1
|
Li L, Wu S, Si Y, Li H, Yin X, Peng D. Single-chain fragment variable produced by phage display technology: Construction, selection, mutation, expression, and recent applications in food safety. Compr Rev Food Sci Food Saf 2022; 21:4354-4377. [PMID: 35904244 DOI: 10.1111/1541-4337.13018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Immunoassays are reliable, efficient, and accurate methods for the analysis of small-molecule harmful substances (such as pesticides, veterinary drugs, and biological toxins) that may be present in food. However, traditional polyclonal and monoclonal antibodies are limited by animal hosts and hinder further development of immunoassays. With the gradual application of phage display technology as an efficient in vitro selection technology, the single-chain fragment variable (scFv) now provides an exciting alternative to traditional antibodies. Efficiently constructed scFv source libraries and specifically designed biopanning schemes can now yield scFvs possessing specific recognition capabilities. A rational mutation strategy further enhances the affinity of scFv, and allows it to reach a level that cannot be achieved by immunization. Finally, appropriate prokaryotic expression measures ensure stable and efficient production of scFv. Therefore, when developing excellent scFvs, it is necessary to focus on three key aspects of this process that include screening, mutation, and expression. In this review, we analyze in detail the preparation and affinity improvement process for scFv and provide insights into the research progress and development trend of scFv-based immunoassay methods for monitoring small-molecule harmful substances.
Collapse
Affiliation(s)
- Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangmin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Si
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaming Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyang Yin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Genetically encoded intrabodies as high-precision tools to visualize and manipulate neuronal function. Semin Cell Dev Biol 2021; 126:117-124. [PMID: 34782184 DOI: 10.1016/j.semcdb.2021.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022]
Abstract
Basic neuroscience research employs numerous forms of antibodies as key reagents in diverse applications. While the predominant use of antibodies is as immunolabeling reagents, neuroscientists are making increased use of intracellular antibodies or intrabodies. Intrabodies are recombinant antibodies genetically encoded for expression within neurons. These can be used to target various cargo (fluorescent proteins, reporters, enzymes, etc.) to specific molecules and subcellular domains to report on and manipulate neuronal function with high precision. Intrabodies have the advantages inherent in all genetically encoded recombinant antibodies but represent a distinct subclass in that their structure allows for their expression and function within cells. The high precision afforded by the ability to direct their expression to specific cell types, and the selective binding of intrabodies to targets within these allows intrabodies to offer unique advantages for neuroscience research, given the tremendous molecular, cellular and morphological complexity of brain neurons. Intrabodies expressed within neurons have been used for a variety of purposes in basic neuroscience research. Here I provide a general background to intrabodies and their development, and examples of their emerging utility as valuable basic neuroscience research tools.
Collapse
|
3
|
Ma H, Cassedy A, Ó'Fágáin C, O'Kennedy R. Generation, selection and modification of anti-cardiac troponin I antibodies with high specificity and affinity. J Immunol Methods 2021; 500:113183. [PMID: 34774542 DOI: 10.1016/j.jim.2021.113183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022]
Abstract
Current diagnosis of acute myocardial infarction involves quantification of circulating cTn levels. This work endeavoured to generate and enhance recombinant antibody fragments targeting various epitopes on the N- and C-terminals of the cTnI molecule, thereby facilitating highly sensitive detection of the troponin molecule. From this approach, two anti-cTnI scFv antibodies were successfully selected using either phage display or structural reformatting of full length anti-cTnI IgG. Their antibody binding affinity was further optimised via chain shuffling and/or site directed mutagenesis, resulting in scFv with heightened sensitivity when compared to the wild-type scFv. If used in conjunction with existing anti-mid fragment cTnI antibodies, these N- and C- terminal-targeting scFvs show high potential for the enhancement of current cTnI detection assays by limiting the effects from cTnI degradation or troponin complex formation.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland
| | - Arabelle Cassedy
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland
| | - Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland; Qatar Foundation, Research, Development and Innovation, and Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
4
|
Palavecino LA, Rodrigues CR, Bello ML, Vasconcellos AG. Inventive step assessment of top selling monoclonal antibodies in Brazil. Expert Opin Ther Pat 2021; 31:193-202. [PMID: 33412957 DOI: 10.1080/13543776.2021.1873955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: The patent system is fundamental for the pharmaceutical industry development, providing a return on the large investment of time and financial resources. Among the patentability requirements, understanding how to comply with the inventive step is especially important for patent applicants. Regarding mAbs, due to the high affinity and specificity for their molecular therapeutic target, minimal structural changes can lead to unexpected properties, being a common issue among Patent Offices.Areas covered: The present research investigated the Brazilian patents covering top-selling mAbs.Expert Opinion: The more complete and detailed the mAb when the patent application is filed, the greater the chance of the patent being granted. It is necessary to disclose, at least, the six CDRs, the complete variable region, and/or the hybridoma. The Applicant shall specify faced obstacles during mAb generation, mainly if it is a common issue and resulted in improved properties. If it is possible, the Applicants shall compare the claimed mAbs to previous ones, focusing on the achieved unexpected or improved properties. After an objection by BRPTO, the Applicant shall submit data with quantitatively data about qualitative information disclosed at the Specification when filed. If applicable, show different epitope-binding and highlight clinical advantages of successful mAbs.
