1
|
Yadav DS, Savopol T. Optical tweezers in biomedical research - progress and techniques. J Med Life 2024; 17:978-993. [PMID: 39781305 PMCID: PMC11705474 DOI: 10.25122/jml-2024-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/04/2024] [Indexed: 01/12/2025] Open
Abstract
Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences. The applications of optical tweezers in biomedicine are vast, ranging from the investigation of cellular mechanical properties, such as cell stretching, membrane elasticity, and stiffness, to single-molecule studies encompassing DNA and protein mechanics, protein-DNA interactions, molecular motor functions, and pathogen-host interactions. Advancement of optical tweezers in this field includes their integration with holography, fluorescence microscopy, microfluidics, and enhancements in force sensitivity and positional accuracy. These tools have profoundly impacted the study of cellular mechanics, drug discovery processes, and disease diagnostics, providing unparalleled insights into the biophysical mechanisms underlying health and pathology.
Collapse
Key Words
- AFM, Atomic Force Microscopy
- CCD, Charge-Coupled Device
- DNA stretching
- E. Coli, Escherichia coli
- HOT, Holographic Optical Tweezers
- IVF, In-Vitro Fertilization
- ODS, Optical DNA Supercoiling
- RBC, Red Blood Cells
- RNAP, RNA Polymerase
- SLM, Spatial Light Modulator
- cell manipulation
- cell stretching
- dsDNA, Double-Stranded DNA
- elastic properties of cells
- membrane tethering
- optical tweezers
- single molecule studies
Collapse
Affiliation(s)
- Dharm Singh Yadav
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
2
|
Pourmadadi M, Ghaemi A, Khanizadeh A, Yazdian F, Mollajavadi Y, Arshad R, Rahdar A. Breast cancer detection based on cancer antigen 15-3; emphasis on optical and electrochemical methods: A review. Biosens Bioelectron 2024; 260:116425. [PMID: 38824703 DOI: 10.1016/j.bios.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Cancer antigen 15-3 (CA 15-3) is a crucial marker used in the diagnosis and monitoring of breast cancer (BC). The demand for early and precise cancer detection has grown, making the creation of biosensors that are highly sensitive and specific essential. This review paper provides a thorough examination of the progress made in optical and electrochemical biosensors for detecting the cancer biomarker CA 15-3. We focus on explaining their fundamental principles, sensitivity, specificity, and potential for point-of-care applications. The performance attributes of these biosensors are assessed by considering their limits of detection, reaction times, and operational stability, while also making comparisons to conventional methods of CA 15-3 detection. In addition, we explore the incorporation of nanomaterials and innovative transducer components to improve the performance of biosensors. This paper conducts a thorough examination of recent studies to identify the existing obstacles. It also suggests potential areas for future research in this fast progressing field.The paper provides insights into their advancement and utilization to enhance patient outcomes. Both categories of biosensors provide significant promise for the detection of CA 15-3 and offer distinct advantages compared to conventional analytical approaches.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC, 1983963113, Iran
| | - Amirhossein Ghaemi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirhossein Khanizadeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Yasin Mollajavadi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan; Adjunct Professor at Equator University of Science and Technology, Uganda
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran; Key Laboratory of Modeling and Simulation-based Reliability and Optimization, University of Zabol, Zabol, Iran.
