1
|
Burgess SL, Leslie JL, Uddin J, Oakland DN, Gilchrist C, Moreau GB, Watanabe K, Saleh M, Simpson M, Thompson BA, Auble DT, Turner SD, Giallourou N, Swann J, Pu Z, Ma JZ, Haque R, Petri WA. Gut microbiome communication with bone marrow regulates susceptibility to amebiasis. J Clin Invest 2020; 130:4019-4024. [PMID: 32369444 PMCID: PMC7410058 DOI: 10.1172/jci133605] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The microbiome provides resistance to infection. However, the underlying mechanisms are poorly understood. We demonstrate that colonization with the intestinal bacterium Clostridium scindens protects from Entamoeba histolytica colitis via innate immunity. Introduction of C. scindens into the gut microbiota epigenetically altered and expanded bone marrow granulocyte-monocyte progenitors (GMPs) and resulted in increased intestinal neutrophils with subsequent challenge with E. histolytica. Introduction of C. scindens alone was sufficient to expand GMPs in gnotobiotic mice. Adoptive transfer of bone marrow from C. scindens-colonized mice into naive mice protected against amebic colitis and increased intestinal neutrophils. Children without E. histolytica diarrhea also had a higher abundance of Lachnoclostridia. Lachnoclostridia C. scindens can metabolize the bile salt cholate, so we measured deoxycholate and discovered that it was increased in the sera of C. scindens-colonized specific pathogen-free and gnotobiotic mice, as well as in children protected from amebiasis. Administration of deoxycholate alone increased GMPs and provided protection from amebiasis. We elucidated a mechanism by which C. scindens and the microbially metabolized bile salt deoxycholic acid alter hematopoietic precursors and provide innate protection from later infection with E. histolytica.
Collapse
Affiliation(s)
- Stacey L. Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jhansi L. Leslie
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - David N. Oakland
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Carol Gilchrist
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - G. Brett Moreau
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Koji Watanabe
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Mahmoud Saleh
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Morgan Simpson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brandon A. Thompson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Stephen D. Turner
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Natasa Giallourou
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, United Kingdom
| | - Jonathan Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, United Kingdom
| | - Zhen Pu
- Department of Statistics and
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Jennie Z. Ma
- Department of Statistics and
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Rashidul Haque
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Hovey O, Pasha R, Lehmann Z, Pineault N. Insights Into the Hematopoietic Regulatory Activities of Osteoblast by Secretomics. Proteomics 2020; 20:e2000036. [PMID: 32666692 DOI: 10.1002/pmic.202000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/22/2020] [Indexed: 11/09/2022]
Abstract
Osteoblasts are a key component of the endosteal hematopoietic stem cell niche and are recognized with strong hematopoietic supporting activity. Similarly, mesenchymal stromal cells (MSC)-derived osteoblast (M-OST) conditioned media (OCM) enhance the growth of hematopoietic progenitors in culture and modulate their engraftment activity. This article aims to characterize the hematopoietic supporting activity of OCM by comparing the secretome of M-OST to that of their precursor. Over 300 proteins are quantified by mass spectroscopy in media conditioned with MSC or M-OST, with 47 being differentially expressed. Growth factors, extracellular matrix proteins, and proteins from the complement pathways are included. The functional contribution of selected proteins on the growth and differentiation of cord blood (CB) progenitors is tested. Secreted protein acidic and rich in cysteine and Galectin 3 (Gal3) have little impact on the growth of CB cells in serum-free medium (SFM). In contrast, inhibition of the complement 3A receptor (C3a-R) present on CB progenitors significantly reduces the growth of CD34+ cells in OCM cultures but not in SFM. These results provide new insights into changes in factors released by MSC undergoing osteoblast differentiation, and on paracrine factors that are partially responsible for the hematopoietic supporting activity of osteoblasts.
Collapse
Affiliation(s)
- Owen Hovey
- Canadian Blood Services, Centre for Innovation, 1800 Alta Vista Dr, Ottawa, ON, K1G 4J5, Canada
- Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Roya Pasha
- Canadian Blood Services, Centre for Innovation, 1800 Alta Vista Dr, Ottawa, ON, K1G 4J5, Canada
- Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Zoe Lehmann
- Canadian Blood Services, Centre for Innovation, 1800 Alta Vista Dr, Ottawa, ON, K1G 4J5, Canada
- Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, 1800 Alta Vista Dr, Ottawa, ON, K1G 4J5, Canada
- Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
A 3D engineered scaffold for hematopoietic progenitor/stem cell co-culture in vitro. Sci Rep 2020; 10:11485. [PMID: 32661289 PMCID: PMC7359311 DOI: 10.1038/s41598-020-68250-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/11/2020] [Indexed: 01/29/2023] Open
Abstract
Proliferation of HPSCs in vitro can promote its broad clinical therapeutic use. For in vitro co-culture, interaction between the stem cell and feeder cell as well as their spatial position are essential. To imitate the natural microenvironment, a 3D engineered scaffold for CD34+ cells co-culture was established via 3D bioprinting. Herein, the concentration of hydrogel and the ratio of two kinds of cells were optimized. Flow cytometry, real time PCR and RNA-seq technology were applied to analyze the effect of the engineered scaffold on expanded cells. After 10 days co-culture with the engineered scaffold, the expansion of CD34+CD38- cells can reach 33.57-folds and the expansion of CD34+CD184+ cells can reach 16.66-folds. Result of PCR and RNA-seq indicates that the CD34+ cells in 3D group exhibited a tendency of interaction with the engineered scaffold. Compared to 2D co-culture, this customizable 3D engineered scaffold can provide an original and integrated environment for HPSCs growth. Additionally, this scaffold can be modified for different cell co-culture or cell behavior study.
