1
|
Joshi C, Sivaprakasam K, Christley S, Ireland S, Rivas J, Zhang W, Sader D, Logan R, Lambracht-Washington D, Rosenberg R, Cullum M, Hitt B, Li QZ, Barber R, Greenberg B, Cowell L, Zhang R, Stowe A, Huebinger R, Kelley B, Monson N. CSF-Derived CD4 + T-Cell Diversity Is Reduced in Patients With Alzheimer Clinical Syndrome. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:e1106. [PMID: 34848502 PMCID: PMC8631792 DOI: 10.1212/nxi.0000000000001106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Patients with Alzheimer dementia display evidence of amyloid-related neurodegeneration. Our focus was to determine whether such patients also display evidence of a disease-targeting adaptive immune response mediated by CD4+ T cells. To test this hypothesis, we evaluated the CSF immune profiles of patients with Alzheimer clinical syndrome (ACS), who display clinically defined dementia. METHODS Innate and adaptive immune profiles of patients with ACS were measured using multicolor flow cytometry. CSF-derived CD4+ and CD8+ T-cell receptor repertoire genetics were measured using next-generation sequencing. Brain-specific autoantibody signatures of CSF-derived antibody pools were measured using array technology or ELISA. CSF from similar-age healthy controls (HCs) was used as a comparator cohort. RESULTS Innate cells were expanded in the CSF of patients with ACS in comparison to HCs, and innate cell expansion increased with age in the patients with ACS, but not HCs. Despite innate cell expansion in the CSF, the frequency of total CD4+ T cells reduced with age in the patients with ACS. T-cell receptor repertoire genetics indicated that T-cell clonal expansion is enhanced, and diversity is reduced in the patients with ACS compared with similar-age HCs. DISCUSSION Examination of CSF indicates that CD4+ T cell-mediated adaptive immune responses are altered in patients with ACS. Understanding the underlying mechanisms affecting adaptive immunity will help move us toward the goal of slowing cognitive decline.
Collapse
Affiliation(s)
- Chaitanya Joshi
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Karthigayini Sivaprakasam
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Scott Christley
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Sara Ireland
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Jacqueline Rivas
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Wei Zhang
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Danielle Sader
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Rebecca Logan
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Doris Lambracht-Washington
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Roger Rosenberg
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Munro Cullum
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Brian Hitt
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Quan-Zhen Li
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Robert Barber
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Benjamin Greenberg
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Lindsay Cowell
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Rong Zhang
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Ann Stowe
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Ryan Huebinger
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Brendan Kelley
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Nancy Monson
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| |
Collapse
|
2
|
Zhao H, Li Z, Zhu Y, Hao B. A linear-amplification VDJ-seq technique for quantification of immunoglobulin and T cell receptor diversity. Genome 2019; 63:145-153. [PMID: 31825677 DOI: 10.1139/gen-2019-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The V(D)J recombination is essential for generating a highly diverse repertoire of antigen receptors expressed on T and B lymphocytes. Here, we developed a linear-amplification VDJ-seq technique for quantifying V(D)J recombination of antigen receptor genes. This technique takes advantage of linear amplification using in vitro transcription and reverse transcription to avoid bias generated by the PCR amplification of low copy number of target DNA. The unrearranged alleles are removed by in vitro cleavage with the CRISPR-Cas9 system. The linear-amplification VDJ-seq assay was applied in quantification of the Vκ-Jκ recombination of the mouse Igκ gene with Jκ capture primers. The Jκ genes were detected in 95.86% of clean reads with more than half containing the Vκ gene, indicating high specificity of capturing and amplification. We also applied this approach to quantify the usage of Jα within the Trav12 gene family of the Tcra gene.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhaoqiang Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongchang Zhu
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bingtao Hao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, P.R. China
| |
Collapse
|
3
|
Wang H, Song H, Pham AV, Cooper LJ, Schulze JJ, Olek S, Tran DQ. Human LAP +GARP +FOXP3 + regulatory T cells attenuate xenogeneic graft versus host disease. Am J Cancer Res 2019; 9:2315-2324. [PMID: 31149046 PMCID: PMC6531299 DOI: 10.7150/thno.30254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Adoptive transfer of regulatory T cells (FOXP3+ Tregs) has been developed as a potential curative immune therapy to prevent and treat autoimmune and graft-versus-host diseases (GVHD). A major limitation that has hindered the use of Treg immunotherapy in humans is the difficulty of consistently isolating and obtaining highly purified Tregs after ex vivo expansion. Methods: We isolated bona fide Tregs from expansion cultures based on their selective surface expression of latency-associated peptide (LAP). The TCR Vβ diversity and intracellular cytokine production of Tregs were determined by flow cytometer. The TSDR methylation was determined by epigenetic human FOXP3 qPCR Assay. Their in vitro and in vivo potency was confirmed with suppression assay and humanized xenogeneic GVHD (xGVHD) murine model, respectively. Results: LAP+ repurification results in >90% LAP+FOXP3+ Tregs, leaving behind FOXP3- and FOXP3+ nonTregs within the LAP- population. After 4-week expansion, the LAP+ Tregs were >1 billion cells, highly suppressive and anergic in vitro, >90% demethylated in the TSDR and able to maintain TCR Vβ diversity. In the xGVHD model, exogenous CD25-PBMC administered alone results in a median survival of 32 days. The co-transfer of LAP+ Tregs increased median survival to 47 days, while the LAP parent (CD25+) and LAP- nonTregs had median survival of 39 and 31 days, respectively. Conclusions: These preclinical data together provide evidence that LAP+ Tregs are highly purified with fully suppressive function for cell therapy. This population results in a more effective and safer product for immunotherapy to treat GVHD and provides the necessary preclinical data for transition into a clinical trial with LAP+ Tregs to prevent or treat GVHD and other autoimmune diseases.