| |
Collapse
|
3
|
Hobæk TC, Pranov HJ, Larsen NB. Immobilization of Active Antibodies at Polymer Melt Surfaces during Injection Molding. Polymers (Basel) 2022; 14:polym14204426. [PMID: 36298004 PMCID: PMC9606872 DOI: 10.3390/polym14204426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
We demonstrate the transfer and immobilization of active antibodies from a low surface- energy mold surface to thermoplastic replica surfaces using injection molding, and we investigate the process at molecular scale. The transfer process is highly efficient, as verified by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) of the mold and replica surfaces. AFM analysis reveals partial nanometer-scale embedding of the protein into the polymer matrix as a possible mechanism of permanent immobilization. Replicas with rabbit anti-mouse IgG immobilized as capture antibody at the hot polymer melt surface during injection molding show similar affinity for their antigen (mouse IgG) in sandwich enzyme-linked immunosorbent assay (ELISA) as capture antibodies deposited by passive adsorption onto a bare thermoplastic replica. The transferred antibodies retain their functionality after incubation in serum-containing cell medium for >1 week. A mold coating time of 10 min prior to injection molding is sufficient for producing highly sensitive ELISA assays, thus enabling the short processing cycle times required for mass production of single-use biodevices relying on active immobilized antibodies.
Collapse
Affiliation(s)
- Thor Christian Hobæk
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | | | - Niels B. Larsen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
- Correspondence:
| |
Collapse
|
4
|
Voltage controlled bio-organic inverse phototransistor. Biointerphases 2022; 17:021003. [PMID: 35303768 DOI: 10.1116/6.0001692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thin films of poly-d-lysine act as polar organic and are also light sensitive. The capacitance-voltage, current-voltage, and transistor behavior were studied to gauge the photoresponse of possible poly-d-lysine thin film devices both with and without methylene blue as an additive. Transistors fabricated from poly-d-lysine act as inverse phototransistors, i.e., the on-state current is greatest in the absence of illumination. The poly-d-lysine thin film capacitance and the transistor current decrease with illumination, both with and without methylene blue as an additive. This suggests that the unbinding of photo exciton is significantly hindered in this system which is supported by the significant charge carrier lifetime for poly-d-lysine films both with and without methylene blue. For the majority carrier, the transistor geometry appears to depend on the gate voltage; in other words, the majority carrier depends on the polarization of the poly-d-lysine films, both with and without methylene blue as an additive.
Collapse
|
5
|
Liu C, Steer DL, Song H, He L. Superior Binding of Proteins on a Silica Surface: Physical Insight into the Synergetic Contribution of Polyhistidine and a Silica-Binding Peptide. J Phys Chem Lett 2022; 13:1609-1616. [PMID: 35142521 DOI: 10.1021/acs.jpclett.1c03306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Controllable protein attachment onto solid interfaces is essential for the functionality of proteins with broad applications. Silica-binding peptides (SBPs) have emerged as an important tool enabling convenient binding of proteins onto a silica surface. Surprisingly, we found that removal of polyhistidines, a common tag for protein purification, dramatically decrease the binding affinity of a SBP-tagged nanobody onto a silica surface. We hypothesized that polyhistidines and SBPs can be combined to enhance affinity. Through a series of purposely designed SBPs, we identified that the relative orientation of amino acids is a key factor affecting the surface binding strength. One re-engineered SBP, SBP4, exhibits a 4000-fold improvement compared to the original sequence. Guided by physical insights, the work provides a simple strategy that can dramatically improve affinity between a SBP and a silica surface, promising a new way for controllable immobilization of proteins, as demonstrated using nanobodies.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - David L Steer
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Haipeng Song
- Shenzhen Innova Nanobodi Company, 1301 Sightseeing Road, Shengzhen, Guangdong 518000, People's Republic of China
| | - Lizhong He
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Hartanto H, Wu M, Lam ML, Chen TH. Microfluidic immunoassay for detection of serological antibodies: A potential tool for rapid evaluation of immunity against SARS-CoV-2. BIOMICROFLUIDICS 2020; 14:061507. [PMID: 33343783 PMCID: PMC7738199 DOI: 10.1063/5.0031521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/23/2020] [Indexed: 05/06/2023]
Abstract
In December 2019, coronavirus disease 2019 became a pandemic affecting more than 200 countries and territories. Millions of lives are still affected because of mandatory quarantines, which hamstring economies and induce panic. Immunology plays a major role in the modern field of medicine, especially against virulent infectious diseases. In this field, neutralizing antibodies are heavily studied because they reflect the level of infection and individuals' immune status, which are essential when considering resumption of work, flight travel, and border entry control. More importantly, it also allows evaluating the antiviral vaccine efficacy as vaccines are still known for being the ultimate intervention method to inhibit the rapid spread of virulent infectious diseases. In this Review, we first introduce the host immune response after the infection of SARS-CoV-2 and discuss the latest results using conventional immunoassays. Next, as an enabling platform for detection with sufficient sensitivity while saving analysis time and sample size, the progress of microfluidic-based immunoassays is discussed and compared based on surface modification, microfluidic kinetics, signal output, signal amplification, sample matrix, and the detection of anti-SARS-CoV-2 antibodies. Based on the overall comparison, this Review concludes by proposing the future integration of visual quantitative signals on microfluidic devices as a more suitable approach for general use and large-scale surveillance.
