1
|
Dimitriadis S, Dova L, Kotsianidis I, Hatzimichael E, Kapsali E, Markopoulos GS. Imaging Flow Cytometry: Development, Present Applications, and Future Challenges. Methods Protoc 2024; 7:28. [PMID: 38668136 PMCID: PMC11054958 DOI: 10.3390/mps7020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Imaging flow cytometry (ImFC) represents a significant technological advancement in the field of cytometry, effectively merging the high-throughput capabilities of flow analysis with the detailed imaging characteristics of microscopy. In our comprehensive review, we adopt a historical perspective to chart the development of ImFC, highlighting its origins and current state of the art and forecasting potential future advancements. The genesis of ImFC stemmed from merging the hydraulic system of a flow cytometer with advanced camera technology. This synergistic coupling facilitates the morphological analysis of cell populations at a high-throughput scale, effectively evolving the landscape of cytometry. Nevertheless, ImFC's implementation has encountered hurdles, particularly in developing software capable of managing its sophisticated data acquisition and analysis needs. The scale and complexity of the data generated by ImFC necessitate the creation of novel analytical tools that can effectively manage and interpret these data, thus allowing us to unlock the full potential of ImFC. Notably, artificial intelligence (AI) algorithms have begun to be applied to ImFC, offering promise for enhancing its analytical capabilities. The adaptability and learning capacity of AI may prove to be essential in knowledge mining from the high-dimensional data produced by ImFC, potentially enabling more accurate analyses. Looking forward, we project that ImFC may become an indispensable tool, not only in research laboratories, but also in clinical settings. Given the unique combination of high-throughput cytometry and detailed imaging offered by ImFC, we foresee a critical role for this technology in the next generation of scientific research and diagnostics. As such, we encourage both current and future scientists to consider the integration of ImFC as an addition to their research toolkit and clinical diagnostic routine.
Collapse
Affiliation(s)
- Savvas Dimitriadis
- Hematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45100 Ioannina, Greece; (S.D.); (L.D.)
| | - Lefkothea Dova
- Hematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45100 Ioannina, Greece; (S.D.); (L.D.)
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 69100 Alexandroupolis, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (E.H.); (E.K.)
| | - Eleni Kapsali
- Department of Hematology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (E.H.); (E.K.)
| | - Georgios S. Markopoulos
- Hematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45100 Ioannina, Greece; (S.D.); (L.D.)
- Department of Surgery, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Cohen M, Laux J, Douagi I. Cytometry in High-Containment Laboratories. Methods Mol Biol 2024; 2779:425-456. [PMID: 38526798 DOI: 10.1007/978-1-0716-3738-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The emergence of new pathogens continues to fuel the need for advanced high-containment laboratories across the globe. Here we explore challenges and opportunities for integration of cytometry, a central technology for cell analysis, within high-containment laboratories. We review current applications in infectious disease, vaccine research, and biosafety. Considerations specific to cytometry within high-containment laboratories, such as biosafety requirements, and sample containment strategies are also addressed. We further tour the landscape of emerging technologies, including combination of cytometry with other omics, the application of automation, and artificial intelligence. Finally, we propose a framework to fast track the immersion of advanced technologies into the high-containment research setting to improve global preparedness for new emerging diseases.
Collapse
Affiliation(s)
- Melanie Cohen
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Laux
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Welin A, Hüsler D, Hilbi H. Imaging Flow Cytometry of Legionella-Containing Vacuoles in Intact and Homogenized Wild-Type and Mutant Dictyostelium. Methods Mol Biol 2023; 2635:63-85. [PMID: 37074657 DOI: 10.1007/978-1-0716-3020-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The causative agent of a severe pneumonia termed "Legionnaires' disease", Legionella pneumophila, replicates within protozoan and mammalian phagocytes in a specialized intracellular compartment called the Legionella-containing vacuole (LCV). This compartment does not fuse with bactericidal lysosomes but communicates extensively with several cellular vesicle trafficking pathways and eventually associates tightly with the endoplasmic reticulum. In order to comprehend in detail the complex process of LCV formation, the identification and kinetic analysis of cellular trafficking pathway markers on the pathogen vacuole are crucial. This chapter describes imaging flow cytometry (IFC)-based methods for the objective, quantitative and high-throughput analysis of different fluorescently tagged proteins or probes on the LCV. To this end, we use the haploid amoeba Dictyostelium discoideum as an infection model for L. pneumophila, to analyze either fixed intact infected host cells or LCVs from homogenized amoebae. Parental strains and isogenic mutant amoebae are compared in order to determine the contribution of a specific host factor to LCV formation. The amoebae simultaneously produce two different fluorescently tagged probes enabling tandem quantification of two LCV markers in intact amoebae or the identification of LCVs using one probe and quantification of the other probe in host cell homogenates. The IFC approach allows rapid generation of statistically robust data from thousands of pathogen vacuoles and can be applied to other infection models.