Collapse
|
4
|
Sebastian NT, Zaikos TD, Terry V, Taschuk F, McNamara LA, Onafuwa-Nuga A, Yucha R, Signer RAJ, Riddell IV J, Bixby D, Markowitz N, Morrison SJ, Collins KL. CD4 is expressed on a heterogeneous subset of hematopoietic progenitors, which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo. PLoS Pathog 2017; 13:e1006509. [PMID: 28732051 PMCID: PMC5540617 DOI: 10.1371/journal.ppat.1006509] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/02/2017] [Accepted: 07/04/2017] [Indexed: 12/27/2022] Open
Abstract
Latent HIV infection of long-lived cells is a barrier to viral clearance. Hematopoietic stem and progenitor cells are a heterogeneous population of cells, some of which are long-lived. CXCR4-tropic HIVs infect a broad range of HSPC subtypes, including hematopoietic stem cells, which are multi-potent and long-lived. However, CCR5-tropic HIV infection is limited to more differentiated progenitor cells with life spans that are less well understood. Consistent with emerging data that restricted progenitor cells can be long-lived, we detected persistent HIV in restricted HSPC populations from optimally treated people. Further, genotypic and phenotypic analysis of amplified env alleles from donor samples indicated that both CXCR4- and CCR5-tropic viruses persisted in HSPCs. RNA profiling confirmed expression of HIV receptor RNA in a pattern that was consistent with in vitro and in vivo results. In addition, we characterized a CD4high HSPC sub-population that was preferentially targeted by a variety of CXCR4- and CCR5-tropic HIVs in vitro. Finally, we present strong evidence that HIV proviral genomes of both tropisms can be transmitted to CD4-negative daughter cells of multiple lineages in vivo. In some cases, the transmitted proviral genomes contained signature deletions that inactivated the virus, eliminating the possibility that coincidental infection explains the results. These data support a model in which both stem and non-stem cell progenitors serve as persistent reservoirs for CXCR4- and CCR5-tropic HIV proviral genomes that can be passed to daughter cells. People who are effectively treated with antiretroviral medication harbor persistent forms of HIV that are integrated into the cellular genome. While HIV is cytopathic to most cells, transcriptionally silent, latent forms do not express toxic HIV gene products and can survive in the host for years. When conditions change, the latent virus can be activated to reinitiate infection. Because of the capacity for virus to spread, cure of HIV will require that we identify and eradicate all cells harboring functional HIV provirus. CD4+ T cells are abundant and easily identified as harboring proviral genomes. However, rare cell types that express HIV receptors, such as bone marrow hematopoietic progenitor and stem cells can also be infected by the virus potentially serving as barriers to cure strategies. We found that HIV can infect and persist in progenitor sub-types that were previously thought to be short lived, which expands the types of cells that can support reservoir formation. In addition, we found that HIV can spread by proliferation and cellular differentiation without the need for viral gene expression and virion production that could reveal the infection to the immune system. A deeper understanding of viral reservoirs is critically important for developing strategies that will succeed in viral eradication.
Collapse
Affiliation(s)
- Nadia T. Sebastian
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas D. Zaikos
- Department of Microbiology and Immunology University of Michigan, Ann Arbor, Michigan, United States of America
| | - Valeri Terry
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Frances Taschuk
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lucy A. McNamara
- Department of Microbiology and Immunology University of Michigan, Ann Arbor, Michigan, United States of America
| | - Adewunmi Onafuwa-Nuga
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ryan Yucha
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Robert A. J. Signer
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - James Riddell IV
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dale Bixby
- Division of Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Norman Markowitz
- Division of Infectious Diseases, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Sean J. Morrison
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kathleen L. Collins
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
5
|
Toomer KH, Yuan X, Yang J, Dee MJ, Yu A, Malek TR. Developmental Progression and Interrelationship of Central and Effector Regulatory T Cell Subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3665-76. [PMID: 27009492 PMCID: PMC4868642 DOI: 10.4049/jimmunol.1500595] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 02/28/2016] [Indexed: 02/06/2023]
Abstract
Resting central Tregs (cTregs) and activated effector Tregs (eTregs) are required for self-tolerance, but the heterogeneity and relationships within and between phenotypically distinct subsets of cTregs and eTregs are poorly understood. By extensive immune profiling and deep sequencing of TCR-β V regions, two subsets of cTregs, based on expression of Ly-6C, and three subsets of eTregs, based on distinctive expression of CD62L, CD69, and CD103, were identified. Ly-6C(+) cTregs exhibited lower basal activation, expressed on average lower affinity TCRs, and less efficiently developed into eTregs when compared with Ly-6C(-) cTregs. The dominant TCR Vβs of Ly-6C(+) cTregs were shared by eTregs at a low frequency. A single TCR clonotype was also identified that was largely restricted to Ly-6C(+) cTregs, even under conditions that promoted the development of eTregs. Collectively, these findings indicate that some Ly-6C(+) cTregs may persist as a lymphoid-specific subset, with minimal potential to develop into highly activated eTregs, whereas other cTregs readily develop into eTregs. In contrast, subsets of CD62L(lo) eTregs showed higher clonal expansion and were more highly interrelated than cTreg subsets based on their TCR-β repertoires, but exhibited varied immune profiles. The CD62L(lo) CD69(-) CD103(-) eTreg subset displayed properties of a transitional intermediate between cTregs and more activated eTreg subsets. Thus, eTreg subsets appear to exhibit substantial flexibility, most likely in response to environmental cues, to adopt defined immune profiles that are expected to optimize suppression of autoreactive T cells.
