1
|
Shams El Dine RS, Youseef HT, Awaad AK, Hammoury SI, Mohamed EI. The potentially therapeutic effects of ascorbic acid in different cell line in attempt to reduce the risk of radiation therapy. Sci Rep 2025; 15:15077. [PMID: 40301490 PMCID: PMC12041364 DOI: 10.1038/s41598-025-96697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 03/31/2025] [Indexed: 05/01/2025] Open
Abstract
Leukemia is the most common type of serious, life-threatening cancer that requires the immediate initiation of therapy. Ascorbic acid (AsA), commonly known as Vitamin C, has been gaining attention due to its antioxidant activity as a potential treatment for human malignancies. In this study, the THP-1 monocytic cell line was treated with two doses of AsA: a low dose (L-AsA, 2.5 µg/mL) and a high dose (H-AsA, 5 µg/mL), while the K562 lymphocytic cell line was treated with two doses of AsA: a low dose (L-AsA, 4 µg/mL) and a high dose (H-AsA, 8 µg/mL). After a 24-h incubation period, all cells were exposed to different doses of X-radiation (2, 4, 8 Gy). The viability of THP-1 and K562 treated by AsA was assessed using the MTT assay. Additionally, we evaluated apoptosis, autophagy, proliferation, cell cycle progression, hypoxia-inducible factor (HIF-1), malondialdehyde (MDA), and total antioxidant capacity (TAC). Our study demonstrated that AsA, in combination with X-radiation, induced significant apoptosis and notably reduced Ki67 levels in human leukemia THP-1 cells. Furthermore, X-radiation caused DNA damage, leading to cell cycle arrest at the G0/G1 phase in THP-1 cells. Moreover, AsA significantly reduced HIF-1 levels, which are essential for the survival of tumor cells in hypoxic conditions. We also found that the administration of AsA in combination with X-radiation had a synergistic and dose-dependent effect on THP-1 and K562 cells. Notably, the combination of L-AsA with 2 Gy X-radiation showed a more pronounced effect than 8 Gy X-radiation alone. These results suggest that AsA has promising anti-proliferative, pro-apoptotic, and autophagic effects on leukemic cells. Furthermore, the dose of X-radiation may be reduced when combined with AsA in an effort to minimize its potential side effects.
Collapse
Affiliation(s)
- Rasha S Shams El Dine
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Biochemistry and Molecular Biology Department, Alexandria University, Alexandria, Egypt.
- Radiotherapy Department, Ayadi Al-Mostakbal Oncology Hospital, Alexandria, Egypt.
| | - Heba T Youseef
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ashraf K Awaad
- Biochemistry and Molecular Biology Department, Alexandria University, Alexandria, Egypt
| | - Sabahh I Hammoury
- Radiotherapy Department, Ayadi Al-Mostakbal Oncology Hospital, Alexandria, Egypt
| | - Ehab I Mohamed
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Bögel G, Sváb G, Murányi J, Szokol B, Kukor Z, Kardon T, Őrfi L, Tretter L, Hrabák A. The role of PI3K-Akt-mTOR axis in Warburg effect and its modification by specific protein kinase inhibitors in human and rat inflammatory macrophages. Int Immunopharmacol 2024; 141:112957. [PMID: 39197292 DOI: 10.1016/j.intimp.2024.112957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
The Warburg effect occurs both in cancer cells and in inflammatory macrophages. The aim of our work was to demonstrate the role of PI3K-Akt-mTOR axis in the Warburg effect in HL-60 derived, rat peritoneal and human blood macrophages and to investigate the potential of selected inhibitors of this pathway to antagonize it. M1 polarization in HL-60-derived and human blood monocyte-derived macrophages was supported by the increased expression of NOS2 and inflammatory cytokines. All M1 polarized and inflammatory macrophages investigated expressed higher levels of HIF-1α and NOS2, which were reduced by selected kinase inhibitors, supporting the role of PI3K-Akt-mTOR axis. Using Seahorse XF plates, we found that in HL-60-derived and human blood-derived macrophages, glucose loading reduced oxygen consumption (OCR) and increased glycolysis (ECAR) in M1 polarization, which was antagonized by selected kinase inhibitors and by dichloroacetate. In rat peritoneal macrophages, the changes in oxidative and glycolytic metabolism were less marked and the NOS2 inhibitor decreased OCR and increased ECAR. Non-mitochondrial oxygen consumption and ROS production were likely due to NADPH oxidase, expressed in each macrophage type, independently of PI3K-Akt-mTOR axis. Our results suggest that inflammation changed the metabolism in each macrophage model, but a clear relationship between polarization and Warburg effect was confirmed only after glucose loading in HL-60 and human blood derived macrophages. The effect of kinase inhibitors on Warburg effect was variable in different cell types, whereas dichloroacetate caused a shift toward oxidative metabolism. Our findings suggest that these originally anti-cancer inhibitors may also be candidates for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Gábor Bögel
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Gergely Sváb
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - József Murányi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Bálint Szokol
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary
| | - Zoltán Kukor
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Tamás Kardon
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - László Őrfi
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, H-1092 Hőgyes E. u. 9., Hungary
| | - László Tretter
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - András Hrabák
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary.