Collapse
Affiliation(s)
- Amanda Welin
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dario Hüsler
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Dandugudumula R, Fischer-Weinberger R, Zilberstein D. Morphogenesis Dynamics in Leishmania Differentiation. Pathogens 2022; 11:952. [PMID: 36145385 PMCID: PMC9505065 DOI: 10.3390/pathogens11090952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Leishmania, the causative agent of leishmaniasis, is an obligatory intracellular parasite that cycles between phagolysosome of mammalian macrophages, where it resides as round intracellular amastigotes, and the midgut of female sandflies, where it resides as extracellular elongated promastigotes. This protozoan parasite cytoskeleton is composed of stable and abundant subpellicular microtubules (SPMT). This study aims to determine the kinetics of developmental morphogenesis and assess whether microtubules remodelling is involved in this process. Using image-streaming technology, we observed that rounding of promastigotes during differentiation into amastigotes was initiated promptly after exposure to the differentiation signal. Stabilizing microtubules with taxol sped rounding, but later killed differentiating parasites if taxol was not removed. Microtubule destabilizers such as vinblastine had no effect on the rate of rounding, nor on the viability of differentiating parasites. In the reverse process, elongation is initiated after a delay of 7.5 and completed 72 h after exposure to the amastigote to the promastigote differentiation signal. During the delay, parasites became highly sensitive to treatment with microtubule destabilizers. The addition of vinblastine during the first 7.5 h halted differentiation and killed parasites. Between 8 and 24 h, parasites gradually became resistant to vinblastine and, in parallel, started to elongate. In contrast, taxol had no effect on parasite elongation, nor on the viability of these cells. In a parallel study, we showed that the Leishmania-specific protein kinase A (PKA) holoenzyme containing the LdPKAR3-C3 complex is essential for promastigote elongation. Mutant promastigotes lacking either of these proteins are round, but maintain their flagella. Here, we observed that during differentiation into amastigotes, these mutants round at the same rate as the wild type, but never exceed the WT density of round amastigotes. In the reverse process, these mutants undergo the same initial delay and then elongate at the same rate as the WT. They stop elongating when they reach 20% of elongated cells in mature promastigotes. Our analysis indicates that while promastigote rounding into amastigotes did not require microtubule remodelling, morphogenesis of round amastigotes into elongated promastigotes required microtubule rearrangement before elongation was initiated. This is the first study that investigates the dynamics of microtubules during parasite development.
Collapse
Affiliation(s)
| | | | - Dan Zilberstein
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Zheng W, LaCourse SM, Song B, Singh DK, Khanna M, Olivo J, Stern J, Escudero JN, Vergara C, Zhang F, Li S, Wang S, Cranmer LM, Huang Z, Bojanowski CM, Bao D, Njuguna I, Xiao Y, Wamalwa DC, Nguyen DT, Yang L, Maleche-Obimbo E, Nguyen N, Zhang L, Phan H, Fan J, Ning B, Li C, Lyon CJ, Graviss EA, John-Stewart G, Mitchell CD, Ramsay AJ, Kaushal D, Liang R, Pérez-Then E, Hu TY. Diagnosis of paediatric tuberculosis by optically detecting two virulence factors on extracellular vesicles in blood samples. Nat Biomed Eng 2022; 6:979-991. [PMID: 35986185 PMCID: PMC9391224 DOI: 10.1038/s41551-022-00922-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Sensitive and specific blood-based assays for the detection of pulmonary and extrapulmonary tuberculosis would reduce mortality associated with missed diagnoses, particularly in children. Here we report a nanoparticle-enhanced immunoassay read by dark-field microscopy that detects two Mycobacterium tuberculosis virulence factors (the glycolipid lipoarabinomannan and its carrier protein) on the surface of circulating extracellular vesicles. In a cohort study of 147 hospitalized and severely immunosuppressed children living with HIV, the assay detected 58 of the 78 (74%) cases of paediatric tuberculosis, 48 of the 66 (73%) cases that were missed by microbiological assays, and 8 out of 10 (80%) cases undiagnosed during the study. It also distinguished tuberculosis from latent-tuberculosis infections in non-human primates. We adapted the assay to make it portable and operable by a smartphone. With further development, the assay may facilitate the detection of tuberculosis at the point of care, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sylvia M LaCourse
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Bofan Song
- James C. Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Dhiraj Kumar Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mayank Khanna
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA, USA
| | - Juan Olivo
- O&M Medical School (O&Med), Santo Domingo, Dominican Republic
| | - Joshua Stern
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Jaclyn N Escudero
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Carlos Vergara
- O&M Medical School (O&Med), Santo Domingo, Dominican Republic
| | - Fangfang Zhang
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Shaobai Li
- James C. Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Shu Wang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lisa M Cranmer
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Emory School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Zhen Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Christine M Bojanowski
- Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, USA
| | - Duran Bao
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Irene Njuguna
- Department of Global Health, University of Washington, Seattle, WA, USA
- Kenyatta National Hospital, Research and Programs, Nairobi, Kenya
| | - Yating Xiao
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Dalton C Wamalwa
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Duc T Nguyen
