1
|
Radhakrishnan A, Gangopadhyay R, Sharma C, Kapardar RK, Sharma NK, Srivastav R. Unwinding Helicase MCM Functionality for Diagnosis and Therapeutics of Replication Abnormalities Associated with Cancer: A Review. Mol Diagn Ther 2024; 28:249-264. [PMID: 38530633 DOI: 10.1007/s40291-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Ritwik Gangopadhyay
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. DY Patil Biotechnology and Bioinformatics Institute, Dr. DY Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
- Department of Science and Technology, Ministry of Science and Technology, New Delhi, India.
| |
Collapse
|
2
|
Zeng T, Guan Y, Li YK, Wu Q, Tang XJ, Zeng X, Ling H, Zou J. The DNA replication regulator MCM6: An emerging cancer biomarker and target. Clin Chim Acta 2021; 517:92-98. [PMID: 33609557 DOI: 10.1016/j.cca.2021.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023]
Abstract
MCM6 is a significant DNA replication regulator that plays a crucial role in sustaining the cell cycle. In many cancer cells, MCM6 expression is enhanced. For example, persistently increased expression of MCM6 promotes the formation, development and progression of hepatocellular carcinoma (HCC). Up- and down-regulation studies have indicated that MCM6 regulates cell cycle, proliferation, metastasis, immune response and the maintenance of the DNA replication system. MCM6 can also regulate downstream signaling such as MEK/ERK thus promoting carcinogenesis. Accordingly, MCM6 may represent a sensitive and specific biomarker to predict adverse progression and poor outcome. Furthermore, inhibition of MCM6 may be an effective cancer treatment. The present review summarizes the latest results on the inactivating and activating functions of MCM6, underlining its function in carcinogenesis. Further studies of the carcinogenic functions of MCM6 may provide novel insight into cancer biology and shed light on new approaches for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Yang Guan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330000, PR China
| | - Yu-Kun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qing Wu
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, PR China
| | - Xiao-Jun Tang
- Department of Spinal Surgery, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Zeng
- Department of Histology and Embryology, Chongqing Three Gorges Medical College, Wanzhou, Chongqing 404000, PR China
| | - Hui Ling
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
3
|
Cao T, Yi SJ, Wang LX, Zhao JX, Xiao J, Xie N, Zeng Z, Han Q, Tang HO, Li YK, Zou J, Wu Q. Identification of the DNA Replication Regulator MCM Complex Expression and Prognostic Significance in Hepatic Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3574261. [PMID: 32964028 PMCID: PMC7499325 DOI: 10.1155/2020/3574261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The microliposome maintenance (MCM) complex, MCM2-7, is revealed to be involved in multiple cellular processes and plays a key role in the development and progression of human cancers. However, the MCM complex remains poorly elaborated in hepatic carcinoma (HCC). METHODS In the study, we found the mRNA and protein level by bioinformatics. We also explored the prognostic value, genetic alteration, interaction network, and functional enrichment of MCM2-7. The MCM expression and correlation among these MCMs in HCC cell lines were identified by western blot. RESULTS MCM2-7 was significantly increased in HCC tissues compared to normal liver tissues. The high level of MCM2-7 had a positive correlation with poor prognosis. However, MCM2-7 alterations were not correlated with poor OS. MCMs were both increased in HCC cell lines compared to the normal hepatocyte cell line. Furthermore, the positive correlation was found among MCMs in HCC cell lines. CONCLUSIONS The MCM complex was increased in HCC tissues and cell lines and negatively correlated with prognosis, which might be important biomarkers for HCC.