Collapse
|
4
|
Beegle JR. A Preview of Selected Articles. Stem Cells 2019. [DOI: 10.1002/stem.2990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julie R. Beegle
- Institute for Regenerative Cures, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
5
|
Abu-Khader A, Law KW, Jahan S, Manesia JK, Pasha R, Hovey O, Pineault N. Paracrine Factors Released by Osteoblasts Provide Strong Platelet Engraftment Properties. Stem Cells 2018; 37:345-356. [PMID: 30520180 DOI: 10.1002/stem.2956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022]
Abstract
Ex vivo expansion of hematopoietic stem cell (HSCs) and progenitors may one day overcome the slow platelet engraftment kinetics associated with umbilical cord blood transplantation. Serum-free medium conditioned with osteoblasts (i.e., osteoblast-conditioned medium [OCM]) derived from mesenchymal stromal cells (MSC) was previously shown to increase cell growth and raise the levels of human platelets in mice transplanted with OCM-expanded progenitors. Herein, we characterized the cellular and molecular mechanisms responsible for these osteoblast-derived properties. Limiting dilution transplantation assays revealed that osteoblasts secrete soluble factors that synergize with exogenously added cytokines to promote the production of progenitors with short-term platelet engraftment activities, and to a lesser extent with long-term platelet engraftment activities. OCM also modulated the expression repertoire of cell-surface receptors implicated in the trafficking of HSC and progenitors to the bone marrow. Furthermore, OCM contains growth factors with prosurvival and proliferation activities that synergized with stem cell factor. Insulin-like growth factor (IGF)-2 was found to be present at higher levels in OCM than in control medium conditioned with MSC. Inhibition of the IGF-1 receptor, which conveys IGF-2' intracellular signaling, largely abolished the growth-promoting activity of OCM on immature CD34+ subsets and progenitors in OCM cultures. Finally, IGF-1R effects appear to be mediated in part by the coactivator β-catenin. In summary, these results provide new insights into the paracrine regulatory activities of osteoblasts on HSC, and how these can be used to modulate the engraftment properties of human HSC and progenitors expanded in culture. Stem Cells 2019;37:345-356.
Collapse
Affiliation(s)
- Ahmad Abu-Khader
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Kyle W Law
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Suria Jahan
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Biochemistry, Microbiology, and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Javed K Manesia
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Roya Pasha
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Owen Hovey
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Biochemistry, Microbiology, and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Biochemistry, Microbiology, and Immunology Department, University of Ottawa, Ottawa, Canada
| |
Collapse
|
6
|
Ghasemzadeh M, Hosseini E, Ahmadi M, Kamalizad M, Amirizadeh N. Comparable osteogenic capacity of mesenchymal stem or stromal cells derived from human amnion membrane and bone marrow. Cytotechnology 2018; 70:729-739. [PMID: 29305674 DOI: 10.1007/s10616-017-0177-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022] Open
Abstract
So far, substantial attentions have been attracted to the application of mesenchymal stem or stromal cells (MSCs) in different therapeutic approaches. Although human bone marrow is commonly considered as a major source for MSCs, having an invasive collection method, ethical consideration and donor availability create a challenge for scientists, leading them to explore better alternative sources for MSCs. The study presented here aimed to characterize and compare osteogenic capacity of MSCs obtained from the amnion membrane (AM) with those originated from BM. Cells isolated from AMs and BMs were cultured in DMEM-low glucose supplemented with FBS, penicillin and streptomycin. After 24 h of incubation, cells adhered to the plastic surface of the flasks were allowed to proliferate for more days. A sub-confluent culture of cells was trypsinized and re-cultured. The MSCs were characterized by the expression of specific markers with flow cytometry. The osteogenic differentiation of MSCs was also validated by alkaline phosphatase and alizarian red S staining. Our results showed comparable expression of MSCs specific markers for both MSC sources (AM and BM). We also showed the optimum osteogenic differentiation of MSCs from both sources whereas hAM-MSCs revealed higher proliferation rate. We found no essential immunophenotypic differences between MSCs originated from bone marrow and amnion membrane while their differentiations into osteoblastic linage were also comparable. This was in addition to the higher proliferation rate observed for hAM-MSCs which suggests hAM as an easily accessible and reliable source of MSCs applicable for bone engineering, regenerative medicine or other therapeutic approaches.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Express Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Express Way, Next to the Milad Tower, Tehran, 14665-1157, Iran.
| | - Mohammadhossein Ahmadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Express Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| | - Maedeh Kamalizad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Express Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Express Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| |
Collapse
|
7
|
Abstract
Pericytes have crucial roles in blood-brain barrier function, blood vessel function/stability, angiogenesis, endothelial cell proliferation/differentiation, wound healing, and hematopoietic stem cells maintenance. They can be isolated from fetal and adult tissues and have multipotential differentiation capacity as mesenchymal stem cells (MSCs). All of these properties make pericytes as preferred cells in the field of tissue engineering. Current developments have shown that tissue-engineered three-dimensional (3D) systems including multiple cell layers (or types) and a supporting biological matrix represent the in vivo environment better than those monolayers on plastic dishes. Tissue-engineered models are also more ethical and cheaper systems than animal models. This chapter describes the role of pericytes in tissue engineering for regenerative medicine.