| |
Collapse
|
3
|
Ikhlef L, Ratti N, Durand S, Formento R, Daverat H, Boutaud M, Guillou C, Dmytruk N, Gachard N, Cosette P, Jauberteau MO, Gallet PF. Extracellular vesicles from type-2 macrophages increase the survival of chronic lymphocytic leukemia cells ex vivo. Cancer Gene Ther 2024; 31:1164-1176. [PMID: 38918490 PMCID: PMC11327105 DOI: 10.1038/s41417-024-00802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The resistance of Chronic Lymphocytic Leukemia (CLL) B-cells to cell death is mainly attributed to interactions within their microenvironment, where they interact with various types of cells. Within this microenvironment, CLL-B-cells produce and bind cytokines, growth factors, and extracellular vesicles (EVs). In the present study, EVs purified from nurse-like cells and M2-polarized THP1 cell (M2-THP1) cultures were added to CLL-B-cells cultures. EVs were rapidly internalized by B-cells, leading to a decrease in apoptosis (P = 0.0162 and 0.0469, respectively) and an increased proliferation (P = 0.0335 and 0.0109). Additionally, they induced an increase in the resistance of CLL-B-cells to Ibrutinib, the Bruton kinase inhibitor in vitro (P = 0.0344). A transcriptomic analysis showed an increase in the expression of anti-apoptotic gene BCL-2 (P = 0.0286) but not MCL-1 and an increase in the expression of proliferation-inducing gene APRIL (P = 0.0286) following treatment with EVs. Meanwhile, an analysis of apoptotic protein markers revealed increased amounts of IGFBP-2 (P = 0.0338), CD40 (P = 0.0338), p53 (P = 0.0219) and BCL-2 (P = 0.0338). Finally, exploration of EVs protein content by mass spectrometry revealed they carry various proteins involved in known oncogenic pathways and the RNAseq analysis of CLL-B-cells treated or not with NLCs EVs show various differentially expressed genes.
