1
|
Cruz CJG, Kil R, Wong S, Dacquay LC, Mirano-Bascos D, Rivera PT, McMillen DR. Malarial Antibody Detection with an Engineered Yeast Agglutination Assay. ACS Synth Biol 2022; 11:2938-2946. [PMID: 35861604 DOI: 10.1021/acssynbio.2c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Malaria, a disease caused by the Plasmodium parasite carried by Anopheles mosquitoes, is commonly diagnosed by microscopy of peripheral blood smears and with rapid diagnostic tests. Both methods show limited detection of low parasitemia that may maintain transmission and hinder malaria elimination. We have developed a novel agglutination assay in which modified Saccharomyces cerevisiae cells act as antigen-displaying bead-like particles to capture malaria antibodies. The Epidermal Growth Factor-1 like domain (EGF1) of the Plasmodium falciparum merozoite surface protein-1 (PfMSP-119) was displayed on the yeast surface and shown to be capable of binding antimalaria antibodies. Mixed with a second yeast strain displaying the Z domain of Protein A from Staphylococcus aureus and allowed to settle in a round-bottomed well, the yeast produce a visually distinctive agglutination test result: a tight "button" at a low level of malarial antibodies, and a diffuse "sheet" when higher antibody levels are present. Positive agglutination results were observed in malaria-positive human serum to a serum dilution of 1:100 to 1:125. Since the yeast cells are inexpensive to produce, the test may be amenable to local production in regions seeking malaria surveillance information to guide their elimination programs.
Collapse
Affiliation(s)
- Criselda Jean G Cruz
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,College of Medicine, University of the Philippines Manila, Manila 1108, Philippines
| | - Richard Kil
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stanley Wong
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Louis C Dacquay
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Denise Mirano-Bascos
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Pilarita T Rivera
- College of Medicine, University of the Philippines Manila, Manila 1108, Philippines.,Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - David R McMillen
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
2
|
Venkatesh AG, Brickner H, Looney D, Hall DA, Aronoff-Spencer E. Clinical detection of Hepatitis C viral infection by yeast-secreted HCV-core:Gold-binding-peptide. Biosens Bioelectron 2018; 119:230-236. [PMID: 30144754 DOI: 10.1016/j.bios.2018.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/01/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Access to affordable and field deployable diagnostics are key barriers to the control and eradication of many endemic and emerging infectious diseases. While cost, accuracy, and usability have all improved in recent years, there remains a pressing need for even less expensive and more scalable technologies. To that end, we explored new methods to inexpensively produce and couple protein-based biosensing molecules (affinity reagents) with scalable electrochemical sensors. Previous whole-cell constructs resulted in confounding measurements in clinical testing due to significant cross-reactivity when probing for host-immune (antibody) response to infection. To address this, we developed two complimentary strategies based on either the release of surface displayed or secretion of fusion proteins. These dual affinity biosensing elements couple antibody recognition (using antigen) and sensor surface adhesion (using gold-binding peptide-GBP) to allow single-step reagent production, purification, and biosensor assembly. As a proof-of-concept, we developed Hepatitis C virus (HCV)-core antigen-GBP fusion proteins. These constructs were first tested and optimized for consistent surface adhesion then the assembled immunosensors were tested for cross-reactivity and evaluated for performance in vitro. We observed loss of function of the released reagents while secreted constructs performed well in in vitro testing with 2 orders of dynamic range, and a limit of detection of 32 nM. Finally, we validated the secreted platform with clinical isolates (n = 3) with statistically significant differentiation of positive vs. non-infected serum (p < 0.0001) demonstrating the ability to clearly distinguish HCV positive and negative clinical samples.