Collapse
Affiliation(s)
- Hogi Hartanto
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Minghui Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Miu Ling Lam
- School of Creative Media, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
7
|
Kenaan A, Li K, Barth I, Johnson S, Song J, Krauss TF. Guided mode resonance sensor for the parallel detection of multiple protein biomarkers in human urine with high sensitivity. Biosens Bioelectron 2020; 153:112047. [PMID: 31999559 DOI: 10.1016/j.bios.2020.112047] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
Abstract
The rising cost of global healthcare provision and new approaches to managing disease are driving the development of low-cost biosensing modalities, such as label-free photonic methods based on dielectric resonances. Here, we use the combined sensing and imaging capability of a guided mode resonance (GMR) sensor to detect multiple biomarkers (troponin, procalcitonin and C-Reactive Protein) in parallel in undiluted urine samples. A key requirement of such a biosensor is the simple and direct functionalization with suitable antibodies to ensure the disease-specific detection of protein biomarkers. Here, antibodies were immobilized using a succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol] ester (SM(PEG)6) spacer. The polyethylene glycol (PEG) chemistry enables low detection limits of 10 pg mL-1 or better for all protein biomarkers, while minimizing non-specific binding compared to more commonly used strategies such as (3-Aminopropyl)triethoxysilane (APTES) or dextran. Our approach supports the vision of a simple yet highly sensitive diagnostic platform that could be used for pre-screening patients for a wide range of diseases at point-of-care, thereby relieving the pressure on overstretched healthcare services.
Collapse
Affiliation(s)
- Ahmad Kenaan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment, Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering.Shanghai Jiao Tong University, Shanghai, 200240, PR China; Department of Physics, University of York, York, YO10 5DD, UK
| | - Kezheng Li
- Department of Physics, University of York, York, YO10 5DD, UK
| | - Isabel Barth
- Department of Physics, University of York, York, YO10 5DD, UK
| | - Steven Johnson
- Department of Electronic Engineering, University of York, York, YO10 5DD, UK.
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment, Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering.Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Thomas F Krauss
- Department of Physics, University of York, York, YO10 5DD, UK.
| |
Collapse
|
8
|
Guevara-Pantoja PE, Sánchez-Domínguez M, Caballero-Robledo GA. Micro-nanoparticles magnetic trap: Toward high sensitivity and rapid microfluidic continuous flow enzyme immunoassay. BIOMICROFLUIDICS 2020; 14:014111. [PMID: 32038740 PMCID: PMC6992449 DOI: 10.1063/1.5126027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/20/2020] [Indexed: 05/13/2023]
Abstract
In this work, we developed a microfluidic system for immunoassays where we combined the use of magnetic nanoparticles as immunosupport, a microfluidic magnetic trap, and a fluorogenic substrate in continuous flow for detection which, together with the optimization of the functionalization of surfaces to minimize nonspecific interactions, resulted in a detection limit in the order of femtomolar and a total assay time of 40 min for antibiotin antibody detection. A magnetic trap made of carbonyl-iron microparticles packaged inside a 200 μ m square microchannel was used to immobilize and concentrate nanoparticles. We functionalized the surface of the iron microparticles with a silica-polyethylene glycol (PEG) shell to avoid corrosion and unspecific protein binding. A new one-step method was developed to coat acrylic microchannels with an organofunctional silane functionalized with PEG to minimize unspecific binding. A model immunoassay was performed using nanoparticles decorated with biotin to capture antibiotin rabbit Immunoglobulin G (IgG) as target primary antibody. The detection was made using antirabbit IgG labeled with the enzyme alkaline phosphatase as a secondary antibody, and we measured fluorescence with a fluorescence microscope. All steps of the immunoassay were performed inside the chip. A calibration curve was obtained in which a detection limit of 8 pg/ml of antibiotin antibody was quantified. The simplicity of the device and the fact that it is made of acrylic, which is compatible with mass production, make it ideal for Point-Of-Care applications.
