are considered macrophage-like cells with poor antigen (cross)-presenting capacity and limited migratory potential to the lymph nodes. CD14(+) dDC highly express DC-specific ICAM-3-grabbing non-integrin (DC-SIGN), a receptor containing potent endocytic capacity, facilitating intracellular routing of antigens to major histocompatibility complex I and II (MHC-I andII) loading compartments for the presentation to antigen-specific CD8(+) and CD4(+) T cells. Here we show using a human skin explant model that the in situ targeting of antigens to DC-SIGN using glycan-modified liposomes enhances the antigen-presenting capacity of CD14(+) dDCs. Intradermal vaccination of liposomes modified with the DC-SIGN-targeting glycan Lewis(X), containing melanoma antigens (MART-1 or Gp100), accumulated in CD14(+) dDCs and resulted in enhanced Gp100- or MART-1-specific CD8(+) T-cell responses. Simultaneous intradermal injection of the cytokines GM-CSF and IL-4 as adjuvant enhanced the migration of the skin DCs and increased the expression of DC-SIGN on the CD14(+) and CD1a(+) dDCs. These data demonstrate that human CD14(+) dDCs exhibit potent cross-presenting capacity when targeted in situ through DC-SIGN.
Collapse
|
24
|
Garcia RA, Yan M, Search D, Zhang R, Carson NL, Ryan CS, Smith-Monroy C, Zheng J, Chen J, Kong Y, Tang H, Hellings SE, Wardwell-Swanson J, Dinchuk JE, Psaltis GC, Gordon DA, Glunz PW, Gargalovic PS. P2Y6 receptor potentiates pro-inflammatory responses in macrophages and exhibits differential roles in atherosclerotic lesion development. PLoS One 2014; 9:e111385. [PMID: 25360548 PMCID: PMC4216081 DOI: 10.1371/journal.pone.0111385] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/23/2014] [Indexed: 12/15/2022] Open
Abstract
Background P2Y6, a purinergic receptor for UDP, is enriched in atherosclerotic lesions and is implicated in pro-inflammatory responses of key vascular cell types and macrophages. Evidence for its involvement in atherogenesis, however, has been lacking. Here we use cell-based studies and three murine models of atherogenesis to evaluate the impact of P2Y6 deficiency on atherosclerosis. Methodology/Principal Findings Cell-based studies in 1321N1 astrocytoma cells, which lack functional P2Y6 receptors, showed that exogenous expression of P2Y6 induces a robust, receptor- and agonist-dependent secretion of inflammatory mediators IL-8, IL-6, MCP-1 and GRO1. P2Y6-mediated inflammatory responses were also observed, albeit to a lesser extent, in macrophages endogenously expressing P2Y6 and in acute peritonitis models of inflammation. To evaluate the role of P2Y6 in atherosclerotic lesion development, we used P2Y6-deficient mice in three mouse models of atherosclerosis. A 43% reduction in aortic arch plaque was observed in high fat-fed LDLR knockout mice lacking P2Y6 receptors in bone marrow-derived cells. In contrast, no effect on lesion development was observed in fat-fed whole body P2Y6xLDLR double knockout mice. Interestingly, in a model of enhanced vascular inflammation using angiotensin II, P2Y6 deficiency enhanced formation of aneurysms and exhibited a trend towards increased atherosclerosis in the aorta of LDLR knockout mice. Conclusions P2Y6 receptor augments pro-inflammatory responses in macrophages and exhibits a pro-atherogenic role in hematopoietic cells. However, the overall impact of whole body P2Y6 deficiency on atherosclerosis appears to be modest and could reflect additional roles of P2Y6 in vascular disease pathophysiologies, such as aneurysm formation.
Collapse
Affiliation(s)
- Ricardo A. Garcia
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Mujing Yan
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Debra Search
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Rongan Zhang
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Nancy L. Carson
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Carol S. Ryan
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Constance Smith-Monroy
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Joanna Zheng
- Pharmaceutical Compound Optimization: Discovery Toxicology, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Jian Chen
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Yan Kong
- Lead Evaluation, Bristol-Myers Squibb Company, Lawrenceville, New Jersey, United States of America
| | - Huaping Tang
- Lead Evaluation, Bristol-Myers Squibb Company, Lawrenceville, New Jersey, United States of America
| | - Samuel E. Hellings
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Judith Wardwell-Swanson
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Joseph E. Dinchuk
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - George C. Psaltis
- Veterinary Sciences, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - David A. Gordon
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Peter W. Glunz
- Discovery Chemistry, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Peter S. Gargalovic
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
25
|
Nicholas D, Tang H, Zhang Q, Rudra J, Xu F, Langridge W, Zhang K. Quantitative proteomics reveals a role for epigenetic reprogramming during human monocyte differentiation. Mol Cell Proteomics 2014; 14:15-29. [PMID: 25316709 DOI: 10.1074/mcp.m113.035089] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The differentiation of monocytes into macrophages and dendritic cells involves mechanisms for activation of the innate immune system in response to inflammatory stimuli, such as pathogen infection and environmental cues. Epigenetic reprogramming is thought to play an important role during monocyte differentiation. Complementary to cell surface markers, the characterization of monocytic cell lineages by mass spectrometry based protein/histone expression profiling opens a new avenue for studying immune cell differentiation. Here, we report the application of mass spectrometry and bioinformatics to identify changes in human monocytes during their differentiation into macrophages and dendritic cells. Our data show that linker histone H1 proteins are significantly down-regulated during monocyte differentiation. Although highly enriched H3K9-methyl/S10-phos/K14-acetyl tri-modification forms of histone H3 were identified in monocytes and macrophages, they were dramatically reduced in dendritic cells. In contrast, histone H4 K16 acetylation was found to be markedly higher in dendritic cells than in monocytes and macrophages. We also found that global hyperacetylation generated by the nonspecific histone deacetylase HDAC inhibitor Apicidin induces monocyte differentiation. Together, our data suggest that specific regulation of inter- and intra-histone modifications including H3 K9 methylation, H3 S10 phosphorylation, H3 K14 acetylation, and H4 K16 acetylation must occur in concert with chromatin remodeling by linker histones for cell cycle progression and differentiation of human myeloid cells into macrophages and dendritic cells.