Collapse
Affiliation(s)
- Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
8
|
Timari H, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Pashoutan Sarvar D, Aqmasheh S. The Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles on Hematopoietic Stem Cells Fate. Adv Pharm Bull 2017; 7:531-546. [PMID: 29399543 PMCID: PMC5788208 DOI: 10.15171/apb.2017.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells, with self-renewal ability as well as ability to generate all blood cells. Mesenchymal stem cells (MSCs) are multipotent stem cells, with self-renewal ability, and capable of differentiating into a variety of cell types. MSCs have supporting effects on hematopoiesis; through direct intercellular communications as well as secreting cytokines, chemokines, and extracellular vesicles (EVs). Recent investigations demonstrated that some biological functions and effects of MSCs are mediated by their EVs. MSC-EVs are the cell membrane and endosomal membrane compartments, which are important mediators in the intercellular communications. MSC-EVs contain some of the molecules such as proteins, mRNA, siRNA, and miRNA from their parental cells. MSC-EVs are able to inhibit tumor, repair damaged tissue, and modulate immune system responses. MSC-EVs compared to their parental cells, may have the specific safety advantages such as the lower potential to trigger immune system responses and limited side effects. Recently some studies demonstrated the effect of MSC-EVs on the expansion, differentiation, and clinical applications of HSCs such as improvement of hematopoietic stem cell transplantation (HSCT) and inhibition of graft versus host disease (GVHD). HSCT may be the only therapeutic choice for patients who suffer from malignant and non-malignant hematological disorders. However, there are several severe side effects such GVHD that restricts the successfulness of HSCT. In this review, we will discuss the most important effects of MSCs and MSC-EVs on the improvement of HSCT, inhibition and treatment of GVHD, as well as, on the expansion of HSCs.
Collapse
Affiliation(s)
- Hamze Timari
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology Oncology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Aqmasheh
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Costa MHG, de Soure AM, Cabral JMS, Ferreira FC, da Silva CL. Hematopoietic Niche - Exploring Biomimetic Cues to Improve the Functionality of Hematopoietic Stem/Progenitor Cells. Biotechnol J 2017; 13. [PMID: 29178199 DOI: 10.1002/biot.201700088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/27/2017] [Indexed: 12/19/2022]
Abstract
The adult bone marrow (BM) niche is a complex entity where a homeostatic hematopoietic system is maintained through a dynamic crosstalk between different cellular and non-cellular players. Signaling mechanisms triggered by cell-cell, cell-extracellular matrix (ECM), cell-cytokine interactions, and local microenvironment parameters are involved in controlling quiescence, self-renewal, differentiation, and migration of hematopoietic stem/progenitor cells (HSPC). A promising strategy to more efficiently expand HSPC numbers and tune their properties ex vivo is to mimic the hematopoietic niche through integration of adjuvant stromal cells, soluble cues, and/or biomaterial-based approaches in HSPC culture systems. Particularly, mesenchymal stem/stromal cells (MSC), through their paracrine activity or direct contact with HSPC, are thought to be a relevant niche player, positioning HSPC-MSC co-culture as a valuable platform to support the ex vivo expansion of hematopoietic progenitors. To improve the clinical outcome of hematopoietic cell transplantation (HCT), namely when the available HSPC are present in a limited number such is the case of HSPC collected from umbilical cord blood (UCB), ex vivo expansion of HSPC is required without eliminating the long-term repopulating capacity of more primitive HSC. Here, we will focus on depicting the characteristics of co-culture systems, as well as other bioengineering approaches to improve the functionality of HSPC ex vivo.
Collapse
Affiliation(s)
- Marta H G Costa
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - António M de Soure
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Michalicka M, Boisjoli G, Jahan S, Hovey O, Doxtator E, Abu-Khader A, Pasha R, Pineault N. Human Bone Marrow Mesenchymal Stromal Cell-Derived Osteoblasts Promote the Expansion of Hematopoietic Progenitors Through Beta-Catenin and Notch Signaling Pathways. Stem Cells Dev 2017; 26:1735-1748. [PMID: 29050516 DOI: 10.1089/scd.2017.0133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coculture of hematopoietic stem cells (HSC) with primary stromal cells from HSC niches supports the maintenance and expansion of HSC and progenitors ex vivo. However, a major drawback is the availability of primary human samples for research and clinical applications. We investigated the use of in vitro derived osteoblasts as a new source of feeder cells and characterized the molecular pathways that mediate their growth-promoting activities. First, we compared the growth and differentiation modulating activities of mesenchymal stromal cells (MSC)-derived osteoblasts (M-OST) with those of their undifferentiated precursor on umbilical cord blood (UCB) progenitors. Feeder-free cultures were also included as baseline control. Cell growth and expansion of hematopoietic progenitors were significantly enhanced by both feeder cell types. However, progenitor cell growth was considerably greater with M-OST. Coculture also promoted the maintenance of immature CD34+ progenitor subsets and modulated in a positive fashion the expression of several homing-related cell surface receptors, in a feeder-specific fashion. Serial transplantation experiments revealed that M-OST coculture supported the maintenance of long-term lympho-myeloid reconstituting HSC that provided engraftment levels that were generally superior to those from MSC cocultures. Mechanistically, we found that coculture with M-OST was associated with enhanced beta-catenin (β-Cat) activity in UCB cells and that abrogation of β-Cat/T-cell factor activity blunted the growth-promoting activity of the M-OST coculture. Conversely, Notch inhibition reduced UCB cell expansion, but to a much lesser extent. In conclusion, this study demonstrates that M-OST are excellent feeder cells for HSC and progenitors, and it identifies key molecular pathways that are responsible for the growth-enhancing activities of osteoblasts on UCB progenitors.