Collapse
Affiliation(s)
| | - Margarita Sánchez-Domínguez
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Nuevo León, Mexico
| | | |
Collapse
|
9
|
Tomich JM, Wessel E, Choi J, Avila LA. Nonviral Gene Therapy: Peptiplexes. NUCLEIC ACID NANOTHERANOSTICS 2019:247-276. [DOI: 10.1016/b978-0-12-814470-1.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Wang C, Tan R, Wang Q. One-step synthesized flower-like materials used for sensitively detecting amyloid precursor protein. Anal Bioanal Chem 2018; 410:6901-6909. [DOI: 10.1007/s00216-018-1293-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/20/2018] [Accepted: 07/24/2018] [Indexed: 11/29/2022]
|
11
|
Laopajon W, Takheaw N, Kasinrerk W, Pata S. Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis. J Immunoassay Immunochem 2016; 37:527-39. [PMID: 27019400 DOI: 10.1080/15321819.2016.1171780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The current available assays cannot differentiate the stages of phagocytosis. We, therefore, established methods for concurrent detection of antigen attachment and engulfment by phagocyte using latex beads coated with lipopolysaccharide, rabbit IgG, and carboxyfluorescein diacetate succinimidyl ester. The generated beads were incubated with whole blood at 37°C for 1 hr and stained with PE-Cy5.5 anti-rabbit IgG antibody. By flow cytometry, attachment and phagocytic processes could be detected, simultaneously. The established method is a valuable tool for diagnosis of phagocytic disorder and study of molecules involved in phagocytosis.
Collapse
Affiliation(s)
- Witida Laopajon
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand
| | - Nuchjira Takheaw
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand
| | - Watchara Kasinrerk
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand.,b Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand
| | - Supansa Pata
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand.,b Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
12
|
Abel B, Kabir TS, Odukoya B, Mohammed M, Aslan K. Enhancement of Colorimetric Response of Enzymatic Reactions by Thermally Evaporated Plasmonic Thin Films: Application to Glial Fibrillary Acidic Protein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:1175-1185. [PMID: 25663850 PMCID: PMC4318255 DOI: 10.1039/c4ay02505a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the enhancement of the colorimetric response of horseradish peroxidase (HRP) and alkaline phosphatase (AP) in bioassays by thermally evaporated silver, gold, copper and nickel thin films. In this regard, a model bioassay based on biotin-avidin interactions was employed. Biotin groups and enzymes were introduced to all surfaces using a biotinylated linker molecule and avidin, respectively. The colorimetric response of HRP in the model bioassay carried out on the plasmonic thin films were up to 4.4-fold larger as compared to control samples (i.e., no plasmonic thin films), where the largest enhancement of colorimetric response was observed on silver thin films. The colorimetric response of AP on plasmonic thin films was found to be similar to those observed on control samples, which was attributed to the loss of enzymes from the surface during the bioassay steps. The extent of enzymes immobilized on to plasmonic thin films was found to affect the colorimetric response of the model bioassay. These findings allowed us to demonstrate the use of silver thin films for the detection of glial fibrillary acidic protein (GFAP), where the colorimetric response of the standard bioassays for GFAP was enhanced up to 67% as compared to bioassays on glass slides.