Collapse
Affiliation(s)
- Louise Azulay Palavecino
- Departamento de Biologia Geral (GBG), Universidade Federal Fluminense (UFF), Instituto de Biologia, Laboratório de Antibióticos, Bioquímica, Educação e Modelagem Molecular (Labiemol), Niterói, RJ, Brazil.,Departamento de Biologia Geral (GBG), Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), UFF, Niterói, RJ, Brazil
| | | | - Murilo Lamim Bello
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Alexandre Guimarães Vasconcellos
- Divisão de Pós-graduação e Pesquisa, Academia de Propriedade Intelectual, Inovação e Desenvolvimento do Instituto Nacional da Propriedade Industrial, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Ma H, Ó'Fágáin C, O'Kennedy R. Antibody stability: A key to performance - Analysis, influences and improvement. Biochimie 2020; 177:213-225. [PMID: 32891698 DOI: 10.1016/j.biochi.2020.08.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/01/2023]
Abstract
An antibody's stability greatly influences its performance (i.e. its specificity and affinity). Thus, stability is a major issue for researchers and manufacturers, especially with the increasing use of antibodies in therapeutics, diagnostics and rapid analytical platforms. Here we review antibody stability under five headings: (i) measurement techniques; (ii) stability issues in expression and production (expression, proteolysis, aggregation); (iii) effects of antibody format and engineering on stability and (iv) formulation, drying and storage conditions. We consider more than 100 sources, including patents, and conclude with (v) recommendations to promote antibody stability.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland
| | - Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland; Qatar Foundation, Research Complex, And Hamad Bin Khalifa University, Education City, Doha, Qatar
| |
Collapse
|
6
|
Qi T, Shi Y, Huang Y, Fu X, Qiu S, Sun Q, Lin G. The role of antibody delivery formation in cancer therapy. J Drug Target 2020; 28:574-584. [PMID: 32037905 DOI: 10.1080/1061186x.2020.1728537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer has become one of the major threats to human survival. Because of antibodies specificity and low toxicity, it is the primary choice to diagnose and treat cancer. It is easy to be cleared from the blood circulation or distributing throughout the body and causes unnecessary side effects. It is necessary to delivery antibodies to the tumour region in a stable, safe and effective manner. In this review, we discuss the latest studies that aimed to delivery antibodies to tumour sites via several vector forms, such as liposomes, carbon nanomaterials, and gold nanomaterials. How to deliver antibodies to the target site is a difficulty for antibody therapy. This review summarises the antibody's therapeutic forms and carrier materials in recent years, and to explore how antibodies can be safely and stably delivered to the target site.
Collapse
Affiliation(s)
- Tongtong Qi
- School of Pharmaceutical Science, Shandong University, Jinan, PR China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yi Huang
- School of Pharmaceutical Science, Shandong University, Jinan, PR China
| | - Xianglei Fu
- School of Pharmaceutical Science, Shandong University, Jinan, PR China
| | - Shengnan Qiu
- School of Pharmaceutical Science, Shandong University, Jinan, PR China
| | - Qifeng Sun
- Department of Thoracic Surgery, Second Hospital of Shandong University, Jinan, PR China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan, PR China
| |
Collapse
|
7
|
Regan B, Boyle F, O'Kennedy R, Collins D. Evaluation of Molecularly Imprinted Polymers for Point-of-Care Testing for Cardiovascular Disease. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3485. [PMID: 31395843 PMCID: PMC6720456 DOI: 10.3390/s19163485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Molecular imprinting is a rapidly growing area of interest involving the synthesis of artificial recognition elements that enable the separation of analyte from a sample matrix and its determination. Traditionally, this approach can be successfully applied to small analyte (<1.5 kDa) separation/ extraction, but, more recently it is finding utility in biomimetic sensors. These sensors consist of a recognition element and a transducer similar to their biosensor counterparts, however, the fundamental distinction is that biomimetic sensors employ an artificial recognition element. Molecularly imprinted polymers (MIPs) employed as the recognition elements in biomimetic sensors contain binding sites complementary in shape and functionality to their target analyte. Despite the growing interest in molecularly imprinting techniques, the commercial adoption of this technology is yet to be widely realised for blood sample analysis. This review aims to assess the applicability of this technology for the point-of-care testing (POCT) of cardiovascular disease-related biomarkers. More specifically, molecular imprinting is critically evaluated with respect to the detection of cardiac biomarkers indicative of acute coronary syndrome (ACS), such as the cardiac troponins (cTns). The challenges associated with the synthesis of MIPs for protein detection are outlined, in addition to enhancement techniques that ultimately improve the analytical performance of biomimetic sensors. The mechanism of detection employed to convert the analyte concentration into a measurable signal in biomimetic sensors will be discussed. Furthermore, the analytical performance of these sensors will be compared with biosensors and their potential implementation within clinical settings will be considered. In addition, the most suitable application of these sensors for cardiovascular assessment will be presented.
Collapse
Affiliation(s)
- Brian Regan
- School of Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Fiona Boyle
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
- Research Complex, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - David Collins
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|