Collapse
Affiliation(s)
- Léa Ikhlef
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Nina Ratti
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | | | - Rémy Formento
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Héloïse Daverat
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Marie Boutaud
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Clément Guillou
- PISSARO Proteomics Platform, Mont-Saint-Aignan Campus, Mont-Saint-Aignan, France
| | - Natalya Dmytruk
- Department of Clinical Hematology, University Hospital of Limoges, Limoges, France
| | - Nathalie Gachard
- Hematology laboratory, UMR CNRS7276/ INSERM 1262, University Hospital of Limoges, Limoges, France
| | - Pascal Cosette
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, Normandie University, UNIROUEN, INSA Rouen, Mont-Saint-Aignan, France
- HeRacLeS-PISSARO, INSERM US 51, CNRS UAR 2026, Normandie University, Mont-Saint-Aignan, France
| | - Marie-Odile Jauberteau
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
- Immunology laboratory, University Hospital of Limoges, Limoges, France
| | | |
Collapse
|
4
|
Kiššová Z, Mudroňová D, Link R, Tkáčiková Ľ. Immunomodulatory effect of probiotic exopolysaccharides in a porcine in vitro co-culture model mimicking the intestinal environment on ETEC infection. Vet Res Commun 2024; 48:705-724. [PMID: 37875712 PMCID: PMC10998797 DOI: 10.1007/s11259-023-10237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
The aim of this study was to evaluate the immunomodulatory effect of EPS-L26 isolated from the probiotic strain Lactobacillus (Limosilactobacillus) reuteri L26 Biocenol™, in a model of infection with an enterotoxigenic E. coli (ETEC) by establishing monocultures consisting of the IPEC-J2 cell line or monocyte-derived dendritic cells (moDCs) and creating a 3D model of cell co-cultures established with IPEC-J2 cells and moDCs. The immunomodulatory and immunoprotective potential of used EPS-L26 was confirmed in monocultures in an experimental group of pretreated cells, where our study showed that pretreatment of cells with EPS-L26 and subsequent exposure to infection resulted in significantly down-regulated mRNA levels of genes encoding inflammatory cytokines compared to ETEC challenge in single cell cultures (in IPEC-J2, decreased mRNA levels for TNF-α, IL-6, IL-1β, IL-12p35; in moDCs, decreased mRNA levels for IL-1β). Similar to monocultures, we also demonstrated the immunostimulatory potential of the ETEC strain in the co-culture model on directly treated IPEC-J2 cells cultivated on insert chambers (apical compartment) and also on indirectly treated moDCs cultivated in the lower chamber (basolateral compartment), however in the co-culture model the expression of inflammatory cytokines was attenuated at the mRNA level compared to monocultures. Pretreatment of the cells on the insert chambers pointed to the immunoprotective properties of EPS-L26, manifested by decreased mRNA levels in both cell lines compared to ETEC challenge (in IPEC-J2 decreased mRNA levels for IL-12p35; in moDCs decreased mRNA levels for IL-1β, IL-6). Our results suggest intercellular communication via humoral signals derived from IPEC-J2 cells by influencing the gene expression of indirectly treated moDC cells located in the basolateral compartment.
Collapse
Affiliation(s)
- Zuzana Kiššová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia.
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Róbert Link
- Clinik of Swine, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Ľudmila Tkáčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia.
| |
Collapse
|
5
|
Gaal OI, Liu R, Marginean D, Badii M, Cabău G, Hotea I, Nica V, Colcear D, Pamfil C, Merriman TR, Rednic S, Popp RA, Crișan TO, Joosten LAB. GWAS-identified hyperuricemia-associated IGF1R variant rs6598541 has a limited role in urate mediated inflammation in human mononuclear cells. Sci Rep 2024; 14:3565. [PMID: 38347000 PMCID: PMC10861580 DOI: 10.1038/s41598-024-53209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
Gout is a common autoinflammatory joint diseases characterized by deposition of monosodium urate (MSU) crystals which trigger an innate immune response mediated by inflammatory cytokines. IGF1R is one of the loci associated with both urate levels and gout susceptibility in GWAS to date, and IGF-1-IGF-1R signaling is implicated in urate control. We investigate the role of IGF-1/IGF1R signaling in the context of gouty inflammation. Also, we test the gout and urate-associated IGF1R rs6598541 polymorphism for association with the inflammatory capacity of mononuclear cells. For this, freshly isolated human peripheral blood mononuclear cells (PBMCs) were exposed to recombinant IGF-1 or anti-IGF1R neutralizing antibody in the presence or absence of solubilized urate, stimulated with LPS/MSU crystals. Also, the association of rs6598541 with IGF1R and protein expression and with ex vivo cytokine production levels after stimulation with gout specific stimuli was tested. Urate exposure was not associated with IGF1R expression in vitro or in vivo. Modulation of IGF1R did not alter urate-induced inflammation. Developing urate-induced trained immunity in vitro was not influenced in cells challenged with IGF-1 recombinant protein. Moreover, the IGF1R rs6598541 SNP was not associated with cytokine production. Our results indicate that urate-induced inflammatory priming is not regulated by IGF-1/IGF1R signaling in vitro. IGF1R rs6598541 status was not asociated with IGF1R expression or cytokine production in primary human PBMCs. This study suggests that the role of IGF1R in gout is tissue-specific and may be more relevant in the control of urate levels rather than in inflammatory signaling in gout.