Collapse
Affiliation(s)
- Kevin H Toomer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Xiaomei Yuan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Jing Yang
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Michael J Dee
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Aixin Yu
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
6
|
Roberto A, Castagna L, Zanon V, Bramanti S, Crocchiolo R, McLaren JE, Gandolfi S, Tentorio P, Sarina B, Timofeeva I, Santoro A, Carlo-Stella C, Bruno B, Carniti C, Corradini P, Gostick E, Ladell K, Price DA, Roederer M, Mavilio D, Lugli E. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood 2015; 125:2855-64. [PMID: 25742699 PMCID: PMC4424633 DOI: 10.1182/blood-2014-11-608406] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/28/2015] [Indexed: 12/31/2022] Open
Abstract
Early T-cell reconstitution following allogeneic transplantation depends on the persistence and function of T cells that are adoptively transferred with the graft. Posttransplant cyclophosphamide (pt-Cy) effectively prevents alloreactive responses from unmanipulated grafts, but its effect on subsequent immune reconstitution remains undetermined. Here, we show that T memory stem cells (TSCM), which demonstrated superior reconstitution capacity in preclinical models, are the most abundant circulating T-cell population in the early days following haploidentical transplantation combined with pt-Cy and precede the expansion of effector cells. Transferred naive, but not TSCM or conventional memory cells preferentially survive cyclophosphamide, thus suggesting that posttransplant TSCM originate from naive precursors. Moreover, donor naive T cells specific for exogenous and self/tumor antigens persist in the host and contribute to peripheral reconstitution by differentiating into effectors. Similarly, pathogen-specific memory T cells generate detectable recall responses, but only in the presence of the cognate antigen. We thus define the cellular basis of T-cell reconstitution following pt-Cy at the antigen-specific level and propose to explore naive-derived TSCM in the clinical setting to overcome immunodeficiency. These trials were registered at www.clinicaltrials.gov as #NCT02049424 and #NCT02049580.
Collapse
Affiliation(s)
- Alessandra Roberto
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luca Castagna
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Veronica Zanon
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Stefania Bramanti
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Roberto Crocchiolo
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sara Gandolfi
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Paolo Tentorio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Barbara Sarina
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Inna Timofeeva
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Armando Santoro
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Carmelo Carlo-Stella
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Cristiana Carniti
- Department of Haematology and Pediatric Onco-Haematology, Istituto Nazionale Tumori, Milan, Italy; and
| | - Paolo Corradini
- Department of Haematology and Pediatric Onco-Haematology, Istituto Nazionale Tumori, Milan, Italy; and
| | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
7
|
Chinn IK, Milner JD, Scheinberg P, Douek DC, Markert ML. Thymus transplantation restores the repertoires of forkhead box protein 3 (FoxP3)+ and FoxP3- T cells in complete DiGeorge anomaly. Clin Exp Immunol 2013; 173:140-9. [PMID: 23607606 PMCID: PMC3694544 DOI: 10.1111/cei.12088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 12/27/2022] Open
Abstract
The development of T cells with a regulatory phenotype after thymus transplantation has not been examined previously in complete DiGeorge anomaly (cDGA). Seven athymic infants with cDGA and non-maternal pretransplantation T cell clones were assessed. Pretransplantation forkhead box protein 3 (Foxp3)(+) T cells were detected in five of the subjects. Two subjects were studied in greater depth. T cell receptor variable β chain (TCR-Vβ) expression was assessed by flow cytometry. In both subjects, pretransplantation FoxP3(+) and total CD4(+) T cells showed restricted TCR-Vβ expression. The development of naive T cells and diverse CD4(+) TCR-Vβ repertoires following thymic transplantation indicated successful thymopoiesis from the thymic tissue grafts. Infants with atypical cDGA develop rashes and autoimmune phenomena before transplantation, requiring treatment with immunosuppression, which was discontinued successfully subsequent to the observed thymopoiesis. Post-transplantation, diverse TCR-Vβ family expression was also observed in FoxP3(+) CD4(+) T cells. Interestingly, the percentages of each of the TCR-Vβ families expressed on FoxP3(+) and total CD4(+) T cells differed significantly between these T lymphocyte subpopulations before transplantation. By 16 months post-transplantation, however, the percentages of expression of each TCR-Vβ family became significantly similar between FoxP3(+) and total CD4(+) T cells. Sequencing of TCRBV DNA confirmed the presence of clonally amplified pretransplantation FoxP3(+) and FoxP3(-) T cells. After thymus transplantation, increased polyclonality was observed for both FoxP3(+) and FoxP3(-) cells, and pretransplantation FoxP3(+) and FoxP3(-) clonotypes essentially disappeared. Thus, post-transplantation thymic function was associated with the development of a diverse repertoire of FoxP3(+) T cells in cDGA, corresponding with immunological and clinical recovery.