Collapse
Affiliation(s)
- Matthew Michalicka
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Gavin Boisjoli
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Suria Jahan
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada .,2 Biochemistry, Microbiology and Immunology Department, University of Ottawa , Ottawa, Canada
| | - Owen Hovey
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada .,2 Biochemistry, Microbiology and Immunology Department, University of Ottawa , Ottawa, Canada
| | - Emily Doxtator
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Ahmad Abu-Khader
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Roya Pasha
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Nicolas Pineault
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada .,2 Biochemistry, Microbiology and Immunology Department, University of Ottawa , Ottawa, Canada
| |
Collapse
|
11
|
Pan X, Sun Q, Zhang Y, Cai H, Gao Y, Shen Y, Zhang W. Biomimetic Macroporous PCL Scaffolds for Ex Vivo Expansion of Cord Blood-Derived CD34 + Cells with Feeder Cells Support. Macromol Biosci 2017; 17. [PMID: 28544462 DOI: 10.1002/mabi.201700054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/24/2017] [Indexed: 01/10/2023]
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) with most current methods can hardly satisfy clinical application requirement. While in vivo, HSCs efficiently self-renew in niche where they interact with 3D extracellular matrix and stromal cells. Therefore, co-cultures of CD34+ cells and mesenchyme stem cells derived from human amniotic membrane (hAMSCs) on the basis of biomimetic macroporous three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds are developed, where scaffolds and hAMSCs are applied to mimic structural and cellular microenvironment of HSCs. The influence of scaffolds, feeder cells, and contact manners on expansion and stemness maintenance of CD34+ cells is investigated in this protocol. Biomimetic scaffolds-dependent co-cultures of CD34+ cells and hAMSCs can effectively promote the expansion of CD34+ cells; meanwhile, indirect contact is superior to direct contact. The combination of biomimetic scaffolds and hAMSCs represents a new strategy for achieving clinical-scale ex vivo expansion of CD34+ cells.
Collapse
Affiliation(s)
- Xiuwei Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qiong Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanhao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yun Gao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yongjia Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
12
|
Alsheikh M, Abu-Khader A, Michalicka M, Pasha R, Pineault N. Impact of osteoblast maturation on their paracrine growth enhancing activity on cord blood progenitors. Eur J Haematol 2017; 98:542-552. [PMID: 28160325 DOI: 10.1111/ejh.12865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Osteoblasts possess strong growth modulatory activity on haematopoietic stem cells and progenitors. We sought to characterise the growth and differentiation modulatory activities of human osteoblasts at distinct stages of maturation on cord blood (CB) progenitors in the context of osteoblast conditioned medium (OCM). METHODS OCM was produced from MSC-derived osteoblasts (M-OST) at distinct stages of maturation. The growth modulatory activities of the OCM were tested on CB CD34+ cells using different functional assays. RESULTS OCMs raised the growth of CB cells and expansion of CD34+ cells independently of the maturation status of M-OST. However, productions of immature CB cells including committed and multipotent progenitors were superior with OCM produced with immature osteoblasts. Osteogenic differentiation was accompanied by the upregulation of IGFBP-2, by several members of the Angpt-L family of growth factor, and by the Notch ligands Dll-1 and Dll-4. However, the growth activity of OCM and the in vivo engraftment properties of OCM-expanded CB cells were retained after IGFBP-2 neutralisation. Similarly, OCM-mediated expansion of CB myeloid progenitors was largely independent of Notch signalling. CONCLUSIONS These results demonstrate that immature osteoblasts possess greater regulatory activity over haematopoietic progenitors, and that this activity is not entirely dependent on Notch signalling.
Collapse
Affiliation(s)
- Manal Alsheikh
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada.,Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Ahmad Abu-Khader
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
| | - Matthew Michalicka
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada.,Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Roya Pasha
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada.,Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
ÇELEBİ SALTIK B, GÖKÇINAR YAĞCI B. Expansion of human umbilical cord blood hematopoieticprogenitors with cord vein pericytes. Turk J Biol 2017. [DOI: 10.3906/biy-1510-49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
14
|
Abu-Khader A, Pasha R, Ward GCD, Boisjoli G, Pineault N. Characterization of the growth modulatory activities of osteoblast conditioned media on cord blood progenitor cells. Cytotechnology 2016; 68:2257-2269. [PMID: 27757713 DOI: 10.1007/s10616-016-0019-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/19/2016] [Indexed: 12/25/2022] Open
Abstract
Engraftment outcomes are strongly correlated with the numbers of hematopoietic stem and progenitor cells (HSPC) infused. Expansion of umbilical cord blood (CB) HSPC has gained much interest lately since infusion of expanded HSPC can accelerate engraftment and improve clinical outcomes. Many novel protocols based on different expansion strategies of HSPC and their downstream derivatives are under development. Herein, we describe the production and properties of serum-free medium (SFM) conditioned with mesenchymal stromal cells derived-osteoblasts (OCM) for the expansion of umbilical CB cells and progenitors. After optimization of the conditioning length, we show that OCM increased the production of human CB total nucleated cells and CD34+ cells by 1.8-fold and 1.5-fold over standard SFM, respectively. Production of immature CD34+ subpopulations enriched in hematopoietic stem cells was also improved with a shorter conditioning period. Moreover, we show that the growth modulatory activities of OCM on progenitor expansion are regulated by both soluble factors and non-soluble cellular elements. Finally, the growth and differentiation modulatory activities of OCM were fully retained after high dose-ionizing irradiation and highly stable when OCM is stored frozen. In summary, our results suggest that OCM efficiently mimics some of the natural regulatory activities of osteoblasts on HSPC and highlight the marked expansion potentials of SFM conditioned with osteoblasts.