- Department of Pathology and Genomic Medicine, Houston Methodist, Houston, TX, USA
| | - Li Yang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Elizabeth Maleche-Obimbo
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | | | - Lili Zhang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ha Phan
- Center for Promotion of Advancement of Society (CPAS), Ha Noi, Vietnam
- Vietnam National Tuberculosis Program/University of California San Francisco Research Collaboration, Ha Noi, Vietnam
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chenzhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist, Houston, TX, USA
- Department of Surgery, J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist, Houston, TX, USA
| | - Grace John-Stewart
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Charles D Mitchell
- Department of Pediatrics, Division of Infectious Diseases and Immunology, University of Miami Miller School of Medicine, Batchelor Children's Research Institute, Miami, FL, USA
| | - Alistair J Ramsay
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Rongguang Liang
- James C. Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Eddy Pérez-Then
- O&M Medical School (O&Med), Santo Domingo, Dominican Republic
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
6
|
Kalsum S, Otrocka M, Andersson B, Welin A, Schön T, Jenmalm-Jensen A, Lundbäck T, Lerm M. A high content screening assay for discovery of antimycobacterial compounds based on primary human macrophages infected with virulent Mycobacterium tuberculosis. Tuberculosis (Edinb) 2022; 135:102222. [PMID: 35738191 DOI: 10.1016/j.tube.2022.102222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 01/08/2023]
Abstract
Drug resistance in Mycobacterium tuberculosis is an emerging threat that makes the discovery of new candidate drugs a priority. In particular, drugs with high sterilizing activity within host cells are needed to improve efficacy and reduce treatment duration. We aimed to develope and validate a High Content Screening assay based on Mycobacterium tuberculosis-infected primary human monocyte-derived macrophages as its natural reservoir. Infected primary human monocyte-derived macrophages were exposed to control antibiotics or tested compounds on 384 well plates. Intracellular bacterial growth and macrophage numbers were evaluated using an ImageXpress High Content Screening system and Z'-factor was calculated to assess the reproducibility. The combination of isoniazid and rifampicin as a positive control rendered a Z'-factor above 0.4, demonstrating suitability of the assay for screening and compound profiling purposes. In a validation experiment, isoniazid, rifampicin, moxifloxacin and levofloxacin all effectively inhibited intracellular growth as expected. Finally, a pilot screening campaign including 5700 compounds from diverse libraries resulted in the identification of three compounds with confirmed antimycobacterial activity in the low micromolar range and low host cell toxicity. The assay represents an attractive screening platform for both academic research on host-pathogen mechanisms in tuberculosis and for the identification and characterization of novel antimycobacterial compounds.
Collapse
Affiliation(s)
- Sadaf Kalsum
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Magdalena Otrocka
- Chemical Biology Consortium Sweden, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | - Blanka Andersson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Amanda Welin
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Thomas Schön
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden; Departments of Infectious Diseases, Kalmar County Hospital, Kalmar Sweden and Linköping University Hospital, Linköping, Sweden
| | - Annika Jenmalm-Jensen
- Chemical Biology Consortium Sweden, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | - Maria Lerm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden.
| |
Collapse
|
7
|
Andersson B, Nordvall MJ, Welin A, Lerm M, Schön T. A novel mycobacterial growth inhibition assay employing live-cell imaging of virulent M. tuberculosis and monitoring of host cell viability. Tuberculosis (Edinb) 2020; 124:101977. [PMID: 32829078 DOI: 10.1016/j.tube.2020.101977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/15/2020] [Accepted: 07/26/2020] [Indexed: 11/19/2022]
Abstract
Our aim was to develop a Mycobacterium tuberculosis (Mtb) growth inhibition assay (MGIA) as a summary estimate of host immune control of virulent Mtb. Mycobacterial growth inhibition (MGI) using previously frozen human PBMCs infected with H37Rv was assessed by live-cell imaging (Incucyte©) complemented by imaging flow cytometry analysis of phagocytosis. MGI measured as relative fluorescence units (RFU) was calibrated to time to positive culture (TTP) in BACTEC 960 MGIT. At a MOI (multiplicity of infection) of 5, there was a wide range of MGI of blood donors (1.1*106-2.7*106 RFU, n = 14). Intra- and inter-assay variability were at most 17.5 and 20.7 CV%. Cell viability at day 5 was 57 and 62% monitored by the LDH and Draq7 assays respectively. There was a strong correlation between a readout for Mtb growth using CFU counts or TTP compared to RFU (r2≥0.96). Our MGIA enabling live-cell imaging and monitoring of cell viability was able to detect a wide range of Mtb growth inhibition by PBMCs and was calibrated to several readout options for bacterial growth. This MGIA may be valuable as a surrogate marker of host immunity in a personalized medicine approach.
Collapse
Affiliation(s)
- Blanka Andersson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Sweden
| | - Michaela Jonsson Nordvall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Sweden; Department of Biomedical and Clinical Sciences, Division of Clinical Microbiology, Linköping University, Sweden
| | - Amanda Welin
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Sweden
| | - Maria Lerm
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Sweden
| | - Thomas Schön
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Sweden; Department of Infectious Diseases and Clinical Microbiology, Kalmar County Hospital, Linköping University, Sweden.