Collapse
Affiliation(s)
- Ting Cao
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Shi-jie Yi
- Department of Gastrointestinal Surgery, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Li-xin Wang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd., Shanghai 201203, China
| | - Juan-xia Zhao
- Department of Pathology, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Ni Xie
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Zhi Zeng
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437000, China
| | - Qi Han
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437000, China
| | - Hai-ou Tang
- Jishou University College of Medicine, Jishou 416000, China
| | - Yu-kun Li
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Juan Zou
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Qing Wu
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| |
Collapse
|
4
|
Seo YS, Kang YH. The Human Replicative Helicase, the CMG Complex, as a Target for Anti-cancer Therapy. Front Mol Biosci 2018; 5:26. [PMID: 29651420 PMCID: PMC5885281 DOI: 10.3389/fmolb.2018.00026] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
DNA helicases unwind or rearrange duplex DNA during replication, recombination and repair. Helicases of many pathogenic organisms such as viruses, bacteria, and protozoa have been studied as potential therapeutic targets to treat infectious diseases, and human DNA helicases as potential targets for anti-cancer therapy. DNA replication machineries perform essential tasks duplicating genome in every cell cycle, and one of the important functions of these machineries are played by DNA helicases. Replicative helicases are usually multi-subunit protein complexes, and the minimal complex active as eukaryotic replicative helicase is composed of 11 subunits, requiring a functional assembly of two subcomplexes and one protein. The hetero-hexameric MCM2-7 helicase is activated by forming a complex with Cdc45 and the hetero-tetrameric GINS complex; the Cdc45-Mcm2-7-GINS (CMG) complex. The CMG complex can be a potential target for a treatment of cancer and the feasibility of this replicative helicase as a therapeutic target has been tested recently. Several different strategies have been implemented and are under active investigations to interfere with helicase activity of the CMG complex. This review focuses on the molecular function of the CMG helicase during DNA replication and its relevance to cancers based on data published in the literature. In addition, current efforts made to identify small molecules inhibiting the CMG helicase to develop anti-cancer therapeutic strategies were summarized, with new perspectives to advance the discovery of the CMG-targeting drugs.
Collapse
Affiliation(s)
- Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Young-Hoon Kang
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
5
|
Dixon EP, King LM, Nelson R, Simkins SG, Knapp SL, Brough GH, Lenz KL, Henderson DT, Whitehead CM, Hessling J, Brown CA, Malinowski DP. Characterization and clinical validation of MCM2 and TOP2A monoclonal antibodies in the BD ProEx™ C assay: An immunoassay which detects aberrant S-phase induction in cervical tissue. J Immunol Methods 2017; 442:35-41. [PMID: 28093271 DOI: 10.1016/j.jim.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/11/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND The Papanicolaou (Pap) screen has been successful in reducing cervical cancer; but exhibits low sensitivity when detecting cervical dysplasia. Use of molecular biomarkers in Pap tests may improve diagnostic accuracy. DESIGN Monoclonal antibodies to Minichromosome Maintenance Protein 2 (MCM2) and DNA Topoisomerase II α (TOP2A) were selected for use in IHC based on their ability to differentiate normal from diseased cervical tissues in tissue microarrays. Enhanced Green Fluorescent Protein Western blot analysis was used to help identify binding epitopes specific to MCM2 and TOP2A antibody clones. Antibody affinity was determined by solution phase affinity measurement and immunohistochemistry was performed using high affinity MCM2 or TOP2A antibodies on serial histological sections. RESULTS Antibody clones to MCM2 and TOP2A clones were selected based on their ability to detect over expression in abnormal cervical epithelia. In IHC, MCM2-27C5.6 and MCM2-26H6.19 demonstrated superior staining in abnormal cervical tissue over the MCM2-CRCT2.1 antibody. A combination of MCM2 and TOP2A antibodies showed greater staining when compared to staining with any of the antibodies alone on serial histological sections. Distinct linear epitopes were elucidated for each of the MCM2 and TOP2A clones. Affinity values (Kd) for MCM2 or TOP2A antibodies had a similar range. In a research study, the MCM2 and TOP2A (BD ProEx™ C) antibody cocktail showed increased epithelia staining with increasing dysplasia. The use of BD ProEx™ C in combination with H&E staining enhanced immunohistochemical discrimination of dysplastic and non-dysplastic FFPE cervical tissue specimens. CONCLUSIONS BD ProEx™ C containing MCM2 and TOP2A antibodies showed strong specific nuclear staining that correlated with increased dysplasia and lesion severity. Enhanced performance of the antibodies was linked to their unique topography recognition. BD ProEx™ C incorporates antibodies that enhance detection of CIN2+ cervical disease.