Collapse
Affiliation(s)
- Orsolya I Gaal
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur Nr.6, 400349, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ruiqi Liu
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dragoș Marginean
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur Nr.6, 400349, Cluj-Napoca, Romania
| | - Medeea Badii
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur Nr.6, 400349, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Georgiana Cabău
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur Nr.6, 400349, Cluj-Napoca, Romania
| | - Ioana Hotea
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Valentin Nica
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur Nr.6, 400349, Cluj-Napoca, Romania
| | - Doina Colcear
- Clinical Infectious Disease Hospital, Cluj-Napoca, Romania
| | - Cristina Pamfil
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tony R Merriman
- Department of Microbiology, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simona Rednic
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu A Popp
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur Nr.6, 400349, Cluj-Napoca, Romania
| | - Tania O Crișan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur Nr.6, 400349, Cluj-Napoca, Romania.
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Leo A B Joosten
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur Nr.6, 400349, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Skočková V, Raptová P, Pospíchalová K, Sovadinová I, Sychrová E, Smutná M, Hilscherová K, Babica P, Šindlerová L. Cyanobacterial harmful bloom lipopolysaccharides: pro-inflammatory effects on epithelial and immune cells in vitro. Arch Toxicol 2024; 98:481-491. [PMID: 38063875 PMCID: PMC10794361 DOI: 10.1007/s00204-023-03644-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Cyanobacterial harmful blooms (CyanoHABs) pose a global ecological problem, and their lipopolysaccharides (LPS) are among the bioactive compounds they release. Previous studies on CyanoHAB-LPS from single cyanobacterial species have shown varying bioactivities in different in vitro cell models. In this study, we isolated LPS from 19 CyanoHAB samples collected at 18 water bodies in the Czech Republic over two consecutive seasons. The proportions of cyanobacteria, Gram-negative bacteria (G-), and other bacteria in the biomass were determined by qPCR, while the cyanobacterial genera were identified using light microscopy. In vitro models of keratinocytes (HaCaT), the intestinal epithelium (co-culture of differentiated Caco-2 cells and peripheral blood mononuclear cells - PBMC), and PBMC alone were treated with isolated LPS at concentrations of 50, 100, and 1 µg/ml, respectively. The endotoxin activities of these concentrations were within the range measured in the aquatic environment. Approximately 85-90% of the samples displayed biological activity. However, the potency of individual LPS effects and response patterns varied across the different in vitro models. Furthermore, the observed activities did not exhibit a clear correlation with the taxonomic composition of the phytoplankton community, the relative share of microbial groups in the biomass, endotoxin activity of the LPS, or LPS migration and staining pattern in SDS-PAGE. These findings suggest that the effects of CyanoHAB-LPS depend on the specific composition and abundance of various LPS structures within the complex environmental sample and their interactions with cellular receptors.
Collapse
Affiliation(s)
- V Skočková
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - P Raptová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - K Pospíchalová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61200, Czech Republic
| | - I Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - E Sychrová
- RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - M Smutná
- RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - K Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - P Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - L Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61200, Czech Republic.