Collapse
Affiliation(s)
- I K Chinn
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Regulatory T cells (Tregs) are potent immune modulators, but their precise role in HIV pathogenesis remains incompletely understood. Most studies to date have focused on frequencies or phenotypes of 'bulk' Treg populations. However, although antigen-specific Tregs have been reported in other diseases, HIV-1 epitope-specific Tregs have not been described to date. We here report the first identification of functional HIV-1-Gag-specific regulatory T cells using human leukocyte antigen class II tetramer staining in HIV-1-infected individuals.
Collapse
|
9
|
Janbazian L, Price DA, Canderan G, Filali-Mouhim A, Asher TE, Ambrozak DR, Scheinberg P, Boulassel MR, Routy JP, Koup RA, Douek DC, Sekaly RP, Trautmann L. Clonotype and repertoire changes drive the functional improvement of HIV-specific CD8 T cell populations under conditions of limited antigenic stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:1156-67. [PMID: 22210916 PMCID: PMC3262882 DOI: 10.4049/jimmunol.1102610] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Persistent exposure to cognate Ag leads to the functional impairment and exhaustion of HIV-specific CD8 T cells. Ag withdrawal, attributable either to antiretroviral treatment or the emergence of epitope escape mutations, causes HIV-specific CD8 T cell responses to wane over time. However, this process does not continue to extinction, and residual CD8 T cells likely play an important role in the control of HIV replication. In this study, we conducted a longitudinal analysis of clonality, phenotype, and function to define the characteristics of HIV-specific CD8 T cell populations that persist under conditions of limited antigenic stimulation. Ag decay was associated with dynamic changes in the TCR repertoire, increased expression of CD45RA and CD127, decreased expression of programmed death-1, and the emergence of polyfunctional HIV-specific CD8 T cells. High-definition analysis of individual clonotypes revealed that the Ag loss-induced gain of function within HIV-specific CD8 T cell populations could be attributed to two nonexclusive mechanisms: 1) functional improvement of persisting clonotypes; and 2) recruitment of particular clonotypes endowed with superior functional capabilities.
Collapse
Affiliation(s)
- Loury Janbazian
- Laboratory of Immunology, Department of Microbiology and Immunology, Université de Montréal, Montreal, H2X 1P1, Canada
| | - David A. Price
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of InfectionandImmunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, Wales, UK
| | - Glenda Canderan
- Vaccine and Gene Therapy Institute - Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
| | - Abdelali Filali-Mouhim
- Laboratory of Immunology, Department of Microbiology and Immunology, Université de Montréal, Montreal, H2X 1P1, Canada
| | - Tedi E. Asher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R. Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Phillip Scheinberg
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohamad Rachid Boulassel
- Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, Montreal, H3A 1A1, Canada
| | - Jean-Pierre Routy
- Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, Montreal, H3A 1A1, Canada
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafick-Pierre Sekaly
- Laboratory of Immunology, Department of Microbiology and Immunology, Université de Montréal, Montreal, H2X 1P1, Canada
- Vaccine and Gene Therapy Institute - Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
- Faculty of Medicine, Department of Microbiology and Immunology, McGill University, Montreal, H3A 2B4, Canada
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute - Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| |
Collapse
|
10
|
Melenhorst JJ, Scheinberg P, Williams A, Ambrozak DR, Keyvanfar K, Smith M, McCoy JP, Hensel NF, Douek DC, Barrett AJ. Alloreactivity across HLA barriers is mediated by both naïve and antigen-experienced T cells. Biol Blood Marrow Transplant 2011; 17:800-9. [PMID: 21215812 PMCID: PMC3100442 DOI: 10.1016/j.bbmt.2010.12.711] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/22/2010] [Indexed: 11/25/2022]
Abstract
T cell responses to allogeneic targets arise predominantly from the naïve pool. However, in humans, the risk of graft-versus-host disease is increased if the donor has circulating T cells recognizing multiple persistent DNA viruses, suggesting that memory T cells also contribute to the alloresponse. To examine HLA alloreactivity, we used flow cytometry-based proliferation and cytokine production assays. We identified the clonal identity of virus-specific T cells cross-reacting with HLA-disparate targets by sequencing the T cell receptor β chains in virus-specific T cell lines restimulated with cognate and HLA-disparate targets and sorting these chains according to cytokine response. We confirmed that naïve T cells from cord blood and adult individuals responded to HLA-mismatched target cells. In addition, in adults, we identified memory T cells responding by cytokine release to HLA-mismatched targets both in direct assays and after 8 days of culture with allogeneic stimulator cells. Epstein-Barr virus-specific and cytomegalovirus-specific T cells, tested against a panel of 30 T cell antigen-presenting cells with a broad coverage of the most prominent HLA types, displayed specificity for certain mismatched HLA alleles. Sequencing of the T cell receptor β chain demonstrated a clonotypic identity of cells that responded to both viral and allogeneic stimulation. These findings show conclusively that alloresponses in humans are not confined to the naïve T cell subset, and that memory viral antigen-specific T cells can cross-react with specific mismatched HLA-peptide complexes not presenting with cytomegalovirus or Epstein-Barr virus peptides.