Collapse
|
13
|
Pata S, Khummuang S, Pornprasert S, Tatu T, Kasinrerk W. A simple and highly sensitive ELISA for screening of the α-thalassemia-1 Southeast Asian-type deletion. J Immunoassay Immunochem 2014; 35:194-206. [PMID: 24295182 DOI: 10.1080/15321819.2013.838963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Couples in which both partners carry the α-thalassemia-1 trait have a 25% risk of hemoglobin Bart's hydrops fetalis in each pregnancy. Identification of α-thalassemia-1 trait is, therefore, necessary in order to control this severe form of α-thalassemia. We have generated monoclonal antibodies specific to the ζ-globin chain without cross reaction with other globin chains. A simple and sensitive ELISA was developed by using poly-l-lysine to increase the protein binding to the ELISA plate. The developed poly-l-lysine pre-coated ELISA has a very high sensitivity (100%) and specificity (97%) for detection of carriers of α-thalassemia-1 with Southeast Asian-type deletion.
Collapse
Affiliation(s)
- Supansa Pata
- a Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University , Chiang Mai , Thailand
| | | | | | | | | |
Collapse
|
14
|
Abel B, Clement TC, Aslan K. Enhancement of enzymatic colorimetric response by silver island films on high throughput screening microplates. J Immunol Methods 2014; 411:43-9. [PMID: 24950456 DOI: 10.1016/j.jim.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/17/2022]
Abstract
In this study, we report the use of an enzyme-based hybrid platform, which is comprised of silver island films, enzymes (HRP and AP) and high-throughput screening (HTS) microplates, to enhance the colorimetric response of enzymatic reactions. The hybrid platform was designed in a two-step process: (i) deposition of SIFs onto HTS microplates with low, medium, and high loading (refers to the extent of the surface plasmon resonance peak of SIFs at 460 nm) using Tollen's reaction scheme; and (ii) attachment of b-BSA or BEA as linkers for the immobilization of enzymes. The presence of SIFs within the wells of the HTS microplates was confirmed using an optical spectrophotometer and real-color photography. Control experiments, where SIFs were omitted from the surfaces were carried out to confirm the effect of SIFs on the enzymatic colorimetric response. Significant colorimetric signal enhancement was observed for HRP or AP on SIFs (high loading) deposited HTS microplates using b-BSA (up to ~3-fold for AP and ~6-fold HRP) or BEA (up to ~7-fold for both HRP and AP), as compared to our control samples. The observed increase in colorimetric response can be attributed to the nature of BEA, which exposes surface-bound enzymes to the substrate present in bulk more efficiently than b-BSA. This study proves that SIFs can serve as a valuable tool to improve the signal output of existing bioassays carried out in HTS microplates, which can be applicable to the field biosensors and plasmonics.
Collapse
Affiliation(s)
- Biebele Abel
- Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Travis C Clement
- Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Kadir Aslan
- Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA.