Collapse
Affiliation(s)
- Dequina Nicholas
- From the ‡Department of Biochemistry, Loma Linda University, Loma Linda, California 92354
| | - Hui Tang
- §Department of Pharmacology and Toxicology, UTMB at Galveston, Texas 77554
| | - Qiongyi Zhang
- ¶Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609
| | - Jai Rudra
- §Department of Pharmacology and Toxicology, UTMB at Galveston, Texas 77554
| | - Feng Xu
- ¶Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609
| | - William Langridge
- From the ‡Department of Biochemistry, Loma Linda University, Loma Linda, California 92354
| | - Kangling Zhang
- From the ‡Department of Biochemistry, Loma Linda University, Loma Linda, California 92354; §Department of Pharmacology and Toxicology, UTMB at Galveston, Texas 77554;
| |
Collapse
|
26
|
Menck K, Behme D, Pantke M, Reiling N, Binder C, Pukrop T, Klemm F. Isolation of human monocytes by double gradient centrifugation and their differentiation to macrophages in teflon-coated cell culture bags. J Vis Exp 2014:e51554. [PMID: 25226391 PMCID: PMC4828059 DOI: 10.3791/51554] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human macrophages are involved in a plethora of pathologic processes ranging from infectious diseases to cancer. Thus they pose a valuable tool to understand the underlying mechanisms of these diseases. We therefore present a straightforward protocol for the isolation of human monocytes from buffy coats, followed by a differentiation procedure which results in high macrophage yields. The technique relies mostly on commonly available lab equipment and thus provides a cost and time effective way to obtain large quantities of human macrophages. Briefly, buffy coats from healthy blood donors are subjected to a double density gradient centrifugation to harvest monocytes from the peripheral blood. These monocytes are then cultured in fluorinated ethylene propylene (FEP) Teflon-coated cell culture bags in the presence of macrophage colony-stimulating factor (M-CSF). The differentiated macrophages can be easily harvested and used for subsequent studies and functional assays. Important methods for quality control and validation of the isolation and differentiation steps will be highlighted within the protocol. In summary, the protocol described here enables scientists to routinely and reproducibly isolate human macrophages without the need for cost intensive tools. Furthermore, disease models can be studied in a syngeneic human system circumventing the use of murine macrophages.
Collapse
Affiliation(s)
- Kerstin Menck
- Department of Hematology and Oncology, University Medical Center Göttingen
| | - Daniel Behme
- Department of Hematology and Oncology, University Medical Center Göttingen
| | - Mathias Pantke
- Department of Hematology and Oncology, University Medical Center Göttingen
| | | | - Claudia Binder
- Department of Hematology and Oncology, University Medical Center Göttingen
| | - Tobias Pukrop
- Department of Hematology and Oncology, University Medical Center Göttingen
| | - Florian Klemm
- Department of Hematology and Oncology, University Medical Center Göttingen;
| |
Collapse
|
27
|
Zuniga MC, White SLP, Zhou W. Design and utilization of macrophage and vascular smooth muscle cell co-culture systems in atherosclerotic cardiovascular disease investigation. Vasc Med 2014; 19:394-406. [DOI: 10.1177/1358863x14550542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerotic cardiovascular disease has been acknowledged as a chronic inflammatory condition. Monocytes and macrophages lead the inflammatory pathology of atherosclerosis whereas changes in atheromatous plaque thickness and matrix composition are attributed to vascular smooth muscle cells. Because these cell types are key players in atherosclerosis progression, it is crucial to utilize a reliable system to investigate their interaction. In vitro co-culture systems are useful platforms to study specific molecular mechanisms between cells. This review aims to summarize the various co-culture models that have been developed to investigate vascular smooth muscle cell and monocyte/macrophage interactions, focusing on the monocyte/macrophage effects on vascular smooth muscle cell function.
Collapse
Affiliation(s)
- Mary C Zuniga
- Surgical Services, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sharla L Powell White
- Division of Vascular Surgery, School of Medicine, Stanford University, Stanford, CA, USA
- Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Wei Zhou
- Surgical Services, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Vascular Surgery, School of Medicine, Stanford University, Stanford, CA, USA
- Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
28
|
Bernhardt A, Schumacher M, Gelinsky M. Formation of osteoclasts on calcium phosphate bone cements and polystyrene depends on monocyte isolation conditions. Tissue Eng Part C Methods 2014; 21:160-70. [PMID: 24919531 DOI: 10.1089/ten.tec.2014.0187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Peripheral blood mononuclear cells (PBMC) are an attractive source for the generation of osteoclasts in vitro, which is an important prerequisite for the examination of resorption and remodeling of biomaterials. In this study, different preparation methods are used to obtain cell populations with a rising content of CD14(+) monocytes. We wanted to address the question whether there is a correlation between content of CD14(+) cells in the preparation and functionality of formed osteoclasts. MATERIALS AND METHODS PBMC obtained by density gradient centrifugation with and without further purification by plastic adherence or immunomagnetic separation of CD14(+) cells were seeded on both cell culture polystyrene and a calcium phosphate bone cement (CPC) and cultivated under stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B ligand (RANKL). Cell cultures were characterized by histological and fluorescent staining of multinucleated cells that were positive for tartrate-resistant acid phosphatase (TRAP) activity and the presence of actin rings, respectively. Furthermore, activities of osteoclast marker enzymes TRAP and carbonic anhydrase II (CA II) were quantified. For osteoclasts cultured on CPC, resorption pits were visualized using scanning electron microscopy (SEM). RESULTS Monocytes of all preparations were successfully differentiated into multinucleated osteoclasts showing TRAP and CA II activity on both cell culture plastic and CPC. Preparations involving an additional plastic adherence step exhibited only a minor increase of TRAP and CA II activity in the second week of cultivation. Furthermore, the number of resorption pits on CPC was reduced in these cultures compared with immunomagnetically enriched monocytes and preparations without additional plastic adherence steps. Optimal results with regard to yield, number of multinucleated osteoclasts, activity of TRAP and CA II, and resorption of CPC were obtained by simple density gradient centrifugation. CONCLUSION All examined monocyte preparation protocols were suitable for the generation of osteoclasts on both polystyrene and CPC. Highly purified monocytes are not mandatory to obtain functional osteoclasts for investigation of biomaterial resorption.