Collapse
Affiliation(s)
- J Joseph Melenhorst
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Evolution of the donor T-cell repertoire in recipients in the second decade after allogeneic stem cell transplantation. Blood 2011; 117:5250-6. [PMID: 21421838 DOI: 10.1182/blood-2011-01-329706] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After allogeneic stem cell transplantation (SCT), T lymphocyte function is reestablished from the donor's postthymic T cells and through thymic T-cell neogenesis. The immune repertoire and its relation to that of the donor have not been characterized in detail in long-term adult SCT survivors. We studied 21 healthy patients in their second decade after a myeloablative SCT for hematologic malignancy (median follow-up, 12 years). Immune profiles were compared with donor samples cryopreserved at transplant and beyond 10 years from SCT. Only one recipient was on continuing immunosuppression. Compared with the donor at transplant, there was no significant difference in CD4, CD8, natural killer, and B-cell blood counts. However, compared with donors, recipients had significantly fewer naive T cells, lower T-cell receptor excision circle levels, fewer CD4 central memory cells, more effector CD8(+) cells, and more regulatory T cells. TCR repertoire analysis showed no significant difference in complexity of TCRVβ spectratype between recipients and donors, although spectratype profiles had diverged with both gain and loss of donor repertoire peaks in the recipient. In conclusion, long-term allogeneic SCT survivors have subtle defects in their immune profile consistent with defective thymic function but compatible with normal health. This study is registered at http://www.clinicaltrials.gov as NCT00106925.
Collapse
|
12
|
Hindley JP, Ferreira C, Jones E, Lauder SN, Ladell K, Wynn KK, Betts GJ, Singh Y, Price DA, Godkin AJ, Dyson J, Gallimore A. Analysis of the T-cell receptor repertoires of tumor-infiltrating conventional and regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors. Cancer Res 2011; 71:736-46. [PMID: 21156649 PMCID: PMC3128990 DOI: 10.1158/0008-5472.can-10-1797] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A significant enrichment of CD4(+)Foxp3(+) T cells (regulatory T cells, Treg) is frequently observed in murine and human carcinomas. As Tregs can limit effective antitumor immune responses, thereby promoting tumor progression, it is important that the mechanisms underpinning intratumoral accumulation of Tregs are identified. Because of evidence gathered mostly in vitro, the conversion of conventional T cells (Tconv) into Tregs has been proposed as one such mechanism. We assessed the contribution of conversion in vivo by analyzing the TCR (T-cell receptor) repertoires of Tconvs and Tregs in carcinogen-induced tumors in mice. Our results indicate that the TCR repertoires of Tregs and Tconvs within tumor-infiltrating lymphocytes (TIL) are largely distinct. Indeed, the cell population with the greatest degree of repertoire similarity with tumor-infiltrating Tregs was the Treg population from the tumor-draining lymph node. These findings demonstrate that conversion of Tconvs does not contribute significantly to the accumulation of tumor-infiltrating Tregs; rather, Tconvs and Tregs arise from different populations with unique TCR repertoires. Enrichment of Tregs within TILs most likely, therefore, reflects differences in the way that Tregs and Tconvs are influenced by the tumor microenvironment. Elucidating the nature of these influences may indicate how the balance between tumor-infiltrating Tregs and Tconvs can be manipulated for therapeutic purposes.
Collapse
Affiliation(s)
- James P Hindley
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
For the last two decades the immunotherapy of patients with solid and hematopoietic tumors has met with variable success. We have reviewed the field of tumor vaccines to examine what has worked and what has not, why this has been the case, how the anti-tumor responses were examined, and how we can make tumor immunity successful for the majority of individuals rather than for the exceptional patients who currently show successful immune responses against their tumors.