Collapse
Affiliation(s)
- Ahmad Abu-Khader
- Centre for Innovation, Canadian Blood Services, 1800 Alta Vista, Ottawa, ON, K1G 4J5, Canada
| | - Roya Pasha
- Centre for Innovation, Canadian Blood Services, 1800 Alta Vista, Ottawa, ON, K1G 4J5, Canada
| | - Gwendoline C D Ward
- Centre for Innovation, Canadian Blood Services, 1800 Alta Vista, Ottawa, ON, K1G 4J5, Canada
| | - Gavin Boisjoli
- Centre for Innovation, Canadian Blood Services, 1800 Alta Vista, Ottawa, ON, K1G 4J5, Canada
| | - Nicolas Pineault
- Centre for Innovation, Canadian Blood Services, 1800 Alta Vista, Ottawa, ON, K1G 4J5, Canada. .,Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Yuan YH, Zhou CF, Lu ZY, Wang XL, Ding Y, Li D. Intrabone marrow injection enhances placental mesenchymal stem cellmediated support of hematopoiesis in mice. Turk J Med Sci 2016; 46:174-84. [PMID: 27511352 DOI: 10.3906/sag-1411-161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/03/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM In order to determine the synergistic effects of human placental mesenchymal stem cells (PMSCs) on hematopoiesis in vivo, we compared the intrabone marrow injection (IBMI) with the conventional intravenous injection (IVI). MATERIALS AND METHODS C57BL/6 recipient mice conditioned with lethal doses of irradiation were transplanted with bone marrow mononuclear cells (MNCs) and bone marrow-derived mesenchymal stem cells (BMSCs) from BALB/c mice by IBMI or IVI. NOD/SCID recipient mice conditioned with sublethal doses of irradiation were transplanted with human umbilical cord blood MNCs (UCB-MNCs) and PMSCs by IBMI or IVI. RESULTS The number of hematopoietic cells was significantly higher in mice transplanted with BMSCs by IBMI than in those transplanted by IVI in a murine transplantation model (BALB/c→C57BL/6). Moreover, the percentage of human hematopoietic cells in the tibiae of the NOD/SCID mice that were transplanted with PMSCs plus UCB-MNCs was higher than that in mice transplanted with UCB-MNCs alone. In addition, in mice that were transplanted with PMSCs, PMSCs injected by IBMI were more efficient than those injected by IVI. CONCLUSION Our results not only elucidated the role of PMSCs in promoting hematopoiesis, but also revealed the therapeutic potential of the combination of PMSCs and IBMI in transplantation.
Collapse
Affiliation(s)
- Ya Hong Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Chun Fang Zhou
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Zhi Yong Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Xiao Li Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Dongsheng Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| |
Collapse
|
16
|
Pan X, Sun Q, Cai H, Gao Y, Tan W, Zhang W. Encapsulated feeder cells within alginate beads for ex vivo expansion of cord blood-derived CD34+ cells. Biomater Sci 2016; 4:1441-53. [DOI: 10.1039/c6bm00191b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A co-culture system based on encapsulated feeder cells within alginate beads was developed through optimizing the detailed aspects of the cell culture system to expand CD34-positive (CD34+) cells ex vivo.
Collapse
Affiliation(s)
- Xiuwei Pan
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Qiong Sun
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yun Gao
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Weian Zhang
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
17
|
Isolation, characterisation and comparative analysis of human umbilical cord vein perivascular cells and cord blood mesenchymal stem cells. Cell Tissue Bank 2015; 17:345-52. [PMID: 26679930 DOI: 10.1007/s10561-015-9542-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/15/2015] [Indexed: 01/05/2023]
Abstract
Perivascular cells are known to be ancestors of mesenchymal stem cells (MSCs) and can be obtained from heart, skin, bone marrow, eye, placenta and umbilical cord (UC). However detailed characterization of perivascular cells around the human UC vein and comparative analysis of them with MSCs haven't been done yet. In this study, our aim is to isolate perivascular cells from human UC vein and characterize them versus UC blood MSCs (UCB-MSCs). For this purpose, perivascular cells around the UC vein were isolated enzymatically and then purified with magnetic activated cell sorting (MACS) method using CD146 Microbead Kit respectively. MSCs were isolated from UCB by Ficoll density gradient solution. Perivascular cells and UCB-MSCs were characterized by osteogenic and adipogenic differentiation procedures, flow cytometric analysis [CD146, CD105, CD31, CD34, CD45 and alpha-smooth muscle actin (α-SMA)], and immunofluorescent staining (MAP1B and Tenascin C). Alizarin red and Oil red O staining results showed that perivascular cells and MSCs had osteogenic and adipogenic differentiation capacity. However, osteogenic differentiation capacity of perivascular cells were found to be less than UCB-MSCs. According to flow cytometric analysis, CD146 expression of perivascular cells were appeared to be 4.8-fold higher than UCB-MSCs. Expression of α-SMA, MAP1B and Tenascin-C from perivascular cells was determined by flow cytometry analysis and immunfluorescent staining. The results appear to support the fact that perivascular cells are the ancestors of MSCs in vascular area. They may be used as alternative cells to MSCs in the field of vascular tissue engineering.
Collapse
|
18
|
Kadekar D, Kale V, Limaye L. Differential ability of MSCs isolated from placenta and cord as feeders for supporting ex vivo expansion of umbilical cord blood derived CD34(+) cells. Stem Cell Res Ther 2015; 6:201. [PMID: 26481144 PMCID: PMC4617445 DOI: 10.1186/s13287-015-0194-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/15/2015] [Accepted: 09/28/2015] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Ex vivo expansion of umbilical cord blood (UCB) is attempted to increase cell numbers to overcome the limitation of cell dose. Presently, suspension cultures or feeder mediated co-cultures are performed for expansion of hematopoietic stem cells (HSCs). Mesenchymal stem cells (MSCs) have proved to be efficient feeders for the maintenance of HSCs. Here, we have established MSCs-HSCs co-culture system with MSCs isolated from less invasive and ethically acceptable sources like umbilical cord tissue (C-MSCs) and placenta (P-MSCs). MSCs derived from these tissues are often compared with bone marrow derived MSCs (BM-MSCs) which are considered as a gold standard. However, so far none of the studies have directly compared C-MSCs with P-MSCs as feeders for ex vivo expansion of HSCs. Thus, we for the first time performed a systematic comparison of hematopoietic supportive capability of C and P-MSCs using paired samples. METHODS UCB-derived CD34(+) cells were isolated and co-cultured on irradiated C and P-MSCs for 10 days. C-MSCs and P-MSCs were isolated from the same donor. The cultures comprised of serum-free medium supplemented with 25 ng/ml each of SCF, TPO, Flt-3 L and IL-6. After 10 days cells were collected and analyzed for phenotype and functionality. RESULTS C-MSCs and P-MSCs were found to be morphologically and phenotypically similar but exhibited differential ability to support ex vivo hematopoiesis. Cells expanded on P-MSCs showed higher percentage of primitive cells (CD34(+)CD38(-)), CFU (Colony forming unit) content and LTC-IC (Long term culture initiating cells) ability. CD34(+) cells expanded on P-MSCs also exhibited better in vitro adhesion to fibronectin and migration towards SDF-1α and enhanced NOD/SCID repopulation ability, as compared to those grown on C-MSCs. P-MSCs were found to be closer to BM-MSCs in their ability to expand HSCs. P-MSCs supported expansion of functionally superior HSCs by virtue of reduction in apoptosis of primitive HSCs, higher Wnt and Notch activity, HGF secretion and cell-cell contact. On the other hand, C-MSCs facilitated expansion of progenitors (CD34(+)CD38(+)) and differentiated (CD34(-)CD38(+)) cells by secretion of IL1-α, β, MCP-2, 3 and MIP-3α. CONCLUSIONS P-MSCs were found to be better feeders for ex vivo maintenance of primitive HSCs with higher engraftment potential than the cells expanded with C-MSCs as feeders.