Collapse
Affiliation(s)
- Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Dresden, Germany
| | | | | |
Collapse
|
29
|
Abstract
The bisphosphonate zoledronic acid (ZA) significantly reduces complications of bone metastasis by inhibiting resident macrophages, the osteoclasts. Recent clinical trials indicate additional anti-metastatic effects of ZA outside the bone. However, which step of metastasis is influenced and whether this is due to direct toxicity on cancer cells or inhibition of the tumor promoting microenvironment, is unknown. In particular, tumor-associated and resident macrophages support each step of organ metastasis and could be a crucial target of ZA. Thus, we comparatively investigate the ZA effects on: i) different types of macrophages, ii) on breast cancer cells but also iii) on macrophage-induced invasion. We demonstrate that ZA concentrations reflecting the plasma level affected viability of human macrophages, murine bone marrow-derived macrophages as well as their resident brain equivalents, the microglia, while it did not influence the tested cancer cells. However, the effects on the macrophages subsequently reduced the macrophage/microglia-induced invasiveness of the cancer cells. In line with this, manipulation of microglia by ZA in organotypic brain slice cocultures reduced the tissue invasion by carcinoma cells. The characterization of human macrophages after ZA treatment revealed a phenotype/response shift, in particular after external stimulation. In conclusion, we show that therapeutic concentrations of ZA affect all types of macrophages but not the cancer cells. Thus, anti-metastatic effects of ZA are predominantly caused by modulating the microenvironment. Most importantly, our findings demonstrate that ZA reduced microglia-assisted invasion of cancer cells to the brain tissue, indicating a potential therapeutic role in the prevention of cerebral metastasis.
Collapse
|
30
|
Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 2014; 35:4477-88. [PMID: 24589361 DOI: 10.1016/j.biomaterials.2014.02.012] [Citation(s) in RCA: 689] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/07/2014] [Indexed: 12/27/2022]
Abstract
Angiogenesis is crucial for the success of most tissue engineering strategies. The natural inflammatory response is a major regulator of vascularization, through the activity of different types of macrophages and the cytokines they secrete. Macrophages exist on a spectrum of diverse phenotypes, from "classically activated" M1 to "alternatively activated" M2 macrophages. M2 macrophages, including the subsets M2a and M2c, are typically considered to promote angiogenesis and tissue regeneration, while M1 macrophages are considered to be anti-angiogenic, although these classifications are controversial. Here we show that in contrast to this traditional paradigm, primary human M1 macrophages secrete the highest levels of potent angiogenic stimulators including VEGF; M2a macrophages secrete the highest levels of PDGF-BB, a chemoattractant for stabilizing pericytes, and also promote anastomosis of sprouting endothelial cells in vitro; and M2c macrophages secrete the highest levels of MMP9, an important protease involved in vascular remodeling. In a murine subcutaneous implantation model, porous collagen scaffolds were surrounded by a fibrous capsule, coincident with high expression of M2 macrophage markers, while scaffolds coated with the bacterial lipopolysaccharide were degraded by inflammatory macrophages, and glutaraldehyde-crosslinked scaffolds were infiltrated by substantial numbers of blood vessels, accompanied by high levels of M1 and M2 macrophages. These results suggest that coordinated efforts by both M1 and M2 macrophages are required for angiogenesis and scaffold vascularization, which may explain some of the controversy over which phenotype is the angiogenic phenotype.
Collapse
Affiliation(s)
- Kara L Spiller
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA; School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | - Rachel R Anfang
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA
| | - Krista J Spiller
- Department of Pathology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Johnathan Ng
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA
| | - Kenneth R Nakazawa
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA
| | - Jeffrey W Daulton
- Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
31
|
López P, Rodríguez-Carrio J, Suárez A. Antimalarial drugs inhibit IFNα-enhanced TNFα and STAT4 expression in monocytes: implication for systemic lupus erythematosus. Cytokine 2014; 67:13-20. [PMID: 24680477 DOI: 10.1016/j.cyto.2014.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 11/19/2013] [Accepted: 02/02/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To analyse the influence of IFNα on TNFα production by human peripheral blood mononuclear cells (PBMCs), as well as the possible interference of this cytokine on the effect of antimalarial drugs, TNFα regulators widely used in the treatment of systemic lupus erythematosus (SLE). METHODS PBMCs, monocytes or T cells were treated with IFNα alone or simultaneously to cellular stimuli as well as in the presence or absence of chloroquine. Supernatants from such cultures were collected to quantify TNFα by ELISA. TNFα and STAT4 expression in cultured cells were analysed by intracellular flow cytometry. In addition, STAT4 gene expression and serum levels of TNFα and IFNα were quantified in 53 SLE patients and 45 controls. RESULTS IFNα alone did not modify significantly TNFα production, but an increase was observed in stimulated PBMC. Further analyses showed that monocytes were the cellular population responsible for this effect. In addition, IFNα treatment increased STAT4 in stimulated monocytes, suggesting that TNFα upregulation could be mediated by STAT4. On the other hand, the analysis of the antimalarial effect showed that chloroquine was able to inhibit in vitro the expression of TNFα and STAT4 enhanced by IFNα. In antimalarial-treated SLE patients, however, only those with high IFNα serum levels presented lower expression of STAT4. CONCLUSIONS IFNα treatment enhances the induction of TNFα and STAT4 in stimulated monocytes, an effect inhibited in vitro by chloroquine treatment. However, the consequence of antimalarial treatment on SLE patients could be different depending on their IFNα serum levels.