Collapse
Affiliation(s)
- Jan Joseph Melenhorst
- Stem Cell Allogeneic Transplant Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
14
|
Steiner I, Rosenberg G, Wirguin I. Transient immunosuppression: a bridge between infection and the atypical autoimmunity of Guillain-Barré syndrome? Clin Exp Immunol 2010; 162:32-40. [PMID: 20735441 DOI: 10.1111/j.1365-2249.2010.04223.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is an acute, usually monophasic, disorder of the peripheral nervous system that is assumed to be of immune-mediated pathogenesis. However, several clinical features and experimental findings of GBS are uncharacteristic for an immune-mediated disorder and set this condition apart from other disorders with a putative immune-mediated pathogenesis. These features include, among others, the monophasic nature of GBS, the lack of response to immunosuppressive (unlike immunomodulatory) therapy, the absence of a typical association with immunogenetic background and the inability to establish a valid and relevant animal model. We suggest a comprehensive hypothesis for the pathogenesis of GBS that is based on the assumption that the condition is due to a transient (or occasionally chronic) immune deficiency, as in most cases GBS follows an infection with pathogens known to induce immunosuppression. Such infections may be followed by breakdown of immune tolerance and induction of an immune attack on peripheral nerves. Mounting of the immune-mediated assault might be triggered either by the same infective pathogen or by secondary infection. Clearance of the infection and resumption of a normal immune response and tolerance eventually terminate the immune-mediated damage to the peripheral nerves and enable recovery. This hypothesis assumes that the entire sequence of events that culminates in GBS is due to transient exogenous factors and excludes a significant role for inherent host susceptibility, which explains the monophasic nature of the disorder.
Collapse
Affiliation(s)
- I Steiner
- Department of Neurology, Rabin Medical Center, Petah Tiqva, D-Pharm Ltd, Kiryat Weizmann Science Park, Rehovot, Israel.
| | | | | |
Collapse
|
15
|
Scheinberg P, Melenhorst JJ, Brenchley JM, Hill BJ, Hensel NF, Chattopadhyay PK, Roederer M, Picker LJ, Price DA, Barrett AJ, Douek DC. The transfer of adaptive immunity to CMV during hematopoietic stem cell transplantation is dependent on the specificity and phenotype of CMV-specific T cells in the donor. Blood 2009; 114:5071-80. [PMID: 19776383 PMCID: PMC2788980 DOI: 10.1182/blood-2009-04-214684] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 08/26/2009] [Indexed: 11/20/2022] Open
Abstract
The successful reconstitution of adaptive immunity to human cytomegalovirus (CMV) in hematopoietic stem cell transplantation (HSCT) recipients is central to the reduction of viral reactivation-related morbidity and mortality. Here, we characterized the magnitude, specificity, phenotype, function, and clonotypic composition of CMV-specific T-cell responses in 18 donor-recipient pairs both before and after HSCT. The principal findings were: (1) the specificity of CMV-specific T-cell responses in the recipient after HSCT mirrors that in the donor; (2) the maintenance of these targeting patterns reflects the transfer of epitope-specific T-cell clonotypes from donor to recipient; (3) less differentiated CD27(+)CD57(-) CMV-specific memory T cells are more likely to persist in the recipient after HSCT compared with more terminally differentiated CD27(-) CD57(+) CMV-specific memory T cells; (4) the presence of greater numbers of less differentiated CD8(+) CMV-specific T cells in the donor appears to confer protection against viral reactivation in the recipient after HSCT; and (5) CMV-specific T cells acquire a more differentiated phenotype and a restricted functional profile after HSCT. Overall, these findings define the immunologic factors that influence the successful adoptive transfer of antigen-specific T-cell immunity during HSCT, which enables the identification of recipients at particular risk of CMV reactivation after HSCT.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vukmanovic-Stejic M, Agius E, Booth N, Dunne PJ, Lacy KE, Reed JR, Sobande TO, Kissane S, Salmon M, Rustin MH, Akbar AN. The kinetics of CD4+Foxp3+ T cell accumulation during a human cutaneous antigen-specific memory response in vivo. J Clin Invest 2008; 118:3639-50. [PMID: 18924611 PMCID: PMC2556297 DOI: 10.1172/jci35834] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 08/20/2008] [Indexed: 12/27/2022] Open
Abstract
Naturally occurring CD4(+)CD25(hi)Foxp3(+) Tregs (nTregs) are highly proliferative in blood. However, the kinetics of their accumulation and proliferation during a localized antigen-specific T cell response is currently unknown. To explore this, we used a human experimental system whereby tuberculin purified protein derivative (PPD) was injected into the skin and the local T cell response analyzed over time. The numbers of both CD4(+)Foxp3(-) (memory) and CD4(+)Foxp3(+) (putative nTreg) T cells increased in parallel, with the 2 populations proliferating at the same relative rate. In contrast to CD4(+)Foxp3(-) T cell populations, skin CD4(+)Foxp3(+) T cells expressed typical Treg markers (i.e., they were CD25(hi), CD127(lo), CD27(+), and CD39(+)) and did not synthesize IL-2 or IFN-gamma after restimulation in vitro, indicating that they were not recently activated effector cells. To determine whether CD4(+)Foxp3(+) T cells in skin could be induced from memory CD4(+) T cells, we expanded skin-derived memory CD4(+) T cells in vitro and anergized them. These cells expressed high levels of CD25 and Foxp3 and suppressed the proliferation of skin-derived responder T cells to PPD challenge. Our data therefore demonstrate that memory and CD4(+) Treg populations are regulated in tandem during a secondary antigenic response. Furthermore, it is possible to isolate effector CD4(+) T cell populations from inflamed tissues and manipulate them to generate Tregs with the potential to suppress inflammatory responses.