| |
Collapse
|
7
|
Ochando J, Mulder WJM, Madsen JC, Netea MG, Duivenvoorden R. Trained immunity - basic concepts and contributions to immunopathology. Nat Rev Nephrol 2023; 19:23-37. [PMID: 36253509 PMCID: PMC9575643 DOI: 10.1038/s41581-022-00633-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Trained immunity is a functional state of the innate immune response and is characterized by long-term epigenetic reprogramming of innate immune cells. This concept originated in the field of infectious diseases - training of innate immune cells, such as monocytes, macrophages and/or natural killer cells, by infection or vaccination enhances immune responses against microbial pathogens after restimulation. Although initially reported in circulating monocytes and tissue macrophages (termed peripheral trained immunity), subsequent findings indicate that immune progenitor cells in the bone marrow can also be trained (that is, central trained immunity), which explains the long-term innate immunity-mediated protective effects of vaccination against heterologous infections. Although trained immunity is beneficial against infections, its inappropriate induction by endogenous stimuli can also lead to aberrant inflammation. For example, in systemic lupus erythematosus and systemic sclerosis, trained immunity might contribute to inflammatory activity, which promotes disease progression. In organ transplantation, trained immunity has been associated with acute rejection and suppression of trained immunity prolonged allograft survival. This novel concept provides a better understanding of the involvement of the innate immune response in different pathological conditions, and provides a new framework for the development of therapies and treatment strategies that target epigenetic and metabolic pathways of the innate immune system.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| | - Willem J. M. Mulder
- grid.6852.90000 0004 0398 8763Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands ,grid.59734.3c0000 0001 0670 2351Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joren C. Madsen
- grid.32224.350000 0004 0386 9924Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA USA ,grid.32224.350000 0004 0386 9924Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA USA
| | - Mihai G. Netea
- grid.10417.330000 0004 0444 9382Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands ,grid.10388.320000 0001 2240 3300Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Raphaël Duivenvoorden
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Decreasing effects of protein kinase inhibitors on the expression of NOS2 and inflammatory cytokines and on phagocytosis in rat peritoneal macrophages is partly related to repolarization. Mol Immunol 2023; 153:10-24. [PMID: 36402067 DOI: 10.1016/j.molimm.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
The JAK/STAT (Janus Kinase/Signal Transducer and Activator of Transcription) pathway plays a pivotal role in macrophage polarization, but other signaling routes may also be involved. The aim of this study was to reveal the relationship of activation between rat peritoneal macrophages and their polarization, to detect the signaling routes involved, and find selective protein kinase inhibitors decreasing the production of inflammatory proteins in activated peritoneal macrophages. Rat macrophages were elicited with i.p. casein injection. CD80 and CD206 markers, NOS2 (Nitric oxide synthase 2), arginase, cytokines and phagocytosis were investigated by ELISA (Enzyme Linked Immunosorbent Assay), Western Blot, fluorescent microscopic and flow cytometry. Statistical methods were ANOVA (Analysis Of Variance) and Student t-tests. Resident and elicited cells expressed both CD80 and CD206 polarization markers. The involvement of MAPK (mitogen-activated protein kinases) and JAK/STAT pathways in the polarization was evidenced by a phosphorylation array, supported by Western blotting, by cytokine markers and by the inhibitory effects of kinase inhibitors. The expression of NOS2 and inflammatory cytokines was higher in elicited cells suggesting their M1 polarization. This effect was reduced by the inhibitors of MAPK and JAK/STAT pathways. Phagocytosis was also higher in elicited macrophages and decreased by these inhibitors. Nevertheless, they cannot change macrophage polarization unambiguously, as levels of CD80 and CD206 markers were not changed. For comparison, human blood macrophages were also studied. Similar effects and several differences were observed between the two types of macrophages, suggesting the role of the previous differentiation in defining their characteristics. Selected anti-cancer protein kinase inhibitors of p38, MAPK and JAK/STAT pathways are possible candidates for the therapy of inflammatory diseases.
