1
|
Piri N, Kaplan HJ. Role of Complement in the Onset of Age-Related Macular Degeneration. Biomolecules 2023; 13:biom13050832. [PMID: 37238702 DOI: 10.3390/biom13050832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive degenerative disease of the central retina and the leading cause of severe loss of central vision in people over age 50. Patients gradually lose central visual acuity, compromising their ability to read, write, drive, and recognize faces, all of which greatly impact daily life activities. Quality of life is significantly affected in these patients, and there are worse levels of depression as a result. AMD is a complex, multifactorial disease in which age and genetics, as well as environmental factors, all play a role in its development and progression. The mechanism by which these risk factors interact and converge towards AMD are not fully understood, and therefore, drug discovery is challenging, with no successful therapeutic attempt to prevent the development of this disease. In this review, we describe the pathophysiology of AMD and review the role of complement, which is a major risk factor in the development of AMD.
Collapse
Affiliation(s)
- Niloofar Piri
- Department of Ophthalmology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Henry J Kaplan
- Departments of Ophthalmology and Biochemistry & Molecular Biology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| |
Collapse
|
2
|
Wijaya C, Burns C, Hall S, Farmer M, Jones D, Rowlandson M, Choi P, Formby M, de Malmanche T. Measurement of Complement Activation via Plasma-Soluble C5b-9 Comparison with Terminal Complement Complex Staining in a Series of Kidney Biopsies. Kidney Blood Press Res 2023; 48:220-230. [PMID: 36917968 PMCID: PMC10124756 DOI: 10.1159/000529734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION With the emergence of therapeutic complement inhibitors, there is a need to identify patients with complement-driven inflammation. C5b-9 is the terminal product of the three complement pathways and therefore a marker of total complement activation. We present a pilot study which aims to assess whether plasma soluble C5b-9 (sC5b-9) correlates with terminal complement complex (TCC) staining in kidney tissue. The secondary aim was to assess the utility of plasma sC5b-9 as part of routine workup in kidney patients undergoing kidney biopsy. METHODS Thirty-seven patients undergoing kidney biopsy had plasma sC5b-9 and TCC staining on kidney tissue performed. Additional blood markers including creatinine, haemoglobin, CRP, factor H, factor I, and midkine levels were also taken. These parameters were correlated with the histological diagnoses. Patients were divided into a diseased group (n = 31) and a control group (n = 6) consisting of transplanted kidneys with minor or no changes. Of the biopsies in the control group, 50% were performed as per protocol, and the other 50% were performed due to clinical need. RESULTS There was no correlation found between plasma sC5b-9 and TCC kidney staining. Elevated sC5b-9 levels were found in a heterogeneous group of patients but were associated with higher CRP and lower haemoglobin levels. Overall, there was more TCC kidney staining in the diseased group compared with the control group, and a trend was observed of diabetic, primary membranous nephropathy, and amyloidosis patients having more intense glomerular and peritubular/interstitial staining. CONCLUSION Plasma sC5b-9 as a marker of total complement activation does not correlate with TCC kidney staining. This discordance suggests that plasma sC5b-9 and TCC staining are distinct markers of disease. TCC staining reflects chronicity and tissue deposition of complement over time. Conversely, plasma sC5b-9 concentrations change rapidly and reflect systemic complement activation. Complement activation was present in a heterogeneous group of kidney disease, indicating the underlying role of complement in many disorders.
Collapse
Affiliation(s)
- Carolyn Wijaya
- Immunopathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- University of Newcastle, University Drive, Callaghan, NSW, Australia
| | - Christine Burns
- Immunopathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Sharron Hall
- Immunopathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Melissa Farmer
- Anatomical Pathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Denise Jones
- Renal Department, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Matthew Rowlandson
- Renal Department, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Peter Choi
- Renal Department, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Mark Formby
- Anatomical Pathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Theo de Malmanche
- Immunopathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| |
Collapse
|
3
|
Complement Inhibitors in Age-Related Macular Degeneration: A Potential Therapeutic Option. J Immunol Res 2021; 2021:9945725. [PMID: 34368372 PMCID: PMC8346298 DOI: 10.1155/2021/9945725] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease, which can culminate in irreversible vision loss and blindness in elderly. Nowadays, there is a big gap between dry AMD and wet AMD on treatment. Accounting for nearly 90% of AMD, dry AMD still lacks effective treatment. Numerous genetic and molecular researches have confirmed the significant role of the complement system in the pathogenesis of AMD, leading to a deeper exploration of complement inhibitors in the treatment of AMD. To date, at least 14 different complement inhibitors have been or are being explored in AMD in almost 40 clinical trials. While most complement inhibitors fail to treat AMD successfully, two of them are effective in inhibiting the rate of GA progression in phase II clinical trials, and both of them successfully entered phase III trials. Furthermore, recently emerging complement gene therapy and combination therapy also offer new opportunities to treat AMD in the future. In this review, we aim to introduce genetic and molecular associations between the complement system and AMD, provide the updated progress in complement inhibitors in AMD on clinical trials, and discuss the challenges and prospects of complement therapeutic strategies in AMD.
Collapse
|
4
|
Interlink between Inflammation and Oxidative Stress in Age-Related Macular Degeneration: Role of Complement Factor H. Biomedicines 2021; 9:biomedicines9070763. [PMID: 34209418 PMCID: PMC8301356 DOI: 10.3390/biomedicines9070763] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) heads the list of legal blindness among the elderly population in developed countries. Due to the complex nature of the retina and the variety of risk factors and mechanisms involved, the molecular pathways underlying AMD are not yet fully defined. Persistent low-grade inflammation and oxidative stress eventually lead to retinal pigment epithelium dysfunction and outer blood-retinal barrier (oBRB) breakdown. The identification of AMD susceptibility genes encoding complement factors, and the presence of inflammatory mediators in drusen, the hallmark deposits of AMD, supports the notion that immune-mediated processes are major drivers of AMD pathobiology. Complement factor H (FH), the main regulator of the alternative pathway of the complement system, may have a key contribution in the pathogenesis of AMD as it is able to regulate both inflammatory and oxidative stress responses in the oBRB. Indeed, genetic variants in the CFH gene account for the strongest genetic risk factors for AMD. In this review, we focus on the roles of inflammation and oxidative stress and their connection with FH and related proteins as regulators of both phenomena in the context of AMD.