Collapse
Affiliation(s)
- Milica Vukmanovic-Stejic
- Department of Immunology, Division of Infection and Immunity, University College London, London, United Kingdom.
Department of Dermatology, Royal Free Hospital, London, United Kingdom.
Immune Regulation Research Group, School of Biochemistry and Immunology, Biotechnology Building, Trinity College Dublin, Dublin, Ireland.
Department of Rheumatology, MRC Centre for Immunoregulation, University of Birmingham, Birmingham, United Kingdom
| | - Elaine Agius
- Department of Immunology, Division of Infection and Immunity, University College London, London, United Kingdom.
Department of Dermatology, Royal Free Hospital, London, United Kingdom.
Immune Regulation Research Group, School of Biochemistry and Immunology, Biotechnology Building, Trinity College Dublin, Dublin, Ireland.
Department of Rheumatology, MRC Centre for Immunoregulation, University of Birmingham, Birmingham, United Kingdom
| | - Nicola Booth
- Department of Immunology, Division of Infection and Immunity, University College London, London, United Kingdom.
Department of Dermatology, Royal Free Hospital, London, United Kingdom.
Immune Regulation Research Group, School of Biochemistry and Immunology, Biotechnology Building, Trinity College Dublin, Dublin, Ireland.
Department of Rheumatology, MRC Centre for Immunoregulation, University of Birmingham, Birmingham, United Kingdom
| | - Padraic J. Dunne
- Department of Immunology, Division of Infection and Immunity, University College London, London, United Kingdom.
Department of Dermatology, Royal Free Hospital, London, United Kingdom.
Immune Regulation Research Group, School of Biochemistry and Immunology, Biotechnology Building, Trinity College Dublin, Dublin, Ireland.
Department of Rheumatology, MRC Centre for Immunoregulation, University of Birmingham, Birmingham, United Kingdom
| | - Katie E. Lacy
- Department of Immunology, Division of Infection and Immunity, University College London, London, United Kingdom.
Department of Dermatology, Royal Free Hospital, London, United Kingdom.
Immune Regulation Research Group, School of Biochemistry and Immunology, Biotechnology Building, Trinity College Dublin, Dublin, Ireland.
Department of Rheumatology, MRC Centre for Immunoregulation, University of Birmingham, Birmingham, United Kingdom
| | - John R. Reed
- Department of Immunology, Division of Infection and Immunity, University College London, London, United Kingdom.
Department of Dermatology, Royal Free Hospital, London, United Kingdom.
Immune Regulation Research Group, School of Biochemistry and Immunology, Biotechnology Building, Trinity College Dublin, Dublin, Ireland.
Department of Rheumatology, MRC Centre for Immunoregulation, University of Birmingham, Birmingham, United Kingdom
| | - Toni O. Sobande
- Department of Immunology, Division of Infection and Immunity, University College London, London, United Kingdom.
Department of Dermatology, Royal Free Hospital, London, United Kingdom.
Immune Regulation Research Group, School of Biochemistry and Immunology, Biotechnology Building, Trinity College Dublin, Dublin, Ireland.
Department of Rheumatology, MRC Centre for Immunoregulation, University of Birmingham, Birmingham, United Kingdom
| | - Steven Kissane
- Department of Immunology, Division of Infection and Immunity, University College London, London, United Kingdom.
Department of Dermatology, Royal Free Hospital, London, United Kingdom.
Immune Regulation Research Group, School of Biochemistry and Immunology, Biotechnology Building, Trinity College Dublin, Dublin, Ireland.
Department of Rheumatology, MRC Centre for Immunoregulation, University of Birmingham, Birmingham, United Kingdom
| | - Mike Salmon
- Department of Immunology, Division of Infection and Immunity, University College London, London, United Kingdom.
Department of Dermatology, Royal Free Hospital, London, United Kingdom.
Immune Regulation Research Group, School of Biochemistry and Immunology, Biotechnology Building, Trinity College Dublin, Dublin, Ireland.
Department of Rheumatology, MRC Centre for Immunoregulation, University of Birmingham, Birmingham, United Kingdom
| | - Malcolm H. Rustin
- Department of Immunology, Division of Infection and Immunity, University College London, London, United Kingdom.
Department of Dermatology, Royal Free Hospital, London, United Kingdom.
Immune Regulation Research Group, School of Biochemistry and Immunology, Biotechnology Building, Trinity College Dublin, Dublin, Ireland.
Department of Rheumatology, MRC Centre for Immunoregulation, University of Birmingham, Birmingham, United Kingdom
| | - Arne N. Akbar
- Department of Immunology, Division of Infection and Immunity, University College London, London, United Kingdom.
Department of Dermatology, Royal Free Hospital, London, United Kingdom.