Collapse
|
9
|
Zheng L, Byadgi O, Rakhshaninejad M, Nauwynck H. Upregulation of torso-like protein (perforin) and granzymes B and G in non-adherent, lymphocyte-like haemocytes during a WSSV infection in shrimp. FISH & SHELLFISH IMMUNOLOGY 2022; 128:676-683. [PMID: 35985630 DOI: 10.1016/j.fsi.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Invertebrates only have an innate immunity in which haemocytes play an important role. In our lab, 5 subpopulations of haemocytes were identified in the past by an iodixanol density gradient: hyalinocytes, granulocytes, semi-granulocytes and two subpopulations of non-phagocytic cells. For the two latter subpopulations, the haemocytes have small cytoplasm rims, do not adhere to the bottom of plastic cell-culture grade wells and present folds in the nucleus. These characteristics are similar to those of mammalian lymphocytes. Therefore, they were designated lymphocyte-like haemocytes. Although little is known about their function, we hypothesize, based on their morphology, that they may have a cytotoxic activity. First, a fast isolation technique was developed to separate the non-adherent haemocytes from the adherent haemocytes. After 60 min incubation on cell culture plates, the non-adherent haemocytes were collected. The purity reached 93% as demonstrated by flow cytometry and light microscopy upon a Hematoxylin and Eosin (H&E) staining. Cytotoxicity by lymphocytes is mediated by molecules such as perforin and granzymes and therefore, we searched for their genes in the shrimp genome. Genes coding for a torso-like protein, granzyme B and granzyme G were identified. Primers were designed and RT-PCR/RT-qPCR assays were developed. The results demonstrated that torso-like protein, granzyme B and granzyme G were mainly expressed in non-adherent haemocytes. The shrimp torso-like protein gene was most related to that of the crab torso-like protein; granzyme B gene was most related to that of mouse granzyme B and granzyme G gene was most related to that of zebrafish granzyme G. In a 72-hour in vivo WSSV infection challenge, the mRNA expression of shrimp torso-like protein, granzyme B and granzyme G in haemocytes was increasing over time, which indicated that torso-like protein, granzyme B and granzyme G of shrimp haemocytes are involved in the immune response during a viral infection. In the future, antibodies will be raised against these proteins for more in-depth functional analyses.
Collapse
Affiliation(s)
- Liping Zheng
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - Omkar Byadgi
- International Program in Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, 91201, Pingtung, Taiwan
| | - Mostafa Rakhshaninejad
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
10
|
Cytokine Profile and Anti-Inflammatory Activity of a Standardized Conditioned Medium Obtained by Coculture of Monocytes and Mesenchymal Stromal Cells (PRS CK STORM). Biomolecules 2022; 12:biom12040534. [PMID: 35454123 PMCID: PMC9029939 DOI: 10.3390/biom12040534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Intercellular communication between monocytes/macrophages and cells involved in tissue regeneration, such as mesenchymal stromal cells (MSCs) and primary tissue cells, is essential for tissue regeneration and recovery of homeostasis. Typically, in the final phase of the inflammation-resolving process, this intercellular communication drives an anti-inflammatory immunomodulatory response. To obtain a safe and effective treatment to counteract the cytokine storm associated with a disproportionate immune response to severe infections, including that associated with COVID-19, by means of naturally balanced immunomodulation, our group has standardized the production under GMP-like conditions of a secretome by coculture of macrophages and MSCs. To characterize this proteome, we determined the expression of molecules related to cellular immune response and tissue regeneration, as well as its possible toxicity and anti-inflammatory potency. The results show a specific molecular pattern of interaction between the two cell types studied, with an anti-inflammatory and regenerative profile. In addition, the secretome is not toxic by itself on human PBMC or on THP-1 monocytes and prevents lipopolysaccharide (LPS)-induced growth effects on those cell types. Finally, PRS CK STORM prevents LPS-induced TNF-A and IL-1Β secretion from PBMC and from THP-1 cells at the same level as hydrocortisone, demonstrating its anti-inflammatory potency.
Collapse
|
11
|
Quiescence of Human Monocytes after Affinity Purification: A Novel Method Apt for Monocyte Stimulation Assays. Biomolecules 2022; 12:biom12030395. [PMID: 35327587 PMCID: PMC8945441 DOI: 10.3390/biom12030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 01/25/2023] Open
Abstract
Several methods to isolate monocytes from whole blood have been previously published, with different advantages and disadvantages. For the purpose of cytokine release assessment upon external stimulation, the use of monocyte preparations consisting of non-activated cells is prerequisite. Affinity-isolated monocyte preparations from peripheral blood mononuclear cells (PBMCs), obtained via positive or negative selection using magnetic beads, released pro-inflammatory cytokines such as TNF-α and IL-6 even without adding external stimuli, hindering any assessment of an effect of bacterial lipoproteins on cell stimulation. Hence, the cell preparation protocol was modified by adding a quiescence step on repellent surface culture plates, dampening any monocyte pre-activation. This protocol now provides a robust method to prepare silent yet fully activatable, pure monocyte populations for further use in stimulus-elicited activation experiments.