| |
Collapse
|
8
|
Parbhoo T, Sampson SL, Mouton JM. Recent Developments in the Application of Flow Cytometry to Advance our Understanding of Mycobacterium tuberculosis Physiology and Pathogenesis. Cytometry A 2020; 97:683-693. [PMID: 32437069 PMCID: PMC7496436 DOI: 10.1002/cyto.a.24030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
The ability of the bacterial pathogen Mycobacterium tuberculosis to adapt and survive within human cells to disseminate to other individuals and cause active disease is poorly understood. Research supports that as M. tuberculosis adapts to stressors encountered in the host, it exhibits variable physiological and metabolic states that are time and niche-dependent. Challenges associated with effective treatment and eradication of tuberculosis (TB) are in part attributed to our lack of understanding of these different mycobacterial phenotypes. This is mainly due to a lack of suitable tools to effectively identify/detect heterogeneous bacterial populations, which may include small, difficult-to-culture subpopulations. Importantly, flow cytometry allows rapid and affordable multiparametric measurements of physical and chemical characteristics of single cells, without the need to preculture cells. Here, we summarize current knowledge of flow cytometry applications that have advanced our understanding of the physiology of M. tuberculosis during TB disease. Specifically, we review how host-associated stressors influence bacterial characteristics such as metabolic activity, membrane potential, redox status and the mycobacterial cell wall. Further, we highlight that flow cytometry offers unprecedented opportunities for insight into bacterial population heterogeneity, which is increasingly appreciated as an important determinant of disease outcome. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Trisha Parbhoo
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Samantha L. Sampson
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Jacoba M. Mouton
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
9
|
Ariel O, Gendron D, Dudemaine PL, Gévry N, Ibeagha-Awemu EM, Bissonnette N. Transcriptome Profiling of Bovine Macrophages Infected by Mycobacterium avium spp. paratuberculosis Depicts Foam Cell and Innate Immune Tolerance Phenotypes. Front Immunol 2020; 10:2874. [PMID: 31969876 PMCID: PMC6960179 DOI: 10.3389/fimmu.2019.02874] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium avium spp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), also known as paratuberculosis, in ruminants. The mechanisms of JD pathogenesis are not fully understood, but it is known that MAP subverts the host immune system by using macrophages as its primary reservoir. MAP infection in macrophages is often studied in healthy cows or experimentally infected calves, but reports on macrophages from naturally infected cows are lacking. In our study, primary monocyte-derived macrophages (MDMs) from cows diagnosed as positive (+) or negative (–) for JD were challenged in vitro with live MAP. Analysis using next-generation RNA sequencing revealed that macrophages from JD(+) cows did not present a definite pattern of response to MAP infection. Interestingly, a considerable number of genes, up to 1436, were differentially expressed in JD(–) macrophages. The signatures of the infection time course of 1, 4, 8, and 24 h revealed differential expression of ARG2, COL1A1, CCL2, CSF3, IL1A, IL6, IL10, PTGS2, PTX3, SOCS3, TNF, and TNFAIP6 among other genes, with major effects on host signaling pathways. While several immune pathways were affected by MAP, other pathways related to hepatic fibrosis/hepatic stellate cell activation, lipid homeostasis, such as LXR/RXR (liver X receptor/retinoid X receptor) activation pathways, and autoimmune diseases (rheumatoid arthritis or atherosclerosis) also responded to the presence of live MAP. Comparison of the profiles of the unchallenged MDMs from JD(+) vs. JD(–) cows showed that 868 genes were differentially expressed, suggesting that these genes were already affected before monocytes differentiated into macrophages. The downregulated genes predominantly modified the general cell metabolism by downregulating amino acid synthesis and affecting cholesterol biosynthesis and other energy production pathways while introducing a pro-fibrotic pattern associated with foam cells. The upregulated genes indicated that lipid homeostasis was already supporting fat storage in uninfected JD(+) MDMs. For JD(+) MDMs, differential gene expression expounds long-term mechanisms established during disease progression of paratuberculosis. Therefore, MAP could further promote disease persistence by influencing long-term macrophage behavior by using both tolerance and fat-storage states. This report contributes to a better understanding of MAP's controls over the immune cell response and mechanisms of MAP survival.
Collapse
Affiliation(s)
- Olivier Ariel
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daniel Gendron
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Smirnov A, Solga MD, Lannigan J, Criss AK. Using Imaging Flow Cytometry to Quantify Neutrophil Phagocytosis. Methods Mol Biol 2020; 2087:127-140. [PMID: 31728988 PMCID: PMC7003993 DOI: 10.1007/978-1-0716-0154-9_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neutrophils are professional phagocytes that are important for innate host defenses against pathogens and resolution of inflammation. Traditionally, the phagocytic capacity of neutrophils was quantified by enumeration of cells containing either internalized or bound bacteria or other cargo from a series of microscopic images. Here we describe an imaging flow cytometry-based protocol and analysis method for quantifying the binding and uptake of Neisseria gonorrhoeae by primary adherent human neutrophils. Imaging flow cytometry combines the capacity for quantitative, high-throughput analysis of tens of thousands of cells per condition, with the imaging power of fluorescence microscopy. Here, all bacteria are labeled with Tag-it Violet™ and bound bacteria are differentially stained with a DyLight™ 650-conjugated antibody. Images are analyzed using spot count and other algorithms. Outputs include the percent of neutrophils associated with bacteria, the percent of neutrophils with internalized bacteria, and the percent of internalized bacteria. This basic protocol can be adapted to a variety of particle types and can be used for multiplex analysis in combination with staining for different neutrophil surface and intracellular markers.