| |
Collapse
|
15
|
Araz MK, Apori AA, Salisbury CM, Herr AE. Microfluidic barcode assay for antibody-based confirmatory diagnostics. LAB ON A CHIP 2013; 13:3910-3920. [PMID: 23925585 DOI: 10.1039/c3lc50229e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Confirmatory diagnostics offer high clinical sensitivity and specificity typically by assaying multiple disease biomarkers. Employed in clinical laboratory settings, such assays confirm a positive screening diagnostic result. These important multiplexed confirmatory assays require hours to complete. To address this performance gap, we introduce a simple 'single inlet, single outlet' microchannel architecture with multiplexed analyte detection capability. A streptavidin-functionalized, channel-filling polyacrylamide gel in a straight glass microchannel operates as a 3D scaffold for a purely electrophoretic yet heterogeneous immunoassay. Biotin and biotinylated capture reagents are patterned in discrete regions along the axis of the microchannel resulting in a barcode-like pattern of reagents and spacers. To characterize barcode fabrication, an empirical study of patterning behaviour was conducted across a range of electromigration and binding reaction timescales. We apply the heterogeneous barcode immunoassay to detection of human antibodies against hepatitis C virus and human immunodeficiency virus antigens. Serum was electrophoresed through the barcode patterned gel, allowing capture of antibody targets. We assess assay performance across a range of Damkohler numbers. Compared to clinical immunoblots that require 4-10 h long sample incubation steps with concomitant 8-20 h total assay durations; directed electromigration and reaction in the microfluidic barcode assay leads to a 10 min sample incubation step and a 30 min total assay duration. Further, the barcode assay reports clinically relevant sensitivity (25 ng ml(-1) in 2% human sera) comparable to standard HCV confirmatory diagnostics. Given the low voltage, low power and automated operation, we see the streamlined microfluidic barcode assay as a step towards rapid confirmatory diagnostics for a low-resource clinical laboratory setting.
Collapse
Affiliation(s)
- M Kursad Araz
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | |
Collapse
|
16
|
An on-bacterium flow cytometric immunoassay for protein quantification. J Pharm Biomed Anal 2013; 83:129-34. [DOI: 10.1016/j.jpba.2013.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 01/27/2023]
|
17
|
Kim D, Herr AE. Protein immobilization techniques for microfluidic assays. BIOMICROFLUIDICS 2013; 7:41501. [PMID: 24003344 PMCID: PMC3747845 DOI: 10.1063/1.4816934] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
Microfluidic systems have shown unequivocal performance improvements over conventional bench-top assays across a range of performance metrics. For example, specific advances have been made in reagent consumption, throughput, integration of multiple assay steps, assay automation, and multiplexing capability. For heterogeneous systems, controlled immobilization of reactants is essential for reliable, sensitive detection of analytes. In most cases, protein immobilization densities are maximized, while native activity and conformation are maintained. Immobilization methods and chemistries vary significantly depending on immobilization surface, protein properties, and specific assay goals. In this review, we present trade-offs considerations for common immobilization surface materials. We overview immobilization methods and chemistries, and discuss studies exemplar of key approaches-here with a specific emphasis on immunoassays and enzymatic reactors. Recent "smart immobilization" methods including the use of light, electrochemical, thermal, and chemical stimuli to attach and detach proteins on demand with precise spatial control are highlighted. Spatially encoded protein immobilization using DNA hybridization for multiplexed assays and reversible protein immobilization surfaces for repeatable assay are introduced as immobilization methods. We also describe multifunctional surface coatings that can perform tasks that were, until recently, relegated to multiple functional coatings. We consider the microfluidics literature from 1997 to present and close with a perspective on future approaches to protein immobilization.
Collapse
Affiliation(s)
- Dohyun Kim
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 449-728, South Korea
| | | |
Collapse
|
18
|
Surface Modification of Poly Ethylene Glycol to Resist Nonspecific Adsorption of Proteins. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1016/s1872-2040(13)60638-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Viel P, Walter J, Bellon S, Berthelot T. Versatile and nondestructive photochemical process for biomolecule immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2075-2082. [PMID: 23317333 DOI: 10.1021/la304941a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Covalent immobilization of unmodified biological materials as proteins has been performed through a one-step and soft method. This process is based on a polyazidophenylene layer derived from the electroreduction of the parent salt 4-azidobenzenediazonium tetrafluoborate on gold substrates. The wavelength used (365 nm) for the photochemical grafting of a large variety of molecules as biomolecules is a key point to this nondestructive immobilization method. This simple process is also versatile and could be used for covalently binding a wide range of molecules such as polyethylene glycol moieties, for example. To validate this approach for biochip or microarray fabrication, a surface plasmon resonance imaging (SPRi) platform for immobilization of various antibody families was created by grafting G-protein through this process. This SPRi antibodies platform was tested with several consecutive cycles of antigen injections/regeneration steps without loss of activity.