Collapse
|
12
|
Mechanism of protection from insulin resistance by toll-like receptor 2 deficiency in high-fat diet fed mice: involvement in macrophage polarization. Mol Biol Rep 2022; 49:2591-2599. [PMID: 35034283 DOI: 10.1007/s11033-021-07061-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Toll-like receptor 2 (TLR2) deficiency can increase insulin sensitivity and improves glucose tolerance. However, it is not yet fully understood about its underlying mechanism. The regulation of M1/M2 macrophage polarization has been verified to involve in insulin resistance. Here, we evaluated whether the beneficial effect of TLR2 deficiency is mediated by TLR2-associated macrophage polarization in mice fed with high-fat diet (HFD). METHODS AND RESULTS Wild-type and TLR2 knockout (TLR2-/-) mice received HFD for two months. Following intraperitoneal glucose tolerance and insulin resistance tests, peripheral monocytes were isolated, and in vitro induced for differentiation into M1 and M2 macrophages, respectively. Macrophages polarization was evaluated using flow cytometry. The expression of macrophage polarization marker genes and cytokine production in visceral adipose tissue were measured by qRT-PCR and ELISA. Compared to wild-type mice, TLR2-/- mice showed higher glucose tolerance and insulin sensitivity, along with significantly reduced the population of M1 and increased M2 count in vitro. Additionally, TLR2-/- mice demonstrated higher expression of M2 marker iNOS mRNA and interleukin-10 level in adipose tissues. CONCLUSIONS Our results reveal that TLR2 knockout-mediated macrophages M2 polarization is a crucial factor for preventing against diet-induced insulin resistance in mice. These findings deepen our knowledge about the mechanism underlying HFD-induced insulin resistance.
Collapse
|
13
|
Bögel G, Murányi J, Szokol B, Kukor Z, Móra I, Kardon T, Őrfi L, Hrabák A. Production of NOS2 and inflammatory cytokines is reduced by selected protein kinase inhibitors with partial repolarization of HL-60 derived and human blood macrophages. Heliyon 2022; 8:e08670. [PMID: 35028455 PMCID: PMC8741463 DOI: 10.1016/j.heliyon.2021.e08670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/10/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
JAK/STAT pathway plays a well-known role in macrophage polarization, but other signaling routes may also be involved. The aim of this study was to identify new signaling pathways and repolarize macrophages by selected protein kinase inhibitors. HL-60 derived macrophages were chosen as model cells and human blood macrophages were used for comparison. M1 and M2 polarization of HL60 derived and human blood macrophages was promoted by LPS + IFNγ (LIF) and IL-4 treatments, respectively. In HL-60 derived macrophages, M1 polarization was mediated by Erk1/2 and p38 phosphorylation, while HSP27 phosphorylation was involved in M2 polarization. The inhibition of both MAPK and JAK/STAT pathways reduced the expression of NOS2, IP-10 and TNFα, IL-8 production was decreased by the inhibition of AMPK and PKD, the upstream kinase of HSP27. HSP27 phosphorylation was inhibited by NB 142, a PKD inhibitor. The expression of CD80 (M1 marker) was reduced by MAPK and JAK/STAT inhibitors, without increasing CD206 (M2 marker). On the other hand, CD206 was reduced by PKD and AMPK inhibitors, without increasing CD80 marker. Phagocytic capacity of HL-60 derived macrophages was higher in M1 macrophages and decreased by trametinib and a p38 inhibitor, while in human blood macrophages, where AT 9283, a JAK/STAT inhibitor also caused a significant decrease in M1 polarized macrophages, no difference was observed between M1 and M2 macrophages. Our results suggest that the repolarization of macrophages cannot be achieved by inhibiting their signaling pathways; nevertheless, the expression of certain polarization markers was decreased, therefore a "depolarization" could be observed both in M1 and M2 polarized cells. Selected protein kinase inhibitors of M1 polarization, decreasing NOS 2 and inflammatory cytokines may be potential candidates for therapeutical trials against inflammatory diseases.