Collapse
Affiliation(s)
- Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - Michael D Solga
- UVA Flow Cytometry Core, University of Virginia, Charlottesville, VA, USA
| | - Joanne Lannigan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
11
|
Yaakov LB, Mutsafi Y, Porat Z, Dadosh T, Minsky A. Kinetics of Mimivirus Infection Stages Quantified Using Image Flow Cytometry. Cytometry A 2019; 95:534-548. [PMID: 31017743 PMCID: PMC6593739 DOI: 10.1002/cyto.a.23770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022]
Abstract
Due to the heterogeneity of viruses and their hosts, a comprehensive view of viral infection is best achieved by analyzing large populations of infected cells. However, information regarding variation in infected cell populations is lost in bulk measurements. Motivated by an interest in the temporal progression of events in virally infected cells, we used image flow cytometry (IFC) to monitor changes in Acanthamoeba polyphaga cells infected with Mimivirus. This first use of IFC to study viral infection required the development of methods to preserve morphological features of adherent amoeba cells prior to detachment and analysis in suspension. It also required the identification of IFC parameters that best report on key events in the Mimivirus infection cycle. The optimized IFC protocol enabled the simultaneous monitoring of diverse processes including generation of viral factories, transport, and fusion of replication centers within the cell, accumulation of viral progeny, and changes in cell morphology for tens of thousands of cells. After obtaining the time windows for these processes, we used IFC to evaluate the effects of perturbations such as oxidative stress and cytoskeletal disruptors on viral infection. Accurate dose‐response curves could be generated, and we found that mild oxidative stress delayed multiple stages of virus production, but eventually infection processes occurred with approximately the same amplitudes. We also found that functional actin cytoskeleton is required for fusion of viral replication centers and later for the production of viral progeny. Through this report, we demonstrate that IFC offers a quantitative, high‐throughput, and highly robust approach to study viral infection cycles and virus–host interactions. © The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Liran Ben Yaakov
- Department of Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yael Mutsafi
- Biochemistry and Biophysics Center, NHLBI, NIH, 50 South Drive, 20892, Bethesda, Maryland, USA
| | - Ziv Porat
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tali Dadosh
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Abraham Minsky
- Department of Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
12
|
Welin A, Weber S, Hilbi H. Quantitative Imaging Flow Cytometry of Legionella-Containing Vacuoles in Dually Fluorescence-Labeled Dictyostelium. Methods Mol Biol 2019; 1921:161-177. [PMID: 30694491 DOI: 10.1007/978-1-4939-9048-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Legionella pneumophila enters and replicates within protozoan and mammalian phagocytes by forming through a conserved mechanism a specialized intracellular compartment termed the Legionella-containing vacuole (LCV). This compartment avoids fusion with bactericidal lysosomes but communicates extensively with different cellular vesicle trafficking pathways and ultimately interacts closely with the endoplasmic reticulum. In order to delineate the process of pathogen vacuole formation and to better understand L. pneumophila virulence, an analysis of markers of the different trafficking pathways on the pathogen vacuole is crucial. Here, we describe a method for rapid, objective and quantitative analysis of different fluorescently tagged proteins or probes on the LCV. To this end, we employ an imaging flow cytometry approach and use the D. discoideum -L. pneumophila infection model. Imaging flow cytometry enables quantification of many different parameters by fluorescence microscopy of cells in flow, rapidly producing statistically robust data from thousands of cells. We also describe the generation of D. discoideum strains simultaneously producing two different fluorescently tagged probes that enable visualization of compartments and processes in parallel. The quantitative imaging flow technique can be corroborated and enhanced by laser scanning confocal microscopy.
Collapse
Affiliation(s)
- Amanda Welin
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
| | - Stephen Weber
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
13
|
Weimershaus M, Mauvais FX, Saveanu L, Adiko C, Babdor J, Abramova A, Montealegre S, Lawand M, Evnouchidou I, Huber KJ, Chadt A, Zwick M, Vargas P, Dussiot M, Lennon-Dumenil AM, Brocker T, Al-Hasani H, van Endert P. Innate Immune Signals Induce Anterograde Endosome Transport Promoting MHC Class I Cross-Presentation. Cell Rep 2018; 24:3568-3581. [DOI: 10.1016/j.celrep.2018.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 06/14/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
|
14
|
Habtamu M, Abebe M, Aseffa A, Dyrhol-Riise AM, Spurkland A, Abrahamsen G. In vitro analysis of antigen induced T cell-monocyte conjugates by imaging flow cytometry. J Immunol Methods 2018; 460:93-100. [PMID: 29981305 DOI: 10.1016/j.jim.2018.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
There is a lack of suitable correlates of immune protection against Mycobacterium tuberculosis (Mtb) infection. T cells and monocytes play key roles in host immunity against Mtb. Thus, a method that allows assessing their interaction would contribute to the understanding of immune regulation in tuberculosis (TB). We have established imaging flow cytometer (IFC) based in vitro assay for the analysis of early events in T cell-monocyte interaction, upstream of cytokine production and T cell proliferation. This was achieved through short term stimulation of peripheral blood mononuclear cells (PBMC) from healthy Norwegian blood donors with Mycobacterium bovis Bacille Calmette-Guérin (BCG). In our assay, we examined the kinetics of BCG uptake by monocytes using fluorescently labeled BCG and T cell-monocyte interaction based on synapse formation (CD3/TCR polarization). Our results showed that BCG stimulation induced a gradual increase in the proportion of conjugated T cells displaying NF-κB translocation to the nucleus in a time dependent manner, with the highest frequency observed at 6 h. We subsequently tested PBMC from a small cohort of active TB patients (n = 7) and observed a similar BCG induced NF-κB translocation in T cells conjugated with monocytes. The method allowed for simultaneous evaluation of T cell-monocyte conjugates and T cell activation as measured by NF-κB translocation, following short-term challenge of human PBMC with BCG. Whether this novel approach could serve as a diagnostic or prognostic marker needs to be investigated using a wide array of Mtb specific antigens in a larger cohort of patients with different TB infection status.