Collapse
Affiliation(s)
- Patricia López
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
| | - Ana Suárez
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
| |
Collapse
|
32
|
Lu Z, Li Y, Samuvel DJ, Jin J, Zhang X, Lopes-Virella MF, Huang Y. MD-2 is involved in the stimulation of matrix metalloproteinase-1 expression by interferon-γ and high glucose in mononuclear cells - a potential role of MD-2 in Toll-like receptor 4-independent signalling. Immunology 2013; 140:301-13. [PMID: 23800176 DOI: 10.1111/imm.12138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/20/2013] [Accepted: 06/20/2013] [Indexed: 11/27/2022] Open
Abstract
We reported recently that treatment of diabetic apolipoprotein E-deficient mice with the Toll-like receptor 4 (TLR4) antagonist Rs-LPS, a lipopolysaccharide isolated from Rhodobacter sphaeroides, inhibited atherosclerosis. Since it is known that Rs-LPS antagonizes TLR4 by targeting TLR4 co-receptor MD-2, this finding indicates that MD-2 is a potential target for the treatment of atherosclerosis. In this study, we determined if MD-2 is involved in the gene expression regulated by signalling pathways independent of TLR4. Given that interferon-γ (IFNγ) and hyperglycaemia play key roles in atherosclerosis, we determined if MD-2 is involved in IFN-γ and high-glucose-regulated gene expression in mononuclear cells. Results showed that IFN-γ and high glucose synergistically stimulated matrix metalloproteinase 1 (MMP-1), a proteinase essential for vascular tissue remodelling and atherosclerosis, in U937 mononuclear cells, but Rs-LPS inhibited the MMP-1 stimulation. To provide more evidence for a role of MD-2 in IFN-γ-stimulated MMP-1, studies using antibodies and small interfering RNA demonstrated that MD-2 blockade or knockdown attenuated the effect of IFN-γ on MMP-1. Furthermore, studies using PCR arrays showed that MD-2 blockade had a similar effect as IFN-γ receptor blockade on the inhibition of IFN-γ-stimulated pro-inflammatory molecules. Although these findings indicate the involvement of MD-2 in IFN-γ signalling, we also observed that MD-2 was up-regulated by IFN-γ and high glucose. We found that MD-2 up-regulation by IFN-γ played an essential role in the synergistic effect of IFN-γ and LPS on MMP-1 expression. Taken together, these findings indicate that MD-2 is involved in IFN-γ signalling and IFN-γ-augmented MMP-1 up-regulation by LPS.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Thacker RI, Retzinger AC, Cash JG, Dentler MD, Retzinger GS. Extracellular transport of cell-size particles and tumor cells by dendritic cells in culture. Exp Mol Pathol 2013; 95:385-91. [PMID: 24145002 DOI: 10.1016/j.yexmp.2013.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022]
Abstract
Many particulate materials of sizes approximating that of a cell disseminate after being introduced into the body. While some move about within phagocytic inflammatory cells, others appear to move about outside of, but in contact with, such cells. In this report, we provide unequivocal photomicroscopic evidence that cultured, mature, human dendritic cells can transport in extracellular fashion over significant distances both polymeric beads and tumor cells. At least in the case of polymeric beads, both fibrinogen and the β2-integrin subunit, CD18, appear to play important roles in the transport process. These discoveries may yield insight into a host of disease-related phenomena, including and especially tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Robert I Thacker
- Amnis Corporation, EMD-Millipore, Seattle, WA 98119, United States
| | | | | | | | | |
Collapse
|
34
|
Jin J, Zhang X, Lu Z, Perry DM, Li Y, Russo SB, Cowart LA, Hannun YA, Huang Y. Acid sphingomyelinase plays a key role in palmitic acid-amplified inflammatory signaling triggered by lipopolysaccharide at low concentrations in macrophages. Am J Physiol Endocrinol Metab 2013; 305:E853-67. [PMID: 23921144 PMCID: PMC3798699 DOI: 10.1152/ajpendo.00251.2013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Periodontal disease is more prevalent and severe in patients with diabetes than in nondiabetic patients. In addition to diabetes, a large number of studies have demonstrated an association between obesity and chronic periodontal disease. However, the underlying mechanisms have not been well understood. Since plasma free fatty acids (FAs) are elevated in obese patients and saturated FAs such as palmitic acid (PA) have been shown to increase host inflammatory response, we sought to find out how PA interacts with lipopolysaccharide (LPS), an important pathological factor involved in periodontal disease, to enhance inflammation. We found that whereas low concentration of LPS (1 ng/ml) stimulated interleukin (IL)-6 expression in RAW 264.7 macrophages, PA further augmented it fourfold. Besides IL-6, PA amplified the stimulatory effect of LPS on a large amount of Toll-like receptor (TLR)4-mediated expression of proinflammatory signaling molecules such as IL-1 receptor-associated kinase-like 2 and proinflammatory molecules, including monocyte chemotactic protein-1 and colony-stimulating factor. We also observed that PA augmented TLR4 but not TLR2 signal, and the augmentation was mediated by nuclear factor-κB (NF-κB) pathways. To further elucidate the regulatory mechanism whereby PA amplifies LPS signal, our studies showed that PA and LPS synergistically increased hydrolysis of sphingomyelin by stimulating acid sphingomyelinase (ASMase) activity, which contributed to a marked increase in ceramide production and IL-6 upregulation. Taken together, this study has demonstrated that PA markedly augments TLR4-mediated proinflammatory signaling triggered by low concentration of LPS in macrophages, and ASMase plays a key role in the augmentation.