Collapse
Affiliation(s)
- Gábor Bögel
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| | - József Murányi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
- MTA-SE Pathobiochemistry Research Group, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| | - Bálint Szokol
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary
| | - Zoltán Kukor
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| | - István Móra
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
- MTA-SE Pathobiochemistry Research Group, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| | - Tamás Kardon
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| | - László Őrfi
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, H-1092, Hőgyes E. u. 9., Hungary
| | - András Hrabák
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| |
Collapse
|
14
|
Duraisamy K, Singh K, Kumar M, Lefranc B, Bonnafé E, Treilhou M, Leprince J, Chow BKC. P17 induces chemotaxis and differentiation of monocytes via MRGPRX2-mediated mast cell-line activation. J Allergy Clin Immunol 2022; 149:275-291. [PMID: 34111449 DOI: 10.1016/j.jaci.2021.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/29/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND P17, a peptide isolated from Tetramorium bicarinatum ant venom, is known to induce an alternative phenotype of human monocyte-derived macrophages via activation of an unknown G protein-coupled receptor (GPCR). OBJECTIVE We sought to investigate the mechanism of action and the immunomodulatory effects of P17 mediated through MRGPRX2 (Mas-related G protein-coupled receptor X2). METHODS To identify the GPCR for P17, we screened 314 GPCRs. Upon identification of MRGPRX2, a battery of in silico, in vitro, ex vivo, and in vivo assays along with the receptor mutation studies were performed. In particular, to investigate the immunomodulatory actions, we used β-hexosaminidase release assay, cytokine releases, quantification of mRNA expression, cell migration and differentiation assays, immunohistochemical labeling, hematoxylin and eosin, and immunofluorescence staining. RESULTS P17 activated MRGPRX2 in a dose-dependent manner in β-arrestin recruitment assay. In LAD2 cells, P17 induced calcium and β-hexosaminidase release. Quercetin- and short hairpin RNA-mediated knockdown of MRGPRX2 reduced P17-evoked β-hexosaminidase release. In silico and in vitro mutagenesis studies showed that residue Lys8 of P17 formed a cation-π interaction with the Phe172 of MRGPRX2 and [Ala8]P17 lost its activity partially. P17 activated LAD2 cells to recruit THP-1 and human monocytes in Transwell migration assay, whereas MRGPRX2-impaired LAD2 cells cannot. In addition, P17-treated LAD2 cells stimulated differentiation of THP-1 and human monocytes, as indicated by the enhanced expression of macrophage markers cluster of differentiation 11b and TNF-α by quantitative RT-PCR. Immunohistochemical and immunofluorescent staining suggested monocyte recruitment in mice ears injected with P17. CONCLUSIONS Our data provide novel structural information regarding the interaction of P17 with MRGPRX2 and intracellular pathways for its immunomodulatory action.
Collapse
Affiliation(s)
- Karthi Duraisamy
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Benjamin Lefranc
- INSERM U1239, PRIMACEN, IRIB, Normandy University, Rouen, France
| | - Elsa Bonnafé
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Michel Treilhou
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Jérôme Leprince
- INSERM U1239, PRIMACEN, IRIB, Normandy University, Rouen, France.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Liu L, Borlak J. Advances in Liver Cancer Stem Cell Isolation and their Characterization. Stem Cell Rev Rep 2021; 17:1215-1238. [PMID: 33432485 DOI: 10.1007/s12015-020-10114-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Over the last decade research on cancer stem cells (CSC) significantly contributed to a better understanding of tumor biology. Given their similarity to normal stem cells, i.e. self-renewal and pluripotency the need arises to develop robust protocols for the isolation and characterization of CSCs. As with other malignancies