Collapse
Affiliation(s)
- Eric P Dixon
- BD Diagnostics - Women's Health and Cancer, Durham, NC, USA.
| | | | - Ramona Nelson
- BD Diagnostics - Women's Health and Cancer, Durham, NC, USA
| | | | - Steven L Knapp
- BD Diagnostics - Women's Health and Cancer, Durham, NC, USA
| | | | - Karen L Lenz
- BD Diagnostics - Women's Health and Cancer, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
6
|
Investigating Diagnostic Problems of CIN1 and CIN2 Associated With High-risk HPV by Combining the Novel Molecular Biomarker PanHPVE4 With P16INK4a. Am J Surg Pathol 2016; 39:1518-1528. [PMID: 26379150 DOI: 10.1097/pas.0000000000000498] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Grading cervical intraepithelial neoplasia (CIN) determines clinical management of women after abnormal cytology with potential for overdiagnosis and overtreatment. We studied a novel biomarker of human papillomavirus (HPV) life-cycle completion (panHPVE4), in combination with the minichromosome maintenance (MCM) protein cell-cycle marker and the p16INK4a transformation marker, to improve CIN diagnosis and categorization. Scoring these biomarkers alongside CIN grading by 3 pathologists was performed on 114 cervical specimens with high-risk (HR) HPV. Interobserver agreement for histopathology was moderate (κ=0.43 for CIN1/negative, 0.54 for CIN2/≤CIN1, and 0.36 for CIN3). Agreement was good or excellent for biomarker scoring (E4: κ=0.896; 95% confidence interval [CI]: 0.763-0.969; p16INK4a : κ=0.798; 95% CI: 0.712-0.884; MCM: κ=0.894; 95% CI: NC (this quantity cannot be calculated). Biomarker expression was studied by immunofluorescence and immunohistochemistry and was correlated with 104 final CIN diagnoses after histologic review. All 25 histologically negative specimens were p16INK4a and panHPVE4 negative, although 9 were MCM-positive. There were variable extents of p16INK4a positivity in 11/11 CIN1 and extensive panHPVE4 staining in 9/11. Ten CIN2 lesions expressed panHPVE4 and p16INK4a, and 13 CIN2 expressed only p16INK4a. CIN3 showed extensive p16INK4a positivity with no/minimal panHPVE4 staining. PanHPVE4, unlike MCM, distinguished CIN1 from negative. PanHPVE4 with p16INK4a separated CIN2/3 showing only expression of p16INK4a, indicating transforming HR-HPV E7 expression, from CIN1/2 showing completion of HR-HPV life cycle by E4 expression and variable p16INK4a expression. PanHPVE4 and p16INK4a staining are complementary markers that could provide simple, reliable support for diagnosing CIN. Their value in distinguishing CIN1/2 that supports HR-HPV life-cycle completion (and which might ultimately regress) from purely transforming CIN2/3 needing treatment warrants further research.
Collapse
|
7
|
Stratification of HPV-induced cervical pathology using the virally encoded molecular marker E4 in combination with p16 or MCM. Mod Pathol 2015; 28:977-93. [PMID: 25953390 PMCID: PMC4489599 DOI: 10.1038/modpathol.2015.52] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 03/05/2015] [Indexed: 01/07/2023]
Abstract
High-risk human papillomavirus (HPV) types cause cervical lesions of varying severity, ranging from transient productive infections to high-grade neoplasia. Disease stratification requires the examination of lesional pathology, and possibly also the detection of biomarkers. P16(INK4a) and MCM are established surrogates of high-risk HPV E6/E7 activity, and can be extensively expressed in high-grade lesions. Here we have combined these two cellular biomarkers with detection of the abundant HPV-encoded E4 protein in order to identify both productive and transforming lesions. This approach has allowed us to distinguish true papillomavirus infections from similar pathologies, and has allowed us to divide the heterogeneous CIN2 category into those that are CIN1-like and express E4, and those that more closely resemble nonproductive CIN3. To achieve this, 530 lesional areas were evaluated according to standard pathology criteria and by using a multiple staining approach that allows us to superimpose biomarker patterns either singly or in combination onto an annotated hematoxylin and eosin (H&E) image. Conventional grading of neoplasia was established by review panel, and compared directly with the composite molecular pathology visualized on the same tissue section. The detection of E4 coincided with the onset of vacuolation, becoming abundant in koilocytes as the MCM marker declined and cells lost their defined nuclear margins as visualized by standard H&E staining. Of the dual marker approaches, p16(INK4a) and E4 appeared most promising, with E4 generally identifying areas of low-grade disease even when p16(INK4a) was present. Extensive p16(INK4a) expression usually coincided with an absence of E4 expression or its focal retention in sporadic cells within the lesion. Our results suggest that a straightforward molecular evaluation of HPV life-cycle deregulation in cervical neoplasia may help improve disease stratification, and that this can be achieved using complementary molecular biomarker pairs such as MCM/E4 or, more promisingly, p16(INK4a)/E4 as an adjunct to conventional pathology.