Collapse
Affiliation(s)
- Meseret Habtamu
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway; Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Anne Margarita Dyrhol-Riise
- Department of Infectious Disease, Oslo University Hospital, N-0424 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0424 Oslo, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Greger Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway.
| |
Collapse
|
15
|
Quantitative Imaging Flow Cytometry of Legionella-Infected Dictyostelium Amoebae Reveals the Impact of Retrograde Trafficking on Pathogen Vacuole Composition. Appl Environ Microbiol 2018; 84:AEM.00158-18. [PMID: 29602783 DOI: 10.1128/aem.00158-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/27/2018] [Indexed: 01/15/2023] Open
Abstract
The ubiquitous environmental bacterium Legionella pneumophila survives and replicates within amoebae and human macrophages by forming a Legionella-containing vacuole (LCV). In an intricate process governed by the bacterial Icm/Dot type IV secretion system and a plethora of effector proteins, the nascent LCV interferes with a number of intracellular trafficking pathways, including retrograde transport from endosomes to the Golgi apparatus. Conserved retrograde trafficking components, such as the retromer coat complex or the phosphoinositide (PI) 5-phosphatase D. discoideum 5-phosphatase 4 (Dd5P4)/oculocerebrorenal syndrome of Lowe (OCRL), restrict intracellular replication of L. pneumophila by an unknown mechanism. Here, we established an imaging flow cytometry (IFC) approach to assess in a rapid, unbiased, and large-scale quantitative manner the role of retrograde-linked PI metabolism and actin dynamics in the LCV composition. Exploiting Dictyostelium discoideum genetics, we found that Dd5P4 modulates the acquisition of fluorescently labeled LCV markers, such as calnexin, the small GTPase Rab1 (but not Rab7 and Rab8), and retrograde trafficking components (Vps5, Vps26, Vps35). The actin-nucleating protein and retromer interactor WASH (Wiskott-Aldrich syndrome protein [WASP] and suppressor of cAMP receptor [SCAR] homologue) promotes the accumulation of Rab1 and Rab8 on LCVs. Collectively, our findings validate IFC for the quantitative and unbiased analysis of the pathogen vacuole composition and reveal the impact of retrograde-linked PI metabolism and actin dynamics on the LCV composition. The IFC approach employed here can be adapted for a molecular analysis of the pathogen vacuole composition of other amoeba-resistant pathogens.IMPORTANCELegionella pneumophila is an amoeba-resistant environmental bacterium which can cause a life-threatening pneumonia termed Legionnaires' disease. In order to replicate intracellularly, the opportunistic pathogen forms a protective compartment, the Legionella-containing vacuole (LCV). An in-depth analysis of the LCV composition and the complex process of pathogen vacuole formation is crucial for understanding the virulence of L. pneumophila Here, we established an imaging flow cytometry (IFC) approach to assess in a rapid, unbiased, and quantitative manner the accumulation of fluorescently labeled markers and probes on LCVs. Using IFC and L. pneumophila-infected Dictyostelium discoideum or defined mutant amoebae, a role for phosphoinositide (PI) metabolism, retrograde trafficking, and the actin cytoskeleton in the LCV composition was revealed. In principle, the powerful IFC approach can be used to analyze the molecular composition of any cellular compartment harboring bacterial pathogens.
Collapse
|
16
|
Swart AL, Harrison CF, Eichinger L, Steinert M, Hilbi H. Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection. Front Cell Infect Microbiol 2018; 8:61. [PMID: 29552544 PMCID: PMC5840211 DOI: 10.3389/fcimb.2018.00061] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Environmental bacteria of the genus Legionella naturally parasitize free-living amoebae. Upon inhalation of bacteria-laden aerosols, the opportunistic pathogens grow intracellularly in alveolar macrophages and can cause a life-threatening pneumonia termed Legionnaires' disease. Intracellular replication in amoebae and macrophages takes place in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates literally hundreds of "effector" proteins into host cells, where they modulate crucial cellular processes for the pathogen's benefit. The mechanism of LCV formation appears to be evolutionarily conserved, and therefore, amoebae are not only ecologically significant niches for Legionella spp., but also useful cellular models for eukaryotic phagocytes. In particular, Acanthamoeba castellanii and Dictyostelium discoideum emerged over the last years as versatile and powerful models. Using genetic, biochemical and cell biological approaches, molecular interactions between amoebae and Legionella pneumophila have recently been investigated in detail with a focus on the role of phosphoinositide lipids, small and large GTPases, autophagy components and the retromer complex, as well as on bacterial effectors targeting these host factors.
Collapse
Affiliation(s)
- A Leoni Swart
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Christopher F Harrison
- Max von Pettenkofer Institute, Medical Faculty, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Michael Steinert
- Department of Life Sciences, Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Bärlocher K, Hutter CAJ, Swart AL, Steiner B, Welin A, Hohl M, Letourneur F, Seeger MA, Hilbi H. Structural insights into Legionella RidL-Vps29 retromer subunit interaction reveal displacement of the regulator TBC1D5. Nat Commun 2017; 8:1543. [PMID: 29146912 PMCID: PMC5691146 DOI: 10.1038/s41467-017-01512-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/22/2017] [Indexed: 11/09/2022] Open
Abstract
Legionella pneumophila can cause Legionnaires’ disease and replicates intracellularly in a distinct Legionella-containing vacuole (LCV). LCV formation is a complex process that involves a plethora of type IV-secreted effector proteins. The effector RidL binds the Vps29 retromer subunit, blocks retrograde vesicle trafficking, and promotes intracellular bacterial replication. Here, we reveal that the 29-kDa N-terminal domain of RidL (RidL2–281) adopts a “foot-like” fold comprising a protruding β-hairpin at its “heel”. The deletion of the β-hairpin, the exchange to Glu of Ile170 in the β-hairpin, or Leu152 in Vps29 abolishes the interaction in eukaryotic cells and in vitro. RidL2–281 or RidL displace the Rab7 GTPase-activating protein (GAP) TBC1D5 from the retromer and LCVs, respectively, and TBC1D5 promotes the intracellular growth of L. pneumophila. Thus, the hydrophobic β-hairpin of RidL is critical for binding of the L. pneumophila effector to the Vps29 retromer subunit and displacement of the regulator TBC1D5. Legionella pneumophila replicates in a Legionella-containing vacuole (LCV). Here the authors present the structure of the Legionella effector RidL N-terminal domain and reveal how RidL contributes to the subversion of retrograde trafficking by binding to the retromer coat complex subunit Vps29, which leads to a displacement of the regulator TBC1D5.