Collapse
Affiliation(s)
- Darshana Kadekar
- Stem Cell Laboratory, National Centre for Cell Science, University of Pune Campus, Ganeshkhind, Pune, 411007, Maharashtra, India.
| | - Vaijayanti Kale
- Stem Cell Laboratory, National Centre for Cell Science, University of Pune Campus, Ganeshkhind, Pune, 411007, Maharashtra, India.
| | - Lalita Limaye
- Stem Cell Laboratory, National Centre for Cell Science, University of Pune Campus, Ganeshkhind, Pune, 411007, Maharashtra, India.
| |
Collapse
|
19
|
Oubari F, Amirizade N, Mohammadpour H, Nakhlestani M, Zarif MN. The Important Role of FLT3-L in Ex Vivo Expansion of Hematopoietic Stem Cells following Co-Culture with Mesenchymal Stem Cells. CELL JOURNAL 2015. [PMID: 26199899 PMCID: PMC4503834 DOI: 10.22074/cellj.2016.3715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective Hematopoietic stem cells (HSCs) transplantation using umbilical cord blood
(UCB) has improved during the last decade. Because of cell limitations, several studies focused on the ex vivo expansion of HSCs. Numerous investigations were performed to introduce the best cytokine cocktails for HSC expansion The majority used the Fms-related
tyrosine kinase 3 ligand (FLT3-L) as a critical component. According to FLT3-L biology, in
this study we have investigated the hypothesis that FLT3-L only effectively induces HSCs
expansion in the presence of a mesenchymal stem cell (MSC) feeder.
Materials and Methods In this experimental study, HSCs and MSCs were isolated from
UCB and placenta, respectively. HSCs were cultured in different culture conditions in the
presence and absence of MSC feeder and cytokines. After ten days of culture, total nucleated cell count (TNC), cluster of differentiation 34+(CD34+) cell count, colony forming
unit assay (CFU), long-term culture initiating cell (LTC-IC), homeobox protein B4 (HoxB4)
mRNA and surface CD49d expression were evaluated. The fold increase for some culture
conditions was compared by the t test.
Results HSCs expanded in the presence of cytokines and MSCs feeder. The rate of expansion in the co-culture condition was two-fold more than culture with cytokines (P<0.05).
FLT3-L could expand HSCs in the co-culture condition at a level of 20-fold equal to the
presence of stem cell factor (SCF), thrombopoietin (TPO) and FLT3-L without feeder cells.
The number of extracted colonies from LTC-IC and CD49d expression compared with a
cytokine cocktail condition meaningfully increased (P<0.05).
Conclusion FLT3-L co-culture with MSCs can induce high yield expansion of HSCs and
be a substitute for the universal cocktail of SCF, TPO and FLT3-L in feeder-free culture.
Collapse
Affiliation(s)
- Farhad Oubari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran ; Faulty of Paramedics, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Naser Amirizade
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hemn Mohammadpour
- Department of Medical Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mozhdeh Nakhlestani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
20
|
Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol 2015; 43:498-513. [DOI: 10.1016/j.exphem.2015.04.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
|
21
|
Dumont N, Boyer L, Émond H, Celebi-Saltik B, Pasha R, Bazin R, Mantovani D, Roy DC, Pineault N. Medium conditioned with mesenchymal stromal cell-derived osteoblasts improves the expansion and engraftment properties of cord blood progenitors. Exp Hematol 2014; 42:741-52.e1. [PMID: 24793546 DOI: 10.1016/j.exphem.2014.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/09/2014] [Accepted: 04/24/2014] [Indexed: 01/23/2023]
Abstract
Strategies to enhance the expansion of umbilical cord blood hematopoietic stem and progenitor cells (HSPCs) are crucial to enable their widespread application to adults and to overcome important limitations, such as delayed engraftment. Osteoblasts regulate HSPCs under steady-state and also under stress conditions, when HSPCs undergo numerous cycles of expansion. We hypothesized that osteoblasts could provide better stimulation for the expansion of multipotent HSPCs and subsequent hematopoietic recovery than mesenchymal stromal cells. Hence, we assessed the growth and engraftment modulatory activities of mesenchymal stromal cell-derived osteoblasts (M-OSTs) on hematopoietic progenitors. Mesenchymal stromal cells and M-OSTs favored the maintenance of CD34(+) cells. The expansion of cord blood CD34(+) cells and myeloid progenitors was highest in cultures supplemented with unfiltered M-OST-conditioned medium (M-OST CM). In addition, increased expression of cell surface receptors important for the homing of progenitors to the bone marrow, C-X-C chemokine receptor type 4 and lymphocyte function-associated antigen 1, was observed in CM-based cultures. Additionally, M-OST CM positively modulated the engraftment properties of expanded progenitors. Most notably, although human platelet levels remained steady in the first 2 weeks in mice transplanted with HSPCs expanded in standard medium, levels in mice transplanted with M-OST CM HSPCs rose continuously. Consistent with this, short-term human progenitor reconstitution was consistently greater in M-OST recipients. Finally, cytokine array-based profiling revealed increases in insulin-like growth factor binding protein 2, chemokines, and myeloid stimulating cytokines in M-OST CM. In conclusion, this study suggests that M-OSTs represent a new underappreciated source of feeder cells for the expansion of HSPCs with enhanced thrombopoietic activity.