Collapse
|
8
|
Cubie HA, Cuschieri K. Understanding HPV tests and their appropriate applications. Cytopathology 2013; 24:289-308. [PMID: 23998275 DOI: 10.1111/cyt.12083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2013] [Indexed: 01/06/2023]
Abstract
Greater understanding of the role played by human papillomavirus (HPV) in the causation of disease has led to the development of an increasing number of HPV tests with different characteristics. The bewildering choice facing healthcare professionals and providers is daunting. Clearly, HPV testing is no longer simply of research interest, but can provide information that can be used for individual patient management and at the population level for cervical screening and vaccine surveillance. This review aims to provide the background to the development of HPV tests, to explain the different technologies and to discuss the challenges of the application of these optimally in the varied contexts of disease management. Few HPV tests are approved for clinical use and it is important that clinicians understand which test can be utilized, in what circumstances, with what specimens and the meaning of the report issued. HPV testing is no longer applicable only to cervical disease, and we have suggested additional areas, such as the oropharynx, in which HPV testing services might be implemented in the near future. New tests will continue to emerge and we have identified some of the indirect measures of HPV activity, or biomarkers, that could help in the risk stratification of HPV infection and associated disease. The challenges relating to the optimal application of the various HPV technologies are compounded by the lack of evidence regarding their performance in vaccinated populations. Currently published work, including modelling studies, has been undertaken in non-immunized populations. We therefore end by addressing the issues regarding appropriate strategies and tests for immunized populations.
Collapse
Affiliation(s)
- H A Cubie
- HPV Research Group, The Queen's Medical Research Institute, University of Edinburgh MRC Centre for Reproductive Health, Edinburgh, UK
| | | |
Collapse
|
9
|
Zhang J, Wang L, Qiu M, Liu Z, Qian W, Yang Y, Wu S, Feng Y. The protein levels of MCM7 and p63 in evaluating lesion severity of cervical disease. Int J Gynecol Cancer 2013; 23:318-24. [PMID: 23318911 DOI: 10.1097/igc.0b013e31827f6f06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The objective of this study was to analyze the relationship among the protein levels of MCM7, p63, and human papillomavirus (HPV) in different cervical lesion tissues and appraise their predictive value in evaluating severity of cervical disease. METHODS Twelve normal cervix or chronic cervicitis, 42 squamous intraepithelial lesions, and 53 cervical carcinoma tissues were enrolled, and the protein levels of MCM7, p63, and HPV were detected by immunohistochemistry. RESULTS The positive examination rates of all the MCM7, p63, and HPV proteins increased gradually and significantly from normal cervix and chronic cervicitis tissues, low-grade squamous intraepithelial lesions, high-grade squamous intraepithelial lesions to cervical carcinomas, respectively. As to predict high-grade squamous intraepithelial lesions and carcinogenesis is concerned, the MCM7 protein had a sensitivity of 94.0%, a specificity of 56.5%, a positive predictive value of 88.8%, and a negative predictive value of 72.2%. The p63 protein had a sensitivity of 78.6%, a specificity of 81.8%, a positive predictive value of 94.3%, and a negative predictive value of 50.0%. Protein level of MCM7 was positively correlated with that of p63 in cervical tissues (r = 0.806, P < 0.01), and the p63 was also positively correlated with histopathologic type (P < 0.05). CONCLUSIONS Protein levels of MCM7 and p63 were associated significantly with high-grade cervical lesion, and aberrant p63 protein level may distinguish different histopathologic types of cervical carcinoma. They may act as co-predictive index in both HPV-dependent and HPV-independent high-grade cervical lesion with high sensitivity and specificity.
Collapse
Affiliation(s)
- Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|