Collapse
Affiliation(s)
- Kevin Bärlocher
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - A Leoni Swart
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Bernhard Steiner
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Amanda Welin
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Michael Hohl
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - François Letourneur
- UMR5235, DIMNP, CNRS/Université Montpellier, Place Eugène Bataillon, Montpellier, 34095, cedex 5, France
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland.
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland.
| |
Collapse
|
18
|
Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci U S A 2017; 114:9954-9959. [PMID: 28847968 DOI: 10.1073/pnas.1707098114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The enteroinvasive bacterium Shigella is a facultative intracellular bacterium known, in vitro, to invade a large diversity of cells through the delivery of virulence effectors into the cell cytoplasm via a type III secretion system (T3SS). Here, we provide evidence that the injection of T3SS effectors does not necessarily result in cell invasion. Indeed, we demonstrate through optimization of a T3SS injection reporter that effector injection without subsequent cell invasion, termed the injection-only mechanism, is the main strategy used by Shigella to target human immune cells. We show that in vitro-activated human peripheral blood B, CD4+ T, and CD8+ T lymphocytes as well as switched memory B cells are mostly targeted by the injection-only mechanism. B and T lymphocytes residing in the human colonic lamina propria, encountered by Shigella upon its crossing of the mucosal barrier, are also mainly targeted by injection-only. These findings reveal that cells refractory to invasion can still be injected, thus extending the panel of host cells manipulated to the benefit of the pathogen. Future analysis of the functional consequences of the injection-only mechanism toward immune cells will contribute to the understanding of the priming of adaptive immunity, which is known to be altered during the course of natural Shigella infection.
Collapse
|
19
|
Steiner B, Swart AL, Welin A, Weber S, Personnic N, Kaech A, Freyre C, Ziegler U, Klemm RW, Hilbi H. ER remodeling by the large GTPase atlastin promotes vacuolar growth of Legionella pneumophila. EMBO Rep 2017; 18:1817-1836. [PMID: 28835546 DOI: 10.15252/embr.201743903] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 01/31/2023] Open
Abstract
The pathogenic bacterium Legionella pneumophila replicates in host cells within a distinct ER-associated compartment termed the Legionella-containing vacuole (LCV). How the dynamic ER network contributes to pathogen proliferation within the nascent LCV remains elusive. A proteomic analysis of purified LCVs identified the ER tubule-resident large GTPase atlastin3 (Atl3, yeast Sey1p) and the reticulon protein Rtn4 as conserved LCV host components. Here, we report that Sey1/Atl3 and Rtn4 localize to early LCVs and are critical for pathogen vacuole formation. Sey1 overproduction promotes intracellular growth of L. pneumophila, whereas a catalytically inactive, dominant-negative GTPase mutant protein, or Atl3 depletion, restricts pathogen replication and impairs LCV maturation. Sey1 is not required for initial recruitment of ER to PtdIns(4)P-positive LCVs but for subsequent pathogen vacuole expansion. GTP (but not GDP) catalyzes the Sey1-dependent aggregation of purified, ER-positive LCVs in vitro Thus, Sey1/Atl3-dependent ER remodeling contributes to LCV maturation and intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Bernhard Steiner
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Anna Leoni Swart
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Amanda Welin
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Stephen Weber
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zürich, Zürich, Switzerland
| | - Christophe Freyre
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zürich, Zürich, Switzerland
| | - Robin W Klemm
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Abstract
The interaction between the host and the pathogen is extremely complex and is affected by anatomical, physiological, and immunological diversity in the microenvironments, leading to phenotypic diversity of the pathogen. Phenotypic heterogeneity, defined as nongenetic variation observed in individual members of a clonal population, can have beneficial consequences especially in fluctuating stressful environmental conditions. This is all the more relevant in infections caused by Mycobacterium tuberculosis wherein the pathogen is able to survive and often establish a lifelong persistent infection in the host. Recent studies in tuberculosis patients and in animal models have documented the heterogeneous and diverging trajectories of individual lesions within a single host. Since the fate of the individual lesions appears to be determined by the local tissue environment rather than systemic response of the host, studying this heterogeneity is very relevant to ensure better control and complete eradication of the pathogen from individual lesions. The heterogeneous microenvironments greatly enhance M. tuberculosis heterogeneity influencing the growth rates, metabolic potential, stress responses, drug susceptibility, and eventual lesion resolution. Single-cell approaches such as time-lapse microscopy using microfluidic devices allow us to address cell-to-cell variations that are often lost in population-average measurements. In this review, we focus on some of the factors that could be considered as drivers of phenotypic heterogeneity in M. tuberculosis as well as highlight some of the techniques that are useful in addressing this issue.