Collapse
Affiliation(s)
- Nellie Dumont
- Héma-Québec, Research and Development, Quebec City, Canada
| | - Lucie Boyer
- Héma-Québec, Research and Development, Quebec City, Canada
| | - Hélène Émond
- Héma-Québec, Research and Development, Quebec City, Canada
| | - Betül Celebi-Saltik
- Héma-Québec, Research and Development, Quebec City, Canada; Laboratory for Biomaterials and Bioengineering, Department of Mining-Metallurgical and Materials Engineering & University Hospital Research Center, Laval University, Quebec City, Canada
| | - Roya Pasha
- Canadian Blood Services, Center for Innovation, Ottawa, Canada
| | - Renée Bazin
- Héma-Québec, Research and Development, Quebec City, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec City, Canada
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Department of Mining-Metallurgical and Materials Engineering & University Hospital Research Center, Laval University, Quebec City, Canada
| | - Denis-Claude Roy
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Canada; Division of Hematology-Oncology, Department of Medicine, University of Montréal, Montreal, Canada
| | - Nicolas Pineault
- Héma-Québec, Research and Development, Quebec City, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec City, Canada; Canadian Blood Services, Center for Innovation, Ottawa, Canada.
| |
Collapse
|
22
|
Hou R, Yan H, Niu X, Chang W, An P, Wang C, Yang Y, Yan X, Li J, Liu R, Li X, Zhang K. Gene expression profile of dermal mesenchymal stem cells from patients with psoriasis. J Eur Acad Dermatol Venereol 2014; 28:1782-91. [PMID: 24593802 DOI: 10.1111/jdv.12420] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/27/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are likely involved in pathological processes of immune-related diseases, including psoriasis because of their immunoregulatory and pro-angiogenic effects, and the vascular proliferation, angiectasis and perivascular lymphocyte infiltration are known to be predominantly responsible for the pathological alterations in psoriasis. OBJECTIVE This study aimed to investigate the gene expression profile of dermal MSCs from patients with psoriasis. METHODS We isolated and expanded dermal MSCs from psoriatic patients and normal controls by using the attachment assay and conducted mRNA expression profile and gene ontology analyses using microarray. RESULTS The gene expression profile of MSCs from psoriatic derma was markedly different from the normal derma-derived MSCs; the angiogenesis-related genes such as vascular endothelial growth factor A, insulin-like growth factor-binding protein-5, and GATA6 showed significant differential expression. CONCLUSIONS These results indicate that MSCs from the derma of psoriasis patients might be involved in the early development of psoriasis because of their pro-angiogenic potential as well as the immunoregulatory effect.
Collapse
Affiliation(s)
- R Hou
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Émond H, Boyer L, Roy DC, Pineault N. Cotransplantation of Ex Vivo Expanded Progenitors with Nonexpanded Cord Blood Cells Improves Platelet Recovery. Stem Cells Dev 2012; 21:3209-19. [DOI: 10.1089/scd.2012.0142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Hélène Émond
- Héma-Québec, Department of Research and Development, Québec, Province of Québec, Canada
- Biochemistry and Microbiology Department, Université Laval, Québec, Province of Québec, Canada
| | - Lucie Boyer
- Héma-Québec, Department of Research and Development, Québec, Province of Québec, Canada
| | - Denis-Claude Roy
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, Province of Québec, Canada
- Division of Hematology, Department of Medicine, University of Montréal, Montreal, Province of Québec, Canada
| | - Nicolas Pineault
- Héma-Québec, Department of Research and Development, Québec, Province of Québec, Canada
- Biochemistry and Microbiology Department, Université Laval, Québec, Province of Québec, Canada
| |
Collapse
|
24
|
Çelebi B, Cloutier M, Rabelo RB, Balloni R, Mantovani D, Bandiera A. Human elastin-based recombinant biopolymers improve mesenchymal stem cell differentiation. Macromol Biosci 2012; 12:1546-54. [PMID: 23042756 DOI: 10.1002/mabi.201200170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/25/2012] [Indexed: 12/26/2022]
Abstract
Elastin-based polypeptides are a class of smart biopolymers representing an important model in the design of biomaterials. The combination of biomimetic materials with cells that have great plasticity provides a promising strategy for the realization of highly engineered cell-based constructs for regenerative medicine and tissue repair applications. Two recombinant biopolymers inspired by human elastin are assessed as coating agents to prepare biomimetic surfaces for cell culture. These substrates are assayed for hBM MSC culture. The coated surfaces are also characterized with AFM to evaluate the topographical features of the deposited biopolymers. The results suggest that the elastin-derived biomimetic surfaces play a stimulatory role on osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Betül Çelebi
- Laboratory for Biomaterials and Bioengineering, Laval University, Quebec City, G1V 0A6, PQ, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Naci D, El Azreq MA, Chetoui N, Lauden L, Sigaux F, Charron D, Al-Daccak R, Aoudjit F. α2β1 integrin promotes chemoresistance against doxorubicin in cancer cells through extracellular signal-regulated kinase (ERK). J Biol Chem 2012; 287:17065-17076. [PMID: 22457358 DOI: 10.1074/jbc.m112.349365] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role and the mechanisms by which β1 integrins regulate the survival and chemoresistance of T cell acute lymphoblastic leukemia (T-ALL) still are poorly addressed. In this study, we demonstrate in T-ALL cell lines and primary blasts, that engagement of α2β1 integrin with its ligand collagen I (ColI), reduces doxorubicin-induced apoptosis, whereas fibronectin (Fn) had no effect. ColI but not Fn inhibited doxorubicin-induced mitochondrial depolarization, cytochrome c release, and activation of caspase-9 and -3. ColI but not Fn also prevented doxorubicin from down-regulating the levels of the prosurvival Bcl-2 protein family member Mcl-1. The effect of ColI on Mcl-1 occurred through the inhibition of doxorubicin-induced activation of c-Jun N-terminal kinase (JNK). Mcl-1 knockdown experiments showed that the maintenance of Mcl-1 levels is essential for ColI-mediated T-ALL cell survival. Furthermore, activation of MAPK/ERK, but not PI3K/AKT, is required for ColI-mediated inhibition of doxorubicin-induced JNK activation and apoptosis and for ColI-mediated maintenance of Mcl-1 levels. Thus, our study identifies α2β1 integrin as an important survival pathway in drug-induced apoptosis of T-ALL cells and suggests that its activation can contribute to the generation of drug resistance.