Collapse
Affiliation(s)
- Junfei Jin
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cantu DA, Hematti P, Kao WJ. Cell encapsulating biomaterial regulates mesenchymal stromal/stem cell differentiation and macrophage immunophenotype. Stem Cells Transl Med 2012. [PMID: 23197666 DOI: 10.5966/sctm.2012-0061] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow mesenchymal stromal/stem cell (MSC) encapsulation within a biomatrix could improve cellular delivery and extend survival and residence time over conventional intravenous administration. Although MSCs modulate monocyte/macrophage (Mø) immunophenotypic properties, little is known about how such interactions are influenced when MSCs are entrapped within a biomaterial. Furthermore, the impact of the cell-encapsulating matrix on MSC multipotency and on Møs, which infiltrate biomaterials, remains poorly understood. Here we elucidate this three-way interaction. The Mø immunophenotype and MSC differentiation were examined with regard to established and experimental collagen-based biomaterials for MSC entrapment. Tumor necrosis factor-α secretion was acutely inhibited at 4 days. MSCs cocultured with Møs demonstrated attenuated chondrocyte differentiation, whereas osteoblast differentiation was enhanced. Adipocyte differentiation was considerably enhanced for MSCs entrapped within the gelatin/polyethylene glycol-based matrix. A better understanding of the effect of cell encapsulation on differentiation potency and immunomodulation of MSCs is essential for MSC-based, biomaterial-enabled therapies.
Collapse
Affiliation(s)
- David Antonio Cantu
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Wisconsin 53705, USA
| | | | | |
Collapse
|
36
|
Paletas K, Sailer X, Rizeq L, Dimitriadi A, Koliakos G, Kaloyianni M. Angiotensin-II-dependent NHE1 activation in human monocytes. ACTA ACUST UNITED AC 2012; 2:173-81. [PMID: 20409900 DOI: 10.1016/j.jash.2007.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/18/2007] [Accepted: 10/25/2007] [Indexed: 11/28/2022]
Abstract
Angiotensin II, a potent vasoconstrictor, has been demonstrated to be involved in the pathogenesis of atherosclerosis, and its complications. Na(+)/H(+) exchanger isoform-1 (NHE1) is related to hypertension activation and can augment atherosclerosis-related functions in human monocytes. The purpose of this study is to investigate in monocytes the signal transduction pathway induced by angiotensin II, in which the Na(+)/H(+) exchanger (NHE1) takes part. Monocytes were isolated, and intracellular pH (pHi) was measured by the use of Bis-(carboxyethyl)-5(6)-carboxy-fluorescein acetoxymethylester. Superoxide anions were measured by nitroblue tetrazolium. Monocyte binding to laminin-1 was quantified using the myeloperoxidase assay. Angiotensin II caused a significant increase in pHi of monocytes, which indicates NHE activation. Cariporide, an NHE1 inhibitor, GF109203X, and Gö6976, inhibitors of isoforms of protein kinase C (PKC), diphenyleneiodonium chloride, the inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and N(omega)-Nitro-L-arginine methyl ester hydrochloride, the inhibitor of nitric oxide (NO) synthase, reversed this effect. Moreover, it was shown that angiotensin II caused an increase in superoxide ion (O(2)(-.)) levels as well as an increase in monocytes' adhesion to laminin-1, in relation to controls. The use of cariporide inhibited these effects. Furthermore, angiotensin II caused an increase in pHi, which was reversed by cariporide in monocytes derived from hypertensive patients. Consequently, in human monocytes angiotensin II caused NHE1 activation through pathways involving isoforms of PKC with the participation of O(2)(-.) and NO. In addition, a link between angiotensin II and the atherogenic properties of monocytes was shown, where NHE1 plays a central role.
Collapse
Affiliation(s)
- Konstantinos Paletas
- Metabolic Diseases Unit, Department of Internal Medicine, B'Medical Clinic, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
37
|
Grosse J, Meier K, Bauer TJ, Eilles C, Grimm D. Cell separation by countercurrent centrifugal elutriation: recent developments. Prep Biochem Biotechnol 2012; 42:217-33. [PMID: 22509848 DOI: 10.1080/10826068.2011.602799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Countercurrent centrifugal elutriation (CCE) is a cell separation technique that separates particles predominantly according to their size, and to some degree according to their specific density, without a need for antibodies or ligands tagging cell surfaces. The principles of this technique have been known for half a century. Still, numerous recent publications confirmed that CCE is a valuable supplement to current cell separation technology. It is mainly applied when homogeneous populations of cells, which mirror an in vivo situation, are required for answering scientific questions or for clinical transplantation, while antibodies or ligands suitable for cell isolation are not available. Currently, new technical developments are expanding its application toward fractionation of healthy and malignant tissue cells and the preparation of dendritic cells for immunotherapy.