Immune Regulation Research Group, School of Biochemistry and Immunology, Biotechnology Building, Trinity College Dublin, Dublin, Ireland.
Department of Rheumatology, MRC Centre for Immunoregulation, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, Asher TE, Scheinberg P, Price DA, Hage CA, Kholi LM, Khoruts A, Frank I, Else J, Schacker T, Silvestri G, Douek DC. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 2008; 112:2826-35. [PMID: 18664624 PMCID: PMC2556618 DOI: 10.1182/blood-2008-05-159301] [Citation(s) in RCA: 507] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 07/19/2008] [Indexed: 01/29/2023] Open
Abstract
Acute HIV infection is characterized by massive loss of CD4 T cells from the gastrointestinal (GI) tract. Th17 cells are critical in the defense against microbes, particularly at mucosal surfaces. Here we analyzed Th17 cells in the blood, GI tract, and broncheoalveolar lavage of HIV-infected and uninfected humans, and SIV-infected and uninfected sooty mangabeys. We found that (1) human Th17 cells are specific for extracellular bacterial and fungal antigens, but not common viral antigens; (2) Th17 cells are infected by HIV in vivo, but not preferentially so; (3) CD4 T cells in blood of HIV-infected patients are skewed away from a Th17 phenotype toward a Th1 phenotype with cellular maturation; (4) there is significant loss of Th17 cells in the GI tract of HIV-infected patients; (5) Th17 cells are not preferentially lost from the broncheoalveolar lavage of HIV-infected patients; and (6) SIV-infected sooty mangabeys maintain healthy frequencies of Th17 cells in the blood and GI tract. These observations further elucidate the immunodeficiency of HIV disease and may provide a mechanistic basis for the mucosal barrier breakdown that characterizes HIV infection. Finally, these data may help account for the nonprogressive nature of nonpathogenic SIV infection in sooty mangabeys.
Collapse
Affiliation(s)
- Jason M Brenchley
- Human Immunology Section, Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Allan SE, Alstad AN, Merindol N, Crellin NK, Amendola M, Bacchetta R, Naldini L, Roncarolo MG, Soudeyns H, Levings MK. Generation of potent and stable human CD4+ T regulatory cells by activation-independent expression of FOXP3. Mol Ther 2008; 16:194-202. [PMID: 17984976 DOI: 10.1038/sj.mt.6300341] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Therapies based on enhancing the numbers and/or function of T regulatory cells (Tregs) represent one of the most promising approaches to restoring tolerance in many immune-mediated diseases. Several groups have investigated whether human Tregs suitable for cellular therapy can be obtained by in vitro expansion, in vitro conversion of conventional T cells into Tregs, or gene transfer of the FOXP3 transcription factor. To date, however, none of these approaches has resulted in a homogeneous and stable population of cells that is as potently suppressive as ex vivo Tregs. We developed a lentivirus-based strategy to ectopically express high levels of FOXP3 that do not fluctuate with the state of T-cell activation. This method consistently results in the development of suppressive cells that are as potent as Tregs and can be propagated as a homogeneous population. Moreover, using this system, both naïve and memory CD4(+) T cells can be efficiently converted into Tregs. To date, this is the most efficient and reliable protocol for generating large numbers of suppressive CD4(+) Tregs, which can be used for further biological study and developed for antigen-specific cellular therapy applications.
Collapse
Affiliation(s)
- Sarah E Allan
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Melenhorst JJ, Scheinberg P, Lu J, Ambrozak DR, Sosa E, Zhao L, Hensel NF, Savani BN, Douek DC, Price DA, Barrett AJ. Regulatory T-cell depletion does not prevent emergence of new CD25+ FOXP3+ lymphocytes after antigen stimulation in culture. Cytotherapy 2008; 10:152-64. [PMID: 18368594 DOI: 10.1080/14653240701853536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The removal of human regulatory T (T(reg)) cells from a cellular product prior to the induction of a T-cell response has the potential to boost the total yield of antigen (Ag)-specific CD4(+) and CD8(+) T cells. METHODS We examined the effect of this manipulation on the generation of human anti-cytomegalovirus (CMV) T-cell responses. Furthermore, we examined the clonotypic composition of Ag-specific CD4(+)FOXP3(+) and CD4(+)FOXP3(-) T cells. RESULTS We found that the immunomagnetic depletion of CD25(+) cells had an unpredictable effect on outcome, with total yields of CMV-specific T cells either increasing or decreasing after the removal of these cells. The depletion of CD25(+) cells both removed a proportion of Ag-specific T cells and failed to eliminate a substantial population of T(reg) cells. Furthermore, using a novel T-cell receptor clonotyping technique, we found that Ag recognition induces the expression of FOXP3 in a proportion of specific T cells; these FOXP3-expressing Ag-specific CD4(+) and CD8(+) T cells were no longer capable of producing inflammatory cytokines. DISCUSSION The depletion of CD25(+) cells from the starting population has a variable effect on the total yield of Ag-specific T cells, a proportion of which invariably acquire FOXP3 expression and lose effector function.
Collapse
Affiliation(s)
- J J Melenhorst
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|