1
|
Xu Y, Weideman AM, Abad-Fernandez M, Mollan KR, Kallon S, Samir S, Warren JA, Clutton G, Roan NR, Adimora AA, Archin N, Kuruc J, Gay C, Hudgens MG, Goonetilleke N. Reliable Estimation of CD8 T Cell Inhibition of In Vitro HIV-1 Replication. Front Immunol 2021; 12:666991. [PMID: 34276657 PMCID: PMC8278574 DOI: 10.3389/fimmu.2021.666991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023] Open
Abstract
The HIV-1 viral inhibition assay (VIA) measures CD8 T cell-mediated inhibition of HIV replication in CD4 T cells and is increasingly used for clinical testing of HIV vaccines and immunotherapies. The VIA has multiple sources of variability arising from in vitro HIV infection and co-culture of two T cell populations. Here, we describe multiple modifications to a 7-day VIA protocol, the most impactful being the introduction of independent replicate cultures for both HIV infected-CD4 (HIV-CD4) and HIV-CD4:CD8 T cell cultures. Virus inhibition was quantified using a ratio of weighted averages of p24+ cells in replicate cultures and the corresponding 95% confidence interval. An Excel template is provided to facilitate calculations. Virus inhibition was higher in people living with HIV suppressed on antiretroviral therapy (n=14, mean: 40.0%, median: 43.8%, range: 8.2 to 73.3%; p < 0.0001, two-tailed, exact Mann-Whitney test) compared to HIV-seronegative donors (n = 21, mean: -13.7%, median: -14.4%, range: -49.9 to 20.9%) and was stable over time (n = 6, mean %COV 9.4%, range 0.9 to 17.3%). Cross-sectional data were used to define 8% inhibition as the threshold to confidently detect specific CD8 T cell activity and determine the minimum number of culture replicates and p24+ cells needed to have 90% statistical power to detect this threshold. Last, we note that, in HIV seronegative donors, the addition of CD8 T cells to HIV infected CD4 T cells consistently increased HIV replication, though the level of increase varied markedly between donors. This co-culture effect may contribute to the weak correlations observed between CD8 T cell VIA and other measures of HIV-specific CD8 T cell function.
Collapse
Affiliation(s)
- Yinyan Xu
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Ann Marie Weideman
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Maria Abad-Fernandez
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Katie R. Mollan
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States
| | - Sallay Kallon
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Shahryar Samir
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Joanna A. Warren
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Nadia R. Roan
- Department of Urology, University of California San Francisco, San Francisco, CA, United States,Gladstone Institute of Virology and Immunology, San Francisco, CA, United States
| | - Adaora A. Adimora
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States,School of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Nancie Archin
- School of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - JoAnn Kuruc
- School of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Cynthia Gay
- School of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Michael G. Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,School of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,*Correspondence: Nilu Goonetilleke,
| |
Collapse
|
3
|
HLA Class I Downregulation by HIV-1 Variants from Subtype C Transmission Pairs. J Virol 2018; 92:JVI.01633-17. [PMID: 29321314 DOI: 10.1128/jvi.01633-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/23/2017] [Indexed: 02/08/2023] Open
Abstract
HIV-1 downregulates human leukocyte antigen A (HLA-A) and HLA-B from the surface of infected cells primarily to evade CD8 T cell recognition. HLA-C was thought to remain on the cell surface and bind inhibitory killer immunoglobulin-like receptors, preventing natural killer (NK) cell-mediated suppression. However, a recent study found HIV-1 primary viruses have the capacity to downregulate HLA-C. The goal of this study was to assess the heterogeneity of HLA-A, HLA-B, and HLA-C downregulation among full-length primary viruses from six chronically infected and six newly infected individuals from transmission pairs and to determine whether transmitted/founder variants exhibit common HLA class I downregulation characteristics. We measured HLA-A, HLA-B, HLA-C, and total HLA class I downregulation by flow cytometry of primary CD4 T cells infected with 40 infectious molecular clones. Primary viruses mediated a range of HLA class I downregulation capacities (1.3- to 6.1-fold) which could differ significantly between transmission pairs. Downregulation of HLA-C surface expression on infected cells correlated with susceptibility to in vitro NK cell suppression of virus release. Despite this, transmitted/founder variants did not share a downregulation signature and instead were more similar to the quasispecies of matched donor partners. These data indicate that a range of viral abilities to downregulate HLA-A, HLA-B, and HLA-C exist within and between individuals that can have functional consequences on immune recognition.IMPORTANCE Subtype C HIV-1 is the predominant subtype involved in heterosexual transmission in sub-Saharan Africa. Authentic subtype C viruses that contain natural sequence variations throughout the genome often are not used in experimental systems due to technical constraints and sample availability. In this study, authentic full-length subtype C viruses, including transmitted/founder viruses, were examined for the ability to disrupt surface expression of HLA class I molecules, which are central to both adaptive and innate immune responses to viral infections. We found that the HLA class I downregulation capacity of primary viruses varied, and HLA-C downregulation capacity impacted viral suppression by natural killer cells. Transmitted viruses were not distinct in the capacity for HLA class I downregulation or natural killer cell evasion. These results enrich our understanding of the phenotypic variation existing among natural HIV-1 viruses and how that might impact the ability of the immune system to recognize infected cells in acute and chronic infection.
Collapse
|
5
|
Körner C, Simoneau CR, Schommers P, Granoff M, Ziegler M, Hölzemer A, Lunemann S, Chukwukelu J, Corleis B, Naranbhai V, Kwon DS, Scully EP, Jost S, Kirchhoff F, Carrington M, Altfeld M. HIV-1-Mediated Downmodulation of HLA-C Impacts Target Cell Recognition and Antiviral Activity of NK Cells. Cell Host Microbe 2017; 22:111-119.e4. [PMID: 28704647 PMCID: PMC5565794 DOI: 10.1016/j.chom.2017.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/03/2017] [Accepted: 06/16/2017] [Indexed: 11/24/2022]
Abstract
It was widely accepted that HIV-1 downregulates HLA-A/B to avoid CTL recognition while leaving HLA-C unaltered in order to prevent NK cell activation by engaging inhibitory NK cell receptors, but it was recently observed that most primary isolates of HIV-1 can mediate HLA-C downmodulation. Now we report that HIV-1-mediated downmodulation of HLA-C was associated with reduced binding to its respective inhibitory receptors. Despite this, HLA-C-licensed NK cells displayed reduced antiviral activity compared to their unlicensed counterparts, potentially due to residual binding to the respective inhibitory receptors. Nevertheless, NK cells were able to sense alterations of HLA-C expression demonstrated by increased antiviral activity when exposed to viral strains with differential abilities to downmodulate HLA-C. These results suggest that the capability of HLA-C-licensed NK cells to control HIV-1 replication is determined by the strength of KIR/HLA-C interactions and is thus dependent on both host genetics and the extent of virus-mediated HLA-C downregulation.
Collapse
Affiliation(s)
- Christian Körner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany.
| | | | - Philipp Schommers
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany; Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), Cologne, Germany
| | - Mitchell Granoff
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Maja Ziegler
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany
| | - Angelique Hölzemer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg, Germany; I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sebastian Lunemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany
| | - Janet Chukwukelu
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg, Germany
| | - Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eileen P Scully
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephanie Jost
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany
| |
Collapse
|