Collapse
Affiliation(s)
- A G Venkatesh
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - H Brickner
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - D Looney
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - D A Hall
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - E Aronoff-Spencer
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
DeRosa JR, Moyer BS, Lumen E, Wolfe AJ, Sleeper MB, Bianchi AH, Crawford A, McGuigan C, Wortel D, Fisher C, Moody KJ, Blanden AR. RPtag as an Orally Bioavailable, Hyperstable Epitope Tag and Generalizable Protein Binding Scaffold. Biochemistry 2018; 57:3036-3049. [PMID: 29722979 DOI: 10.1021/acs.biochem.8b00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibodies are the most prolific biologics in research and clinical environments because of their ability to bind targets with high affinity and specificity. However, antibodies also carry liabilities. A significant portion of the life-science reproducibility crisis is driven by inconsistent performance of research-grade antibodies, and clinical antibodies are often unstable and require costly cold-chain management to reach their destinations in active form. In biotechnology, antibodies are also limited by difficulty integrating them in many recombinant systems due to their size and structural complexity. A switch to small, stable, sequence-verified binding scaffolds may overcome these barriers. Here we present such a scaffold, RPtag, based on a ribose-binding protein (RBP) from extremophile Caldanaerobacter subterraneus. RPtag binds an optimized peptide with pM affinity, is stable to extreme temperature, pH, and protease treatment, readily refolds after denaturation, is effective in common laboratory applications, was rationally engineered to bind bioactive PDGF-β, and was formulated as a gut-stable orally bioavailable preparation.
Collapse
Affiliation(s)
- Jennifer R DeRosa
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Brandon S Moyer
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Ellie Lumen
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Aaron J Wolfe
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Meegan B Sleeper
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Anthony H Bianchi
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Ashleigh Crawford
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Connor McGuigan
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Danique Wortel
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Cheyanne Fisher
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Kelsey J Moody
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Adam R Blanden
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| |
Collapse
|
4
|
Grewal Y, Shiddiky MJA, Mahler SM, Cangelosi GA, Trau M. Nanoyeast and Other Cell Envelope Compositions for Protein Studies and Biosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30649-30664. [PMID: 27762541 PMCID: PMC5114700 DOI: 10.1021/acsami.6b09263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 05/06/2023]
Abstract
Rapid progress in disease biomarker discovery has increased the need for robust detection technologies. In the past several years, the designs of many immunoaffinity reagents have focused on lowering costs and improving specificity while also promoting stability. Antibody fragments (scFvs) have long been displayed on the surface of yeast and phage libraries for selection; however, the stable production of such fragments presents challenges that hamper their widespread use in diagnostics. Membrane and cell wall proteins similarly suffer from stability problems when solubilized from their native environment. Recently, cell envelope compositions that maintain membrane proteins in native or native-like lipid environment to improve their stability have been developed. This cell envelope composition approach has now been adapted toward stabilizing antibody fragments by retaining their native cell wall environment. A new class of immunoaffinity reagents has been developed that maintains antibody fragment attachment to yeast cell wall. Herein, we review recent strategies that incorporate cell wall fragments with functional scFvs, which are designed for easy production while maintaining specificity and stability when in use with simple detection platforms. These cell wall based antibody fragments are globular in structure, and heterogeneous in size, with fragments ranging from tens to hundreds of nanometers in size. These fragments appear to retain activity once immobilized onto biosensor surfaces for the specific and sensitive detection of pathogen antigens. They can be quickly and economically generated from a yeast display library and stored lyophilized, at room temperature, for up to a year with little effect on stability. This new format of scFvs provides stability, in a simple and low-cost manner toward the use of scFvs in biosensor applications. The production and "panning" of such antibody cell wall composites are also extremely facile, enabling the rapid adoption of stable and inexpensive affinity reagents for emerging infectious threats.
Collapse
Affiliation(s)
- Yadveer
S. Grewal
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Muhammad J. A. Shiddiky
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen M. Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology
(AIBN), University of Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerard A. Cangelosi
- School
of Public Health, University of Washington, Seattle, Washington 98195, United States
| | - Matt Trau
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|