Collapse
|
5
|
Poppelaars F, Goicoechea de Jorge E, Jongerius I, Baeumner AJ, Steiner MS, Józsi M, Toonen EJM, Pauly D, the SciFiMed consortium. A Family Affair: Addressing the Challenges of Factor H and the Related Proteins. Front Immunol 2021; 12:660194. [PMID: 33868311 PMCID: PMC8044877 DOI: 10.3389/fimmu.2021.660194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammation is a common denominator of diseases. The complement system, an intrinsic part of the innate immune system, is a key driver of inflammation in numerous disorders. Recently, a family of proteins has been suggested to be of vital importance in conditions characterized by complement dysregulation: the human Factor H (FH) family. This group of proteins consists of FH, Factor H-like protein 1 and five Factor H-related proteins. The FH family has been linked to infectious, vascular, eye, kidney and autoimmune diseases. In contrast to FH, the functions of the other highly homologous proteins are largely unknown and, hence, their role in the different disease-specific pathogenic mechanisms remains elusive. In this perspective review, we address the major challenges ahead in this emerging area, including 1) the controversies about the functional roles of the FH protein family, 2) the discrepancies in quantification of the FH protein family, 3) the unmet needs for validated tools and 4) limitations of animal models. Next, we also discuss the opportunities that exist for the immunology community. A strong multidisciplinary approach is required to solve these obstacles and is only possible through interdisciplinary collaboration between biologists, chemists, geneticists and physicians. We position this review in light of our own perspective, as principal investigators of the SciFiMed Consortium, a consortium aiming to create a comprehensive analytical system for the quantitative and functional assessment of the entire FH protein family.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elena Goicoechea de Jorge
- Department of Immunology, Faculty of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | | | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University Marburg, Marburg, Germany
| | | |
Collapse
|
6
|
Tzoumas N, Hallam D, Harris CL, Lako M, Kavanagh D, Steel DHW. Revisiting the role of factor H in age-related macular degeneration: Insights from complement-mediated renal disease and rare genetic variants. Surv Ophthalmol 2020; 66:378-401. [PMID: 33157112 DOI: 10.1016/j.survophthal.2020.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Ophthalmologists are long familiar with the eye showing signs of systemic disease, but the association between age-related macular degeneration and abnormal complement activation, common to several renal disorders, has only recently been elucidated. Although complement activation products were identified in drusen almost three decades ago, it was not until the early 21st century that a single-nucleotide polymorphism in the complement factor H gene was identified as a major heritable determinant of age-related macular degeneration, galvanizing global efforts to unravel the pathogenesis of this common disease. Advances in proteomic analyses and familial aggregation studies have revealed distinctive clinical phenotypes segregated by the functional effects of common and rare genetic variants on the mature protein and its splice variant, factor H-like protein 1. The predominance of loss-of-function, N-terminal mutations implicate age-related macular degeneration as a disease of general complement dysregulation, offering several therapeutic avenues for its modulation. Here, we explore the molecular impact of these mutations/polymorphisms on the ability of variant factor H/factor H-like protein 1 to localize to polyanions, pentraxins, proinflammatory triggers, and cell surfaces across ocular and renal tissues and exert its multimodal regulatory functions and their clinical implications. Finally, we critically evaluate key therapeutic and diagnostic efforts in this rapidly evolving field.
Collapse
Affiliation(s)
- Nikolaos Tzoumas
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Dean Hallam
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire L Harris
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - David H W Steel
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Sunderland Eye Infirmary, Sunderland, United Kingdom
| |
Collapse
|
7
|
Mannes M, Dopler A, Huber-Lang M, Schmidt CQ. Tuning the Functionality by Splicing: Factor H and Its Alternative Splice Variant FHL-1 Share a Gene but Not All Functions. Front Immunol 2020; 11:596415. [PMID: 33178228 PMCID: PMC7593401 DOI: 10.3389/fimmu.2020.596415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
The alternative pathway regulator Factor H-like protein 1 (FHL-1) is composed of the first 7 N-terminal complement control protein domains of Factor H (FH) and protects host surfaces from uncontrolled complement attack. Although FHL-1 shares the N-terminal regulatory domains with FH, it was thought to be a weaker regulator. Recently, the regulatory activity of FHL-1 was shown to be comparable to FH. Nonetheless, the question remained whether FHL-1 is an indispensable, unique regulator. The discovery that FHL-1 is the predominant regulator on Bruch’s membrane, a critical site for the onset and progression of age-related-macular degeneration (AMD), showed that FHL-1 is essential for complement regulation. A common single nucleotide polymorphism in FH/FHL-1 that predisposes for AMD underlines the important role of FHL-1 in this context. Reports that some cancer tissues specifically upregulate FHL-1 expression, thereby evading immune surveillance, suggests a pronounced regulatory activity of the splice variant. Several microorganisms specifically recruit FHL-1 to evade complement attack. From a phylogenetic point of view, FHL-1 appears much later than other complement regulators, which could imply a specific role that is possibly not systemic but rather tissue specific. This review focuses on the current knowledge of FHL-1 and its physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Arthur Dopler
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Bain W, Li H, van der Geest R, Moore SR, Olonisakin TF, Ahn B, Papke E, Moghbeli K, DeSensi R, Rapport S, Saul M, Hulver M, Xiong Z, Mallampalli RK, Ray P, Morris A, Ma L, Doi Y, Zhang Y, Kitsios GD, Kulkarni HS, McVerry BJ, Ferreira VP, Nouraie M, Lee JS. Increased Alternative Complement Pathway Function and Improved Survival during Critical Illness. Am J Respir Crit Care Med 2020; 202:230-240. [PMID: 32374177 PMCID: PMC7365364 DOI: 10.1164/rccm.201910-2083oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/01/2020] [Indexed: 01/16/2023] Open
Abstract
Rationale: Complement is crucial for host defense but may also drive dysregulated inflammation. There is limited understanding of alternative complement function, which can amplify all complement activity, during critical illness.Objectives: We examined the function and key components of the alternative complement pathway in a series of critically ill patients and in a mouse pneumonia model.Methods: Total classical (CH50) and alternative complement (AH50) function were quantified in serum from 321 prospectively enrolled critically ill patients and compared with clinical outcomes. Alternative pathway (AP) regulatory factors were quantified by ELISA (n = 181) and examined via transcriptomics data from external cohorts. Wild-type, Cfb-/-, and C3-/- mice were infected intratracheally with Klebsiella pneumoniae (KP) and assessed for extrapulmonary dissemination.Measurements and Main Results: AH50 greater than or equal to median, but not CH50 greater than or equal to median, was associated with decreased 30-day mortality (adjusted odds ratio [OR], 0.53 [95% confidence interval (CI), 0.31-0.91]), independent of chronic liver disease. One-year survival was improved in patients with AH50 greater than or equal to median (adjusted hazard ratio = 0.59 [95% CI, 0.41-0.87]). Patients with elevated AH50 had increased levels of AP factors B, H, and properdin, and fewer showed a "hyperinflammatory" subphenotype (OR, 0.30 [95% CI, 0.18-0.49]). Increased expression of proximal AP genes was associated with improved survival in two external cohorts. AH50 greater than or equal to median was associated with fewer bloodstream infections (OR, 0.67 [95% CI, 0.45-0.98). Conversely, depletion of AP factors, or AH50 less than median, impaired in vitro serum control of KP that was restored by adding healthy serum. Cfb-/- mice demonstrated increased extrapulmonary dissemination and serum inflammatory markers after intratracheal KP infection compared with wild type.Conclusions: Elevated AP function is associated with improved survival during critical illness, possibly because of enhanced immune capacity.