Collapse
Affiliation(s)
- Jirka Grosse
- Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Pisapia L, Del Pozzo G, Barba P, Caputo L, Mita L, Viggiano E, Russo GL, Nicolucci C, Rossi S, Bencivenga U, Mita DG, Diano N. Effects of some endocrine disruptors on cell cycle progression and murine dendritic cell differentiation. Gen Comp Endocrinol 2012; 178:54-63. [PMID: 22531466 DOI: 10.1016/j.ygcen.2012.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/21/2012] [Accepted: 04/09/2012] [Indexed: 12/24/2022]
Abstract
Endocrine disruptor chemicals (EDCs), which are predominantly present in the environment, are able to mimic or antagonise the biological activity of hormones primarily through the interaction with specific receptors. The main consequences are adverse effects on the growth and development of reproductive organs, the induction of cancer and effects on neuronal differentiation. In this study, we investigated the ability of certain EDCs, Bisphenol A (BPA), Bisphenol B (BPB), Bisphenol F (BPF), 4-n Nonylphenol (NP) and Octylphenol (OP), belonging to a homogeneous group of phenol origin, to interfere with specific cellular processes, namely, proliferation, by using MCF-7 breast carcinoma cells, and differentiation, by using murine bone marrow dendritic cells. We correlated the data on cell growth with the stimulation of cell cycle progression, which could become a step in the development of cancer, and we established a proliferation ranking between the tested EDCs: NP>BPA>OP>BPB>BPF. In addition, we investigated the ability of NP, BPA and OP to induce the differentiation of dendritic cells, the powerful antigen-presenting cells of the immune system. The differentiation and activation of these cells could affect a well-regulated immune response and determine an allergic sensitisation. We found that BPA and NP were active in determining differentiation.
Collapse
Affiliation(s)
- L Pisapia
- Institute of Genetics and Biophysics of CNR, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lu Z, Li Y, Jin J, Zhang X, Lopes-Virella MF, Huang Y. Toll-like receptor 4 activation in microvascular endothelial cells triggers a robust inflammatory response and cross talk with mononuclear cells via interleukin-6. Arterioscler Thromb Vasc Biol 2012; 32:1696-706. [PMID: 22596222 DOI: 10.1161/atvbaha.112.251181] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE It is known that toll-like receptor 4 (TLR4) plays an important role in atherosclerosis. Because both microvascular (MIC) and macrovascular (MAC) endothelial cells (ECs) are present in atherosclerotic lesions, the present study compared TLR4-triggered inflammatory response and cross talk with mononuclear cells between MIC and MAC ECs. METHODS AND RESULTS ELISA, real-time polymerase chain reaction, and gene expression profiling showed that TLR4 activation by lipopolysaccharide stimulated a much higher expression of inflammatory genes including cytokines, chemokines, growth factors, and adhesion molecules in MIC ECs than MAC ECs. Furthermore, coculture studies showed that TLR4 activation in MIC ECs, but not MAC ECs, induced a cross talk with U937 mononuclear cells through MIC EC-released interleukin-6 to upregulate matrix metalloproteinase-1 expression in U937 cells. To explore molecular mechanisms underlying the different responses to TLR4 activation between MIC and MAC ECs, we showed that MIC ECs had a higher expression of TLR4 and CD14 and a higher TLR4-mediated nuclear factor-kappaB activity than MAC ECs. CONCLUSIONS The present study showed that TLR4 activation triggers a more robust inflammatory response in MIC ECs than MAC ECs. Given the importance of inflammatory cytokines and matrix metalloproteinases in plaque rupture, MIC ECs may play a key role in plaque destabilization through a TLR4-dependent mechanism.
Collapse
Affiliation(s)
- Zhongyang Lu
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | | | | | | | | | | |
Collapse
|
40
|
Myeloid dendritic cells loaded with dendritic tandem multiple antigenic telomerase reverse transcriptase (hTERT) epitope peptides: A potentially promising tumor vaccine. Vaccine 2012; 30:3395-404. [DOI: 10.1016/j.vaccine.2012.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 02/14/2012] [Accepted: 03/18/2012] [Indexed: 11/22/2022]
|
41
|
Samuvel DJ, Jin J, Sundararaj KP, Li Y, Zhang X, Lopes-Virella MF, Huang Y. TLR4 activation and IL-6-mediated cross talk between adipocytes and mononuclear cells synergistically stimulate MMP-1 expression. Endocrinology 2011; 152:4662-71. [PMID: 21952248 PMCID: PMC3230059 DOI: 10.1210/en.2011-1026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Obesity is associated with increased monocyte infiltration into adipose tissue and hence increased interaction between adipocytes and monocytes. Although it has been shown that matrix metalloproteinases (MMP) play a critical role in adipose tissue development, the effect of adipocyte and monocyte interaction on MMP production remains largely unknown. Furthermore, although it has been shown that Toll-like receptor 4 (TLR4), a receptor mediating innate immune response, plays an important role in the obesity-associated inflammation and insulin resistance, the effect of TLR4 activation in coculture of adipocytes and monocytes on MMP production has not been investigated. In this study, we cocultured adipocytes with U937 mononuclear cells in a Transwell coculture system and activated TLR4 with lipopolysaccharide or palmitic acid. We found that TLR4 activation and the coculture had a synergistic effect on MMP-1 production. In our further investigation on the underlying mechanisms, it was indicated that adipocyte-derived IL-6 and TLR4 activation acted in concert to synergistically stimulate MMP-1 expression by U937 cells. Taken together, this study has uncovered a novel mechanism potentially involved in MMP-1 up-regulation in adipose tissue, which may facilitate adipose tissue development and obesity.