Collapse
Affiliation(s)
- Pascal Viel
- CEA, IRAMIS, SPCSI Chemistry of Surfaces and Interfaces Group, F-91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
20
|
|
21
|
Balamurugan SS, Subramanian B, Bolivar JG, McCarley RL. Aqueous-based initiator attachment and ATRP grafting of polymer brushes from poly(methyl methacrylate) substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14254-60. [PMID: 22967226 PMCID: PMC3525093 DOI: 10.1021/la302922p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many polymers, such as PMMA, are very susceptible to swelling or dissolution by organic solvents. Growing covalently attached polymer brushes from these surfaces by atom-transfer radical polymerization (ATRP) is challenging because of the typical requirement of organic solvent for initiator immobilization. We report an unprecedented, aqueous-based route to graft poly(N-isopropylacrylamide), PNIPAAm, from poly(methyl methacrylate), PMMA, surfaces by ATRP, wherein the underlying PMMA is unaffected. Successful attachment of the ATRP initiator, N-hydroxysuccinimidyl-2-bromo-2-methylpropionate, on amine-bearing PMMA surfaces was confirmed by XPS. From this surface-immobilized initiator, thermoresponsive PNIPAAm brushes were grown by aqueous ATRP to yield optically transparent PNIPAAm-grafted PMMA surfaces. This procedure is valuable, as it can be applied for the aqueous-based covalent attachment of ATRP initiator on any amine-functionalized surface, with subsequent polymerization of a variety of monomers.
Collapse
Affiliation(s)
- Sreelatha S. Balamurugan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Balamurugan Subramanian
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Jowell G. Bolivar
- The Wright Group, 6428 Airport Road, Crowley, Louisiana 70526, United States
| | - Robin L. McCarley
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
- Corresponding Author:
| |
Collapse
|
22
|
Robinson T, Dittrich PS. Microfluidic technology for molecular diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 133:89-114. [PMID: 22864841 DOI: 10.1007/10_2012_139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.
Collapse
Affiliation(s)
- Tom Robinson
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
23
|
Propheter DC, Mahal LK. Orientation of GST-tagged lectins via in situ surface modification to create an expanded lectin microarray for glycomic analysis. MOLECULAR BIOSYSTEMS 2011; 7:2114-7. [PMID: 21597618 DOI: 10.1039/c1mb05047h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Herein we describe the orientation of GST-tagged lectins on NHS-activated slides via a one-step deposition of the protein and a glutathione (GSH) scaffold. This technology overcomes the need for a premade GSH-surface to orient GST-tagged proteins, enabling us to rapidly expand the analytical capacity of lectin microarrays through addition of oriented lectins, while maintaining lectin diversity.
Collapse
Affiliation(s)
- Daniel C Propheter
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712-0265, USA
| | | |
Collapse
|
24
|
Feng B, Luo Y, Ge F, Wang L, Huang L, Dai Y. Site-oriented immobilization of fusion antigen directed by an affinity ligand, and its validation in an immunoassay. SURF INTERFACE ANAL 2010. [DOI: 10.1002/sia.3712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Immunoassays in microfluidic systems. Anal Bioanal Chem 2010; 397:991-1007. [PMID: 20422163 DOI: 10.1007/s00216-010-3678-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 03/21/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
Immunoassays have greatly benefited from miniaturization in microfluidic systems. This review, which summarizes developments in microfluidics-based immunoassays since 2000, includes four sections, focusing on the configurations of immunoassays that have been implemented in microfluidics, the main fluid handling modalities that have been used for microfluidic immunoassays, multiplexed immunoassays in microfluidic platforms, and the emergence of label-free detection techniques. The field of microfluidic immunoassays is continuously improving and has great promise for the future.
Collapse
|