Collapse
Affiliation(s)
- William Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Veterans Health Administration Pittsburgh Health System, Pittsburgh, Pennsylvania
| | - Huihua Li
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Sara R. Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Life Sciences, Toledo, Ohio
| | - Tolani F. Olonisakin
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Brian Ahn
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Erin Papke
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Kaveh Moghbeli
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Rebecca DeSensi
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Sarah Rapport
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Melissa Saul
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Mei Hulver
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Zeyu Xiong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | - Prabir Ray
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Alison Morris
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Center for Medicine and the Microbiome
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, Washington University, St. Louis, Missouri
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, and
| | - Yingze Zhang
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Georgios D. Kitsios
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Center for Medicine and the Microbiome
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, Washington University, St. Louis, Missouri
| | - Bryan J. McVerry
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Center for Medicine and the Microbiome
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Life Sciences, Toledo, Ohio
| | - Mehdi Nouraie
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Regulation of regulators: Role of the complement factor H-related proteins. Semin Immunol 2019; 45:101341. [PMID: 31757608 DOI: 10.1016/j.smim.2019.101341] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 01/15/2023]
Abstract
The complement system, while being an essential and very efficient effector component of innate immunity, may cause damage to the host and result in various inflammatory, autoimmune and infectious diseases or cancer, when it is improperly activated or regulated. Factor H is a serum glycoprotein and the main regulator of the activity of the alternative complement pathway. Factor H, together with its splice variant factor H-like protein 1 (FHL-1), inhibits complement activation at the level of the central complement component C3 and beyond. In humans, there are also five factor H-related (FHR) proteins, whose function is poorly characterized. While data indicate complement inhibiting activity for some of the FHRs, there is increasing evidence that FHRs have an opposite role compared with factor H and FHL-1, namely, they enhance complement activation directly and also by competing with the regulators FH and FHL-1. This review summarizes the current stand and recent data on the roles of factor H family proteins in health and disease, with focus on the function of FHR proteins.
Collapse
|
10
|
Thuy-Boun PS, Wolan DW. A glycal-based photoaffinity probe that enriches sialic acid binding proteins. Bioorg Med Chem Lett 2019; 29:2609-2612. [PMID: 31387789 DOI: 10.1016/j.bmcl.2019.07.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
To identify sialic acid binding proteins from complex proteomes, three photocrosslinking affinity-based probes were constructed using Neu5Ac (5 and 6) and Neu5Ac2en (7) scaffolds. Kinetic inhibition assays and Western blotting revealed the Neu5Ac2en-based 7 to be an effective probe for the labeling of a purified gut microbial sialidase (BDI_2946) and a purified human sialic acid binding protein (hCD33). Additionally, LC-MS/MS affinity-based protein profiling verified the ability of 7 to enrich a low-abundance sialic acid binding protein (complement factor H) from human serum thus validating the utility of this probe in a complex context.
Collapse
Affiliation(s)
- Peter S Thuy-Boun
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dennis W Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Valencia E, Cruz-Alonso M, Álvarez L, González-Iglesias H, Fernández B, Pereiro R. Fluorescent silver nanoclusters as antibody label in a competitive immunoassay for the complement factor H. Mikrochim Acta 2019; 186:429. [DOI: 10.1007/s00604-019-3554-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
|
12
|
Role of Gonococcal Neisserial Surface Protein A (NspA) in Serum Resistance and Comparison of Its Factor H Binding Properties with Those of Its Meningococcal Counterpart. Infect Immun 2019; 87:IAI.00658-18. [PMID: 30510105 DOI: 10.1128/iai.00658-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023] Open
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhea, has evolved several mechanisms to subvert complement, including binding of the complement inhibitor factor H (FH). We previously reported FH binding to N. gonorrhoeae independently of lipooligosaccharide (LOS) sialylation. Here we report that factor H-like protein 1 (FHL-1), which contains FH domains 1 through 7 and possesses complement-inhibitory activity, also binds to N. gonorrhoeae The ligand for both FH and FHL-1 was identified as neisserial surface protein A (NspA), which has previously been identified as a ligand for these molecules on Neisseria meningitidis As with N. meningitidis NspA (Nm-NspA), N. gonorrhoeae NspA (Ng-NspA) bound FH/FHL-1 through FH domains 6 and 7. Binding of FH/FHL-1 to NspA was human specific; the histidine (H) at position 337 of domain 6 contributed to human-specific FH binding to both Ng- and Nm-NspA. FH/FHL-1 bound Nm-NspA better than Ng-NspA; introducing Q at position 73 (loop 2, present in Ng-NspA) or replacing V and D at positions 112 and 113 in Nm-NspA loop 3 with A and H (Ng-NspA), respectively, reduced FH/FHL-1 binding. The converse Ng-NspA to Nm-NspA mutations increased FH/FHL-1 binding. Binding of FH/FHL-1 through domains 6 and 7 to N. gonorrhoeae increased with truncation of the heptose I (HepI) chain of LOS and decreased with LOS sialylation. Loss of NspA significantly decreased serum resistance of N. gonorrhoeae with either wild-type or truncated LOS. This report highlights the role for NspA in enabling N. gonorrhoeae to subvert complement despite LOS phase variation. Knowledge of FH-NspA interactions will inform the design of vaccines and immunotherapies against the global threat of multidrug-resistant gonorrhea.
Collapse
|
13
|
Sánchez-Corral P, Pouw RB, López-Trascasa M, Józsi M. Self-Damage Caused by Dysregulation of the Complement Alternative Pathway: Relevance of the Factor H Protein Family. Front Immunol 2018; 9:1607. [PMID: 30050540 PMCID: PMC6052053 DOI: 10.3389/fimmu.2018.01607] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
The alternative pathway is a continuously active surveillance arm of the complement system, and it can also enhance complement activation initiated by the classical and the lectin pathways. Various membrane-bound and plasma regulatory proteins control the activation of the potentially deleterious complement system. Among the regulators, the plasma glycoprotein factor H (FH) is the main inhibitor of the alternative pathway and its powerful amplification loop. FH belongs to a protein family that also includes FH-like protein 1 and five factor H-related (FHR-1 to FHR-5) proteins. Genetic variants and abnormal rearrangements involving the FH protein family have been linked to numerous systemic and organ-specific diseases, including age-related macular degeneration, and the renal pathologies atypical hemolytic uremic syndrome, C3 glomerulopathies, and IgA nephropathy. This review covers the known and recently emerged ligands and interactions of the human FH family proteins associated with disease and discuss the very recent experimental data that suggest FH-antagonistic and complement-activating functions for the FHR proteins.
Collapse
Affiliation(s)
- Pilar Sánchez-Corral
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Pouw RB, Brouwer MC, van Beek AE, Józsi M, Wouters D, Kuijpers TW. Complement Factor H-Related Protein 4A Is the Dominant Circulating Splice Variant of CFHR4. Front Immunol 2018; 9:729. [PMID: 29719534 PMCID: PMC5913293 DOI: 10.3389/fimmu.2018.00729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022] Open
Abstract
Recent research has elucidated circulating levels of almost all factor H-related (FHR) proteins. Some of these proteins are hypothesized to act as antagonists of the important complement regulator factor H (FH), fine-tuning complement regulation on human surfaces. For the CFHR4 splice variants FHR-4A and FHR-4B, the individual circulating levels are unknown, with only total levels being described. Specific reagents for FHR-4A or FHR-4B are lacking due to the fact that the unique domains in FHR-4A show high sequence similarity with FHR-4B, making it challenging to distinguish them. We developed an assay that specifically measures FHR-4A using novel, well-characterized monoclonal antibodies (mAbs) that target unique domains in FHR-4A only. Using various FHR-4A/FHR-4B-specific mAbs, no FHR-4B was identified in any of the serum samples tested. The results demonstrate that FHR-4A is the dominant splice variant of CFHR4 in the circulation, while casting doubt on the presence of FHR-4B. FHR-4A levels (avg. 2.55 ± 1.46 µg/mL) were within the range of most of the previously reported levels for all other FHRs. FHR-4A was found to be highly variable among the population, suggesting a strong genetic regulation. These results shed light on the physiological relevance of the previously proposed role of FHR-4A and FHR-4B as antagonists of FH in the circulation.
Collapse
Affiliation(s)
- Richard B. Pouw
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children’s hospital, Academic Medical Center, Amsterdam, Netherlands
| | - Mieke C. Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Anna E. van Beek
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children’s hospital, Academic Medical Center, Amsterdam, Netherlands
| | - Mihály Józsi
- MTA-ELTE “Lendület” Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children’s hospital, Academic Medical Center, Amsterdam, Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
van Beek AE, Pouw RB, Brouwer MC, van Mierlo G, Geissler J, Ooijevaar-de Heer P, de Boer M, van Leeuwen K, Rispens T, Wouters D, Kuijpers TW. Factor H-Related (FHR)-1 and FHR-2 Form Homo- and Heterodimers, while FHR-5 Circulates Only As Homodimer in Human Plasma. Front Immunol 2017; 8:1328. [PMID: 29093712 PMCID: PMC5651247 DOI: 10.3389/fimmu.2017.01328] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/29/2017] [Indexed: 01/11/2023] Open
Abstract
The complement factor H-related (FHR) proteins are hypothesized to fine-tune the regulatory role of complement factor H (FH) in the alternative pathway of the complement system. Moreover, FHR-1, FHR-2, and FHR-5 have been proposed to be dimers, which further complicates accurate analysis. As FHRs are highly similar among themselves and toward FH, obtaining specific reagents for quantification of serum levels and functional analysis is challenging. In this study, we generated antibodies and developed ELISAs to measure FHR-1, FHR-2, and FHR-5 in serum. We used both recombinant and serum-derived proteins to show that four dimers occur in human circulation: homodimers of FHR-1, FHR-2, and FHR-5, as well as FHR-1/FHR-2 heterodimers. Heterodimers containing FHR-5 were not found. In individuals with homozygous CFHR1 deletions or compound heterozygous CFHR2 missense/nonsense mutations identified in this study, the respective FHR-1 and FHR-2 homo- and heterodimers were absent. Using FRET, we found that recombinant FHR dimers exchange monomers rapidly. This was confirmed ex vivo, using FHR-1- and FHR-2-deficient sera. Of all FHR dimers, FHR-5/5 homodimers demonstrated strong binding affinity toward heparin. Specific ELISAs demonstrated that serum levels of FHR-1/1, FHR-1/2, FHR-2/2, and FHR-5/5 dimers were low compared to FH, which circulates at a 10- to 200-fold molar excess. In summary, FHR-1, FHR-2, and FHR-5 homodimerize, with FHR-1 and FHR-2 forming heterodimers as well, and equilibrate quickly in plasma.
Collapse
Affiliation(s)
- Anna E van Beek
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, Amsterdam, Netherlands
| | - Richard B Pouw
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, Amsterdam, Netherlands
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Judy Geissler
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Pleuni Ooijevaar-de Heer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Martin de Boer
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Karin van Leeuwen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
16
|
Neisseria cinerea Expresses a Functional Factor H Binding Protein Which Is Recognized by Immune Responses Elicited by Meningococcal Vaccines. Infect Immun 2017; 85:IAI.00305-17. [PMID: 28739825 PMCID: PMC5607398 DOI: 10.1128/iai.00305-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis and sepsis worldwide. Capsular polysaccharide vaccines are available against meningococcal serogroups A, C, W, and Y. More recently two protein-based vaccines, Bexsero and Trumenba, against meningococcal serogroup B strains have been licensed; both vaccines contain meningococcal factor H binding protein (fHbp). fHbp is a surface-exposed lipoprotein that binds the negative complement regulator complement factor H (CFH), thereby inhibiting the alternative pathway of complement activation. Recent analysis of available genomes has indicated that some commensal Neisseria species also contain genes that potentially encode fHbp, although the functions of these genes and how immunization with fHbp-containing vaccines could affect the commensal flora have yet to be established. Here, we show that the commensal species Neisseria cinerea expresses functional fHbp on its surface and that it is responsible for recruitment of CFH by the bacterium. N. cinerea fHbp binds CFH with affinity similar to that of meningococcal fHbp and promotes survival of N. cinerea in human serum. We examined the potential impact of fHbp-containing vaccines on N. cinerea We found that immunization with Bexsero elicits serum bactericidal activity against N. cinerea, which is primarily directed against fHbp. The shared function of fHbp in N. cinerea and N. meningitidis and cross-reactive responses elicited by Bexsero suggest that the introduction of fHbp-containing vaccines has the potential to affect carriage of N. cinerea and other commensal species.
Collapse
|
17
|
Schmidt CQ, Lambris JD, Ricklin D. Protection of host cells by complement regulators. Immunol Rev 2017; 274:152-171. [PMID: 27782321 DOI: 10.1111/imr.12475] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complement cascade is an ancient immune-surveillance system that not only provides protection from pathogen invasion but has also evolved to participate in physiological processes to maintain tissue homeostasis. The alternative pathway (AP) of complement activation is the evolutionarily oldest part of this innate immune cascade. It is unique in that it is continuously activated at a low level and arbitrarily probes foreign, modified-self, and also unaltered self-structures. This indiscriminate activation necessitates the presence of preformed regulators on autologous surfaces to spare self-cells from the undirected nature of AP activation. Although the other two canonical complement activation routes, the classical and lectin pathways, initiate the cascade more specifically through pattern recognition, their activity still needs to be tightly controlled to avoid excessive reactivity. It is the perpetual duty of complement regulators to protect the self from damage inflicted by inadequate complement activation. Here, we review the role of complement regulators as preformed mediators of defense, explain their common and specialized functions, and discuss selected cases in which alterations in complement regulators lead to disease. Finally, rational engineering approaches using natural complement inhibitors as potential therapeutics are highlighted.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
van der Maten E, de Bont CM, de Groot R, de Jonge MI, Langereis JD, van der Flier M. Alternative pathway regulation by factor H modulates Streptococcus pneumoniae induced proinflammatory cytokine responses by decreasing C5a receptor crosstalk. Cytokine 2016; 88:281-286. [PMID: 27721145 DOI: 10.1016/j.cyto.2016.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023]
Abstract
Bacterial pathogens not only stimulate innate immune receptors, but also activate the complement system. Crosstalk between complement C5a receptor (C5aR) and other innate immune receptors is known to enhance the proinflammatory cytokine response. An important determinant of the magnitude of complement activation is the activity of the alternative pathway, which serves as an amplification mechanism for complement activation. Both alternative pathway activity as well as plasma levels of factor H, a key inhibitor of the alternative pathway, show large variation within the human population. Here, we studied the effect of factor H-mediated regulation of the alternative pathway on bacterial-induced proinflammatory cytokine responses. We used the human pathogen Streptococcus pneumoniae as a model stimulus to induce proinflammatory cytokine responses in human peripheral blood mononuclear cells. Serum containing active complement enhanced pneumococcal induced proinflammatory cytokine production through C5a release and C5aR crosstalk. We found that inhibition of the alternative pathway by factor H, with a concentration equivalent to a high physiological level, strongly reduced C5a levels and decreased proinflammatory cytokine production in human peripheral blood mononuclear cells. This suggests that variation in alternative pathway activity due to variation in factor H plasma levels affects individual cytokine responses during infection.
Collapse
Affiliation(s)
- Erika van der Maten
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Cynthia M de Bont
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Michiel van der Flier
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; Pediatric Infectious Diseases and Immunology, Department of Pediatrics, Radboudumc, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Pouw RB, Brouwer MC, Geissler J, van Herpen LV, Zeerleder SS, Wuillemin WA, Wouters D, Kuijpers TW. Complement Factor H-Related Protein 3 Serum Levels Are Low Compared to Factor H and Mainly Determined by Gene Copy Number Variation in CFHR3. PLoS One 2016; 11:e0152164. [PMID: 27007437 PMCID: PMC4805260 DOI: 10.1371/journal.pone.0152164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
The major human complement regulator in blood, complement factor H (FH), has several closely related proteins, called FH-related (FHR) proteins. As all FHRs lack relevant complement regulatory activity, their physiological role is not well understood. FHR protein 3 (FHR-3) has been suggested to compete with FH for binding to Neisseria meningitidis, thereby affecting complement-mediated clearance. Clearly, the in vivo outcome of such competition greatly depends on the FH and FHR-3 concentrations. While FH levels have been established, accurate FHR-3 levels were never unequivocally reported to date. Moreover, CFHR3 gene copy numbers commonly vary, which may impact the FHR-3 concentration. Hence, we generated five anti-FHR-3 mAbs to specifically measure FHR-3 in human healthy donors of which we determined the gene copy number variation at the CFH/CFHR locus. Finally, we examined the acute-phase response characteristics of FHR-3 in a small sepsis cohort. We determined FHR-3 levels to have a mean of 19 nM and that under normal conditions the copy number of CFHR3 correlates to a very large extent with the FHR-3 serum levels. On average, FHR-3 was 132-fold lower compared to the FH concentration in the same serum samples and FHR-3 did not behave as a major acute phase response protein.
Collapse
Affiliation(s)
- Richard B. Pouw
- Department of Immunopathology, Sanquin Research and Landsteiner laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Hematology, Immunology & Infectious Diseases, Emma Children’s Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - Mieke C. Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Judy Geissler
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Laurens V. van Herpen
- Department of Immunopathology, Sanquin Research and Landsteiner laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sacha S. Zeerleder
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Walter A. Wuillemin
- Division of Hematology and Central Hematology Laboratory, Luzerner Kantonsspital and University of Berne, Berne, Switzerland
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| | - Taco W. Kuijpers
- Department of Pediatric Hematology, Immunology & Infectious Diseases, Emma Children’s Hospital, Academic Medical Center, Amsterdam, the Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
20
|
van der Maten E, Westra D, van Selm S, Langereis JD, Bootsma HJ, van Opzeeland FJH, de Groot R, Ruseva MM, Pickering MC, van den Heuvel LPWJ, van de Kar NCAJ, de Jonge MI, van der Flier M. Complement Factor H Serum Levels Determine Resistance to Pneumococcal Invasive Disease. J Infect Dis 2016; 213:1820-7. [PMID: 26802141 DOI: 10.1093/infdis/jiw029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of life-threatening infections. Complement activation plays a vital role in opsonophagocytic killing of pneumococci in blood. Initial complement activation via the classical and lectin pathways is amplified through the alternative pathway amplification loop. Alternative pathway activity is inhibited by complement factor H (FH). Our study demonstrates the functional consequences of the variability in human serum FH levels on host defense. Using an in vivo mouse model combined with human in vitro assays, we show that the level of serum FH correlates with the efficacy of opsonophagocytic killing of pneumococci. In summary, we found that FH levels determine a delicate balance of alternative pathway activity, thus affecting the resistance to invasive pneumococcal disease. Our results suggest that variation in FH expression levels, naturally occurring in the human population, plays a thus far unrecognized role in the resistance to invasive pneumococcal disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marieta M Ruseva
- Centre for Complement and Inflammation Research, Imperial College, London, United Kingdom
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Imperial College, London, United Kingdom
| | | | | | | | - Michiel van der Flier
- Laboratory of Pediatric Infectious Diseases Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Schmidt CQ, Harder MJ, Nichols EM, Hebecker M, Anliker M, Höchsmann B, Simmet T, Csincsi ÁI, Uzonyi B, Pappworth IY, Ricklin D, Lambris JD, Schrezenmeier H, Józsi M, Marchbank KJ. Selectivity of C3-opsonin targeted complement inhibitors: A distinct advantage in the protection of erythrocytes from paroxysmal nocturnal hemoglobinuria patients. Immunobiology 2016; 221:503-11. [PMID: 26792457 DOI: 10.1016/j.imbio.2015.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 11/26/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated cell lysis due to deficiency of GPI-anchored complement regulators. Blockage of the lytic pathway by eculizumab is the only available therapy for PNH patients and shows remarkable benefits, but regularly yields PNH erythrocytes opsonized with fragments of complement protein C3, rendering such erythrocytes prone to extravascular hemolysis. This effect is associated with insufficient responsiveness seen in a subgroup of PNH patients. Novel C3-opsonin targeted complement inhibitors act earlier in the cascade, at the level of activated C3 and are engineered from parts of the natural complement regulator Factor H (FH) or complement receptor 2 (CR2). This inhibitor class comprises three variants of "miniFH" and the clinically developed "FH-CR2" fusion-protein (TT30). We show that the approach of FH-CR2 to target C3-opsonins was more efficient in preventing complement activation induced by foreign surfaces, whereas the miniFH variants were substantially more active in controlling complement on PNH erythrocytes. Subtle differences were noted in the ability of each version of miniFH to protect human PNH cells. Importantly, miniFH and FH-CR2 interfered only minimally with complement-mediated serum killing of bacteria when compared to untargeted inhibition of all complement pathways by eculizumab. Thus, the molecular design of each C3-opsonin targeted complement inhibitor determines its potency in respect to the nature of the activator/surface providing potential functionality in PNH.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany.
| | - Markus J Harder
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Eva-Maria Nichols
- Institutes of Cellular Medicine and Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mario Hebecker
- Junior Research Group Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Markus Anliker
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm and German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Britta Höchsmann
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm and German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Ádám I Csincsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- MTA-ELTE Immunology Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Isabel Y Pappworth
- Institutes of Cellular Medicine and Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm and German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Mihály Józsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Kevin J Marchbank
- Institutes of Cellular Medicine and Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Kennedy AT, Schmidt CQ, Thompson JK, Weiss GE, Taechalertpaisarn T, Gilson PR, Barlow PN, Crabb BS, Cowman AF, Tham WH. Recruitment of Factor H as a Novel Complement Evasion Strategy for Blood-Stage Plasmodium falciparum Infection. THE JOURNAL OF IMMUNOLOGY 2015; 196:1239-48. [PMID: 26700768 DOI: 10.4049/jimmunol.1501581] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/23/2015] [Indexed: 01/29/2023]
Abstract
The human complement system is the frontline defense mechanism against invading pathogens. The coexistence of humans and microbes throughout evolution has produced ingenious molecular mechanisms by which microorganisms escape complement attack. A common evasion strategy used by diverse pathogens is the hijacking of soluble human complement regulators to their surfaces to afford protection from complement activation. One such host regulator is factor H (FH), which acts as a negative regulator of complement to protect host tissues from aberrant complement activation. In this report, we show that Plasmodium falciparum merozoites, the invasive form of the malaria parasites, actively recruit FH and its alternative spliced form FH-like protein 1 when exposed to human serum. We have mapped the binding site in FH that recognizes merozoites and identified Pf92, a member of the six-cysteine family of Plasmodium surface proteins, as its direct interaction partner. When bound to merozoites, FH retains cofactor activity, a key function that allows it to downregulate the alternative pathway of complement. In P. falciparum parasites that lack Pf92, we observed changes in the pattern of C3b cleavage that are consistent with decreased regulation of complement activation. These results also show that recruitment of FH affords P. falciparum merozoites protection from complement-mediated lysis. Our study provides new insights on mechanisms of immune evasion of malaria parasites and highlights the important function of surface coat proteins in the interplay between complement regulation and successful infection of the host.
Collapse
Affiliation(s)
- Alexander T Kennedy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Jennifer K Thompson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Greta E Weiss
- Burnet Institute, Melbourne, Victoria 3004, Australia
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Immunology, Monash University, Victoria 3004, Australia
| | - Paul N Barlow
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom; School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom; and
| | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Immunology, Monash University, Victoria 3004, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia;
| |
Collapse
|
23
|
Harder MJ, Anliker M, Höchsmann B, Simmet T, Huber-Lang M, Schrezenmeier H, Ricklin D, Lambris JD, Barlow PN, Schmidt CQ. Comparative Analysis of Novel Complement-Targeted Inhibitors, MiniFH, and the Natural Regulators Factor H and Factor H-like Protein 1 Reveal Functional Determinants of Complement Regulation. THE JOURNAL OF IMMUNOLOGY 2015; 196:866-76. [PMID: 26643478 DOI: 10.4049/jimmunol.1501919] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
The serum proteins factor H (FH), consisting of 20 complement control protein modules (CCPs), and its splice product FH-like protein 1 (FHL-1; consisting of CCPs 1-7) are major regulators of the alternative pathway (AP) of complement activation. The engineered version of FH, miniFH, contains only the N- and C-terminal portions of FH linked by an optimized peptide and shows ∼ 10-fold higher ex vivo potency. We explored the hypothesis that regulatory potency is enhanced by unmasking of a ligand-binding site in the C-terminal CCPs 19-20 that is cryptic in full-length native FH. Therefore, we produced an FH variant lacking the central domains 10-15 (FHΔ10-15). To explore how avidity affects regulatory strength, we generated a duplicated version of miniFH, termed midiFH. We compared activities of FHΔ10-15 and midiFH to miniFH, FH, and FHL-1. Relative to FH, FHΔ10-15 exhibited an altered binding profile toward C3 activation products and a 5-fold-enhanced complement regulation on a paroxysmal nocturnal hemoglobinuria patient's erythrocytes. Contrary to dogma, FHL-1 and FH exhibited equal regulatory activity, suggesting that the role of FHL-1 in AP regulation has been underestimated. Unexpectedly, a substantially increased avidity for complement opsonins, as seen in midiFH, did not potentiate the inhibitory potential on host cells. In conclusion, comparisons of engineered and native FH-based regulators have identified features that determine high AP regulatory activity on host cells. Unrestricted availability of FH CCPs 19-20 and an optimal spatial orientation between the N- and C-terminal FH regions are key.
Collapse
Affiliation(s)
- Markus J Harder
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Markus Anliker
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital Ulm, 89081 Ulm, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Markus Huber-Lang
- Department of Traumatology, Center of Surgery, University of Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital Ulm, 89081 Ulm, Germany
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - Paul N Barlow
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom; and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
24
|
Pouw RB, Vredevoogd DW, Kuijpers TW, Wouters D. Of mice and men: The factor H protein family and complement regulation. Mol Immunol 2015; 67:12-20. [PMID: 25824240 DOI: 10.1016/j.molimm.2015.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
For decades immunological research has relied, with variable success, on mouse models to investigate diseases and possible therapeutic interventions. With the approval of the first therapeutic antibody targeting complement, called eculizumab, as therapy in paroxysmal nocturnal hemoglobinuria (PNH) and more recently atypical hemolytic uremic syndrome (aHUS), the viability of targeting the complement system was demonstrated. The potent, endogenous complement regulators have become of increasing interest as templates for designing and developing new therapeutics. Recently, complement inhibitors based on (parts of) the human complement regulator factor H (FH) are being examined for therapeutic intervention in inflammatory conditions. The first step to evaluate the potency of a new drug is often testing it in a mouse model for the target disease. However, translating results to human conditions requires a good understanding of similarities and, more importantly, differences between the human and mouse complement system and particularly regulation. This review will provide a comprehensive overview of the complement regulator FH and its closely related proteins and current views on their role in mice and men.
Collapse
Affiliation(s)
- R B Pouw
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Hematology, Immunology & Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, Amsterdam, the Netherlands.
| | - D W Vredevoogd
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - T W Kuijpers
- Department of Pediatric Hematology, Immunology & Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, Amsterdam, the Netherlands; Department of Blood Cell Research, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - D Wouters
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Clark SJ, Schmidt CQ, White AM, Hakobyan S, Morgan BP, Bishop PN. Identification of factor H-like protein 1 as the predominant complement regulator in Bruch's membrane: implications for age-related macular degeneration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:4962-70. [PMID: 25305316 PMCID: PMC4225158 DOI: 10.4049/jimmunol.1401613] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The tight regulation of innate immunity on extracellular matrix (ECM) is a vital part of immune homeostasis throughout the human body, and disruption to this regulation in the eye is thought to contribute directly to the progression of age-related macular degeneration (AMD). The plasma complement regulator factor H (FH) is thought to be the main regulator that protects ECM against damaging complement activation. However, in the present study we demonstrate that a truncated form of FH, called FH-like protein 1 (FHL-1), is the main regulatory protein in the layer of ECM under human retina, called Bruch's membrane. Bruch's membrane is a major site of AMD disease pathogenesis and where drusen, the hallmark lesions of AMD, form. We show that FHL-1 can passively diffuse through Bruch's membrane, whereas the full sized, glycosylated, FH cannot. FHL-1 is largely bound to Bruch's membrane through interactions with heparan sulfate, and we show that the common Y402H polymorphism in the CFH gene, associated with an increased risk of AMD, reduces the binding of FHL-1 to this heparan sulfate. We also show that FHL-1 is retained in drusen whereas FH coats the periphery of the lesions, perhaps inhibiting their clearance. Our results identify a novel mechanism of complement regulation in the human eye, which highlights potential new avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Simon J Clark
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom;
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Anne M White
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Svetlana Hakobyan
- Complement Biology Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - B Paul Morgan
- Complement Biology Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - Paul N Bishop
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom; Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, United Kingdom
| |
Collapse
|
26
|
Yu BB, Moffatt BE, Fedorova M, Villiers CGS, Arnold JN, Du E, Swinkels A, Li MC, Ryan A, Sim RB. Purification, quantification, and functional analysis of Complement Factor H. Methods Mol Biol 2014; 1100:207-23. [PMID: 24218262 DOI: 10.1007/978-1-62703-724-2_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Complement Factor H (FH) is an abundant, non-enzymic plasma/serum glycoprotein, which has a major role in regulating activation of the complement system. It can be purified from human plasma/serum by affinity chromatography, using a monoclonal anti-FH antibody as ligand. Other affinity chromatography ligands, including cardiolipin and trinitrophenyl-bovine serum albumin (TNP-BSA), can be used to purify human FH and also FH from a wide range of vertebrates, including mammals, birds, bony fish. Human FH protein concentration can be quantified by sandwich ELISA. The activity of FH is generally measured by assays which detect the cleavage, by complement factor I, of the complement protein C3b to form iC3b. Cleavage occurs only in the presence of a cofactor, and FH is one of a small number of cofactors for this reaction.
Collapse
Affiliation(s)
- Bing-Bin Yu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Mihaela Gadjeva
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
28
|
An ELISA assay with two monoclonal antibodies allows the estimation of free factor H and identifies patients with acquired deficiency of this complement regulator. Mol Immunol 2013; 58:194-200. [PMID: 24378252 DOI: 10.1016/j.molimm.2013.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 02/02/2023]
Abstract
Complement factor H (FH) serum levels can be affected by the presence of immune complexes of FH with autoantibodies like in autoimmune forms of atypical haemolytic uraemic syndrome (aHUS) or with C3b in homozygous factor I (FI) deficiency. These complexes reduce the amount of free functional circulating FH. In this study we aimed to determine whether FH levels measurement is disturbed in some pathological conditions and to establish a method for quantifying free and total FH in serum. For that purpose, FH levels were measured in serum samples from aHUS patients having anti-FH autoantibodies or mutations in FH gene, in patients with homozygous FI deficiency, and in healthy controls. Two anti-FH monoclonal antibodies, OX24 and A229, recognizing different functional regions in FH, were used as capture antibodies in an ELISA assay. In the control group and in the group of patients with FH mutations, the FH levels obtained with the two monoclonal antibodies were similar. In patients with anti-FH autoantibodies or with homozygous FI deficiency, however, FH levels measured with both antibodies were significantly different. As these patients had complexes of FH with autoantibodies or C3b, we interpreted that OX24 was detecting total FH and A229 was recognising free FH. Therefore, quantification of FH in plasma using these two monoclonal antibodies provides not only total FH level but also gives an estimation of how much FH circulates free and is thus available to properly control complement activation.
Collapse
|
29
|
Nilsson OR, Lannergård J, Morgan BP, Lindahl G, Gustafsson MCU. Affinity purification of human factor H on polypeptides derived from streptococcal m protein: enrichment of the Y402 variant. PLoS One 2013; 8:e81303. [PMID: 24278416 PMCID: PMC3836803 DOI: 10.1371/journal.pone.0081303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/10/2013] [Indexed: 11/29/2022] Open
Abstract
Recent studies indicate that defective activity of complement factor H (FH) is associated with several human diseases, suggesting that pure FH may be used for therapy. Here, we describe a simple method to isolate human FH, based on the specific interaction between FH and the hypervariable region (HVR) of certain Streptococcus pyogenes M proteins. Special interest was focused on the FH polymorphism Y402H, which is associated with the common eye disease age-related macular degeneration (AMD) and has also been implicated in the binding to M protein. Using a fusion protein containing two copies of the M5-HVR, we found that the Y402 and H402 variants of FH could be efficiently purified by single-step affinity chromatography from human serum containing the corresponding protein. Different M proteins vary in their binding properties, and the M6 and M5 proteins, but not the M18 protein, showed selective binding of the FH Y402 variant. Accordingly, chromatography on a fusion protein derived from the M6-HVR allowed enrichment of the Y402 protein from serum containing both variants. Thus, the exquisite binding specificity of a bacterial protein can be exploited to develop a simple and robust procedure to purify FH and to enrich for the FH variant that protects against AMD.
Collapse
Affiliation(s)
- O. Rickard Nilsson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Lannergård
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - B. Paul Morgan
- Institute of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Gunnar Lindahl
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mattias C. U. Gustafsson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Abstract
Factor H (FH) is a soluble regulator of the proteolytic cascade at the core of the evolutionarily ancient vertebrate complement system. Although FH consists of a single chain of similar protein modules, it has a demanding job description. Its chief role is to prevent complement-mediated injury to healthy host cells and tissues. This entails recognition of molecular patterns on host surfaces combined with control of one of nature's most dangerous examples of a positive-feedback loop. In this way, FH modulates, where and when needed, an amplification process that otherwise exponentially escalates the production of the pro-inflammatory, pro-phagocytic, and pro-cytolytic cleavage products of complement proteins C3 and C5. Mutations and single-nucleotide polymorphisms in the FH gene and autoantibodies against FH predispose individuals to diseases, including age-related macular degeneration, dense-deposit disease, and atypical hemolytic uremic syndrome. Moreover, deletions or variations of genes for FH-related proteins also influence the risk of disease. Numerous pathogens hijack FH and use it for self-defense. As reviewed herein, a molecular understanding of FH function is emerging. While its functional oligomeric status remains uncertain, progress has been achieved in characterizing its three-dimensional architecture and, to a lesser extent, its intermodular flexibility. Models are proposed, based on the reconciliation of older data with a wealth of recent evidence, in which a latent circulating form of FH is activated by its principal target, C3b tethered to a self-surface. Such models suggest hypotheses linking sequence variations to pathophysiology, but improved, more quantitative, functional assays and rigorous data analysis are required to test these ideas.
Collapse
Affiliation(s)
- Elisavet Makou
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, U.K
| | | | | |
Collapse
|