Collapse
Affiliation(s)
- Devadoss J Samuvel
- Ralph H. Johnson Veterans Affairs Medical Center, and Division of Endocrinology, Diabetes, and Medical Genetics, Department of Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, South Carolina 29403, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Kearney DE, Wang W, Redmond HP, Wang JH. Bacterial superantigens enhance the in vitro proinflammatory response and in vivo lethality of the TLR2 agonist bacterial lipoprotein. THE JOURNAL OF IMMUNOLOGY 2011; 187:5363-9. [PMID: 22003201 DOI: 10.4049/jimmunol.1003747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial superantigens are Gram-positive exotoxins that induce proinflammatory cytokine release in vitro, cause lethal shock in vivo, and can be detected in the bloodstream of critically ill patients. They also have a powerful priming effect on the TLR4 agonist LPS. The aim of this study was to investigate the relationship between superantigens and the TLR2 agonist bacterial lipoprotein (BLP). Priming of human monocytes or PBMCs with superantigens significantly enhanced proinflammatory cytokine TNF-α and IL-6 release in response to BLP stimulation. The priming effect of superantigens could be blocked by inhibiting p38 MAPK during the priming phase as opposed to NF-κB or ERK inhibition. This was consistent with higher expression of the phosphorylated p38 after superantigen priming and BLP or LPS stimulation. C57BL/6 mice with superantigen priming (10 μg/mouse) when challenged with BLP (600 μg/mouse) exhibited substantially higher mortality (100%) compared with mice without superantigen priming (zero). Mice given superantigen alone did not demonstrate any signs of illness. Mice challenged with both superantigen and BLP had significantly higher levels of serum TNF-α and IL-6 compared with those of mice challenged with either agent alone. Depletion of the monocyte/macrophage subpopulation significantly reduced the mortality rate from 100 to 20% in superantigen-primed, BLP-challenged C57BL/6 mice, with a 5- to 10-fold decrease in serum TNF-α and IL-6. Our results demonstrate that bacterial superantigens enhance the in vitro proinflammatory cytokine release and in vivo lethality of BLP. This novel finding may help to explain the massive proinflammatory cytokine release seen in superantigen-mediated septic shock.
Collapse
Affiliation(s)
- David E Kearney
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| | | | | | | |
Collapse
|
43
|
Waldeck H, Wang X, Joyce E, Kao WJ. Active leukocyte detachment and apoptosis/necrosis on PEG hydrogels and the implication in the host inflammatory response. Biomaterials 2011; 33:29-37. [PMID: 21963150 DOI: 10.1016/j.biomaterials.2011.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/21/2011] [Indexed: 02/07/2023]
Abstract
Monocytes/Macrophages have long been recognized as key players in inflammation and wound healing and are often employed in vitro to gain an understanding of the inflammatory response to biomaterials. Previous work has demonstrated a drastic decrease in primary monocyte adherent density on biomaterial surfaces coupled with a change in monocyte behavior over time. However, the mechanism responsible for this decrease remains unclear. In this study, we explored active detachment and cellular death as possible regulating factors. Specifically, extracellular TNF-α and ROS production were analyzed as potential endogenous stimulators of cell death. MMPs, but not calpains, were found to play a key role in active monocyte detachment. Monocyte death was found to peak at 24 h and occur by both apoptosis and necrosis as opposed to polymorphonuclear leukocyte death which mainly occurred through apoptosis. Finally, TNF-α and ROS production were not found to have a causal relationship with monocyte death on TCPS or PEG surfaces. The occurrence of primary monocyte apoptosis/necrosis as well as active detachment from a material surface has implications not only in in vitro study, but also in the translation of the in vitro inflammatory response of these cells to in vivo applications.
Collapse
Affiliation(s)
- Heather Waldeck
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, WI, USA.
| | | | | | | |
Collapse
|
44
|
Gallo J, García I, Genicio N, Padro D, Penadés S. Specific labelling of cell populations in blood with targeted immuno-fluorescent/magnetic glyconanoparticles. Biomaterials 2011; 32:9818-25. [PMID: 21940045 DOI: 10.1016/j.biomaterials.2011.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/04/2011] [Indexed: 01/03/2023]
Abstract
Current performance of iron oxide nanoparticle-based contrast agents in clinical use is based on the unspecific accumulation of the probes in certain organs or tissues. Specific targeted biofunctional nanoparticles would significantly increase their potential as diagnostic and therapeutic tools in vivo. In this study, multimodal fluorescent/magnetic glyco-nanoparticles were synthesized from gold-coated magnetite (glyco-ferrites) and converted into specific probes by the covalent coupling of protein G and subsequent incubation with an IgG antibody. The immuno-magnetic-fluorescent nanoparticles were applied to the specific labelling of peripheral blood mononuclear cells (PBMCs) in a complex biological medium, as human blood. We have been able to label specifically PBMCs present in blood in a percentage as low as 0.10-0.17%. Red blood cells (RBCs) were also clearly labelled, even though the inherent T(2) contrast arising from the high iron content of these cells (coming mainly from haemoglobin). The labelling was further assessed at cellular level by fluorescence microscopy. In conclusion, we have developed new contrast agents able to label specifically a cell population under adverse biological conditions (low abundance, low intrinsic T(2), high protein content). These findings open the door to the application of these probes for the labelling and tracking of endogenous cell populations like metastatic cancer cells, or progenitor stem cells that exist in very low amount in vivo.
Collapse
Affiliation(s)
- Juan Gallo
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, Paseo Miramón 182, E-20009 San Sebastián, Spain
| | | | | | | | | |
Collapse
|
45
|
Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease. PLoS One 2011; 6:e23547. [PMID: 21853150 PMCID: PMC3154496 DOI: 10.1371/journal.pone.0023547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/19/2011] [Indexed: 11/21/2022] Open
Abstract
Background and Aims Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. Methodology and Principal Findings The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF). Nitric oxide (NO) donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS) increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. Conclusion/Significance Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially explained by a reduced eNOS expression. In addition, our data show that the disease primes endothelial cells in vivo, which keep the acquired phenotype in culture.
Collapse
|
46
|
Fu Y, Kao WJ. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition. J Biomed Mater Res A 2011; 98:201-11. [PMID: 21548071 PMCID: PMC4529490 DOI: 10.1002/jbm.a.33106] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 11/10/2022]
Abstract
The incorporation of cells and sensitive compounds can be better facilitated without the presence of UV or other energy sources that are common in the formation of biomedical hydrogels such as poly(ethylene glycol) hydrogels. The formation of hydrogels by the step-growth polymerization of maleimide- and thiol-terminated poly(ethylene glycol) macromers via Michael-type addition is described. The effects of macromer concentration, pH, temperature, and the presence of biomolecule gelatin on gel formation were investigated. Reaction kinetics between maleimide and thiol functional groups were found to be rapid. Molecular weight increase over time was characterized via gel permeation chromatography during step-growth polymerization. Swelling and degradation results showed incorporating gelatin enhanced swelling and accelerated degradation. Increasing gelatin content resulted in the decreased storage modulus (G'). The in vitro release kinetics of fluorescein isothiocyanate (FITC)-labeled dextran from the resulting matrices demonstrated the potential in the development of novel in situ gel-forming drug delivery systems. Moreover, the resulting networks were minimally adhesive to primary human monocytes, fibroblasts, and keratinocytes thus providing an ideal platform for further biofunctionalizations to direct specific biological response.
Collapse
Affiliation(s)
- Yao Fu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Weiyuan John Kao
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
47
|
Gorgani NN, Thathaisong U, Mukaro VRS, Poungpair O, Tirimacco A, Hii CST, Ferrante A. Regulation of CRIg expression and phagocytosis in human macrophages by arachidonate, dexamethasone, and cytokines. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1310-8. [PMID: 21741936 DOI: 10.1016/j.ajpath.2011.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/21/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
Although the importance of the macrophage complement receptor immunoglobulin (CRIg) in the phagocytosis of complement opsonized bacteria and in inflammation has been established, the regulation of CRIg expression remains undefined. Because cellular activation during inflammation leads to the release of arachidonate, a stimulator of leukocyte function, we sought to determine whether arachidonate regulates CRIg expression. Adding arachidonate to maturing human macrophages and to prematured CRIg(+) macrophages caused a significant decrease in the expression of cell-surface CRIg and CRIg mRNA. This effect was independent of the metabolism of arachidonate via the cyclooxygenase and lipoxygenase pathways, because it was not inhibited by the nonsteroidal anti-inflammatory drugs indomethacin and nordihydroguaiaretic acid. Studies with specific pharmacological inhibitors of arachidonate-mediated signaling pathways showed that protein kinase C was involved. Administration of dexamethasone to macrophages caused an increase in CRIg expression. Studies with proinflammatory and immunosuppressive cytokines showed that IL-10 increased, but interferon-γ, IL-4, and transforming growth factor-β1 decreased CRIg expression on macrophages. This down- and up-regulation of CRIg expression was reflected in a decrease and increase, respectively, in the phagocytosis of complement opsonized Candida albicans. These data suggest that a unique inflammatory mediator network regulates CRIg expression and point to a mechanism by which arachidonate and dexamethasone have reciprocal effects on inflammation.
Collapse
Affiliation(s)
- Nick N Gorgani
- Department of Immunopathology, South Australia Pathology, Women's and Children's Hospital Campus, North Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|
48
|
Pro-inflammatory type-1 and anti-inflammatory type-2 macrophages differentially modulate cell survival and invasion of human bladder carcinoma T24 cells. Mol Immunol 2011; 48:1556-67. [DOI: 10.1016/j.molimm.2011.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/20/2022]
|
49
|
Zolota Z, Koliakos G, Paletas K, Kaloyianni M. NHE-1 and β1 integrin dependent monocyte adhesion and migration after glucose, insulin or PPARγ stimulation. Cell Adh Migr 2011; 5:258-65. [PMID: 21339703 DOI: 10.4161/cam.5.3.14534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the present study the effect of high glucose concentrations, insulin, PPARγ activators (rosiglitazone) and NHE-1 inhibitors (cariporide) in atherosclerosis-related functions of human monocytes was investigated. Monocyte adhesion to laminin-1, collagen type IV and endothelial cells, as well as monocyte migration through the same substrates were studied. Incubation of the monocyte suspension with high glucose concentrations, insulin and rosiglitazone induced all the studied atherosclerosis-related functions of the monocytes. In all these functions the addition of cariporide counteracted the activity of glucose, insulin and rosiglitazone. The use of antigen for β1 integrin also counteracted the activity of the above in monocyte adhesion in all three substrates. The data of the present study suggests that PPARγ activation in monocytes induces atherosclerosis, and that NHE-1 and β1 integrin play an important role in the beginning of atherosclerosis.
Collapse
Affiliation(s)
- Zacharoula Zolota
- Laboratory of Animal Physiology, School of Biology, Aristotle University, Thessaloniki, Greece
| | | | | | | |
Collapse
|
50
|
Marim FM, Silveira TN, Lima DS, Zamboni DS. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS One 2010; 5:e15263. [PMID: 21179419 PMCID: PMC3003694 DOI: 10.1371/journal.pone.0015263] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/10/2010] [Indexed: 12/18/2022] Open
Abstract
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.
Collapse
Affiliation(s)
- Fernanda M. Marim
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo (FMRP/USP), Ribeirão Preto, Brazil
| | - Tatiana N. Silveira
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo (FMRP/USP), Ribeirão Preto, Brazil
| | - Djalma S. Lima
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo (FMRP/USP), Ribeirão Preto, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo (FMRP/USP), Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|