Collapse
Affiliation(s)
- Dalila Naci
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Local T1-49, Québec G1V4G2, Canada
| | - Mohammed-Amine El Azreq
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Local T1-49, Québec G1V4G2, Canada
| | - Nizar Chetoui
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Local T1-49, Québec G1V4G2, Canada
| | - Laura Lauden
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 940, Institut Universitaire d'Hématologie Université Paris Denis Diderot, Hôpital Saint Louis, 75010 Paris, France
| | - François Sigaux
- INSERM U944, Institut Universitaire d'Hématologie Université Paris Denis Diderot, Hôpital Saint Louis, 75010 Paris, France
| | - Dominique Charron
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 940, Institut Universitaire d'Hématologie Université Paris Denis Diderot, Hôpital Saint Louis, 75010 Paris, France
| | - Reem Al-Daccak
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 940, Institut Universitaire d'Hématologie Université Paris Denis Diderot, Hôpital Saint Louis, 75010 Paris, France
| | - Fawzi Aoudjit
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Local T1-49, Québec G1V4G2, Canada.
| |
Collapse
|
26
|
Celebi B, Mantovani D, Pineault N. Insulin-like growth factor binding protein-2 and neurotrophin 3 synergize together to promote the expansion of hematopoietic cells ex vivo. Cytokine 2012; 58:327-31. [PMID: 22459634 DOI: 10.1016/j.cyto.2012.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/02/2012] [Accepted: 02/20/2012] [Indexed: 12/12/2022]
Abstract
Co-culture of Umbilical Cord Blood (UCB) CD34+ cells with irradiated Mesenchymal Stem Cells (MSCs) without contact increase the expansion of Hematopoietic Progenitor Cells (HPC). Neurotrophin-3 (NT-3) and insulin-like growth factor binding protein-2 (IGFBP-2) are two factors whose expressions were significantly elevated in conditioned media derived from irradiated MSCs. To determine whether these factors are partly responsible for the growth promoting potential of MSCs, we investigated their impact on the growth and differentiation of UCB-CD34+ cells. Addition of either factor alone had little impact on cell growth, however both factors synergized together to increase the expansion of total nucleated cells, erythroids, megakaryocytes (Mk) and CD34+ cells. However, in contrast to MSCs they failed to significantly improve the expansion of hematopoietic progenitors. Consistent with the impact of these factors on hematopoietic cells, both synergized to activate ERK1/2 and AKT in primary human UCB cells. In conclusion, the study demonstrates for the first time that a neurotrophin factor can synergize with IGFBP-2 to promote hematopoietic cell expansion.
Collapse
Affiliation(s)
- Betül Celebi
- Hema-Quebec, Research & Development Department, Quebec City, PQ, Canada.
| | | | | |
Collapse
|
27
|
Celebi B, Mantovani D, Pineault N. Effects of extracellular matrix proteins on the growth of haematopoietic progenitor cells. Biomed Mater 2011; 6:055011. [PMID: 21931196 DOI: 10.1088/1748-6041/6/5/055011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Umbilical cord blood (UCB) transplantation and haematological recovery are currently limited by the amount of haematopoietic progenitor cells (HPCs) present in each unit. HPCs and haematopoietic stem cells (HSCs) normally interact with cells and extracellular matrix (ECM) proteins present within the endosteal and vascular niches. Hence, we investigated whether coating of culture surfaces with ECM proteins normally present in the marrow microenvironment could benefit the ex vivo expansion of HPCs. Towards this, collagen types I and IV (COL I and IV), laminin (LN) and fibronectin (FN) were tested individually or as component of two ECM-mix complexes. Individually, ECM proteins had both common and unique properties on the growth and differentiation of UCB CD34+ cells; some ECM proteins favoured the differentiation of some lineages over that of others (e.g. FN for erythroids), some the expansion of HPCs (e.g. LN and megakaryocyte (MK) progenitor) while others had less effects. Next, two ECM-mix complexes were tested; the first one contained all four ECM proteins (4ECMp), while the second 'basement membrane-like structure' was without COL I (3ECMp). Removal of COL I led to strong reductions in cell growth and HPCs expansion. Interestingly, the 4ECMp-mix complex reproducibly increased CD34+ (1.3-fold) and CD41+ (1.2-fold) cell expansions at day 6 (P < 0.05) versus control, and induced greater myeloid progenitor expansion (P < 0.05) than 3ECMp. In conclusion, these results suggest that optimization of BM ECM protein complexes could provide a better environment for the ex vivo expansion of haematopoietic progenitors than individual ECM protein.
Collapse
Affiliation(s)
- Betül Celebi
- Hema-Quebec, Research & Development Department, Quebec City, PQ, Canada
| | | | | |
Collapse
|