Collapse
|
21
|
Smirnov A, Solga MD, Lannigan J, Criss AK. High-Throughput Particle Uptake Analysis by Imaging Flow Cytometry. CURRENT PROTOCOLS IN CYTOMETRY 2017; 80:11.22.1-11.22.17. [PMID: 28369762 PMCID: PMC5710744 DOI: 10.1002/cpcy.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Quantifying the efficiency of particle uptake by host cells is important in the fields of infectious diseases, autoimmunity, cancer, developmental biology, and drug delivery. Here we present a protocol for high-throughput analysis of particle uptake by imaging flow cytometry, using the bacterium Neisseria gonorrhoeae attached to and internalized by neutrophils as an example. Cells are exposed to fluorescently labeled bacteria, fixed, and stained with a bacteria-specific antibody of a different fluorophore. Thus, in the absence of a permeabilizing agent, extracellular bacteria are double-labeled with two fluorophores while intracellular bacteria remain single-labeled. A spot count algorithm is used to determine the number of single- and double-labeled bacteria in individual cells, to calculate the percent of cells associated with bacteria, percent of cells with internalized bacteria, and percent of cell-associated bacteria that are internalized. These analyses quantify bacterial association and internalization across thousands of cells and can be applied to diverse experimental systems. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology, University
of Virginia, Charlottesville, Virginia, USA
| | - Michael D. Solga
- Department of Microbiology, Immunology, and Cancer Biology, University
of Virginia, Charlottesville, Virginia, USA
| | - Joanne Lannigan
- Department of Microbiology, Immunology, and Cancer Biology, University
of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University
of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Schmölders J, Manske C, Otto A, Hoffmann C, Steiner B, Welin A, Becher D, Hilbi H. Comparative Proteomics of Purified Pathogen Vacuoles Correlates Intracellular Replication of Legionella pneumophila with the Small GTPase Ras-related protein 1 (Rap1). Mol Cell Proteomics 2017; 16:622-641. [PMID: 28183814 DOI: 10.1074/mcp.m116.063453] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Legionella pneumophila is an opportunistic bacterial pathogen that causes a severe lung infection termed "Legionnaires' disease." The pathogen replicates in environmental protozoa as well as in macrophages within a unique membrane-bound compartment, the Legionella-containing-vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates ca. 300 "effector proteins" into host cells, where they target distinct host factors. The L. pneumophila "pentuple" mutant (Δpentuple) lacks 5 gene clusters (31% of the effector proteins) and replicates in macrophages but not in Dictyostelium discoideum amoeba. To elucidate the host factors defining a replication-permissive compartment, we compare here the proteomes of intact LCVs isolated from D. discoideum or macrophages infected with Δpentuple or the parental strain Lp02. This analysis revealed that the majority of host proteins are shared in D. discoideum or macrophage LCVs containing the mutant or the parental strain, respectively, whereas some proteins preferentially localize to distinct LCVs. The small GTPase Rap1 was identified on D. discoideum LCVs containing strain Lp02 but not the Δpentuple mutant and on macrophage LCVs containing either strain. The localization pattern of active Rap1 on D. discoideum or macrophage LCVs was confirmed by fluorescence microscopy and imaging flow cytometry, and the depletion of Rap1 by RNA interference significantly reduced the intracellular growth of L. pneumophila Thus, comparative proteomics identified Rap1 as a novel LCV host component implicated in intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Johanna Schmölders
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | - Christian Manske
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | - Andreas Otto
- §Institute for Microbiology, Ernst Moritz Arndt University, Greifswald, Germany
| | - Christine Hoffmann
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | - Bernhard Steiner
- ¶Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Amanda Welin
- ¶Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Dörte Becher
- §Institute for Microbiology, Ernst Moritz Arndt University, Greifswald, Germany;
| | - Hubert Hilbi
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany; .,¶Institute of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
23
|
Haridas V, Ranjbar S, Vorobjev IA, Goldfeld AE, Barteneva NS. Imaging flow cytometry analysis of intracellular pathogens. Methods 2017; 112:91-104. [PMID: 27642004 PMCID: PMC5857943 DOI: 10.1016/j.ymeth.2016.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/15/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023] Open
Abstract
Imaging flow cytometry has been applied to address questions in infection biology, in particular, infections induced by intracellular pathogens. This methodology, which utilizes specialized analytic software makes it possible to analyze hundreds of quantified features for hundreds of thousands of individual cellular or subcellular events in a single experiment. Imaging flow cytometry analysis of host cell-pathogen interaction can thus quantitatively addresses a variety of biological questions related to intracellular infection, including cell counting, internalization score, and subcellular patterns of co-localization. Here, we provide an overview of recent achievements in the use of fluorescently labeled prokaryotic or eukaryotic pathogens in human cellular infections in analysis of host-pathogen interactions. Specifically, we give examples of Imagestream-based analysis of cell lines infected with Toxoplasma gondii or Mycobacterium tuberculosis. Furthermore, we illustrate the capabilities of imaging flow cytometry using a combination of standard IDEAS™ software and the more recently developed Feature Finder algorithm, which is capable of identifying statistically significant differences between researcher-defined image galleries. We argue that the combination of imaging flow cytometry with these software platforms provides a powerful new approach to understanding host control of intracellular pathogens.
Collapse
Affiliation(s)
- Viraga Haridas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Shahin Ranjbar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Ivan A Vorobjev
- School of Science and Technology, Nazarbayev University, Kazakhstan; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russia; Department of Cell Biology and Histology, M.V. Lomonosov Moscow State University, Russia
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States.
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States; School of Science and Technology, Nazarbayev University, Kazakhstan.
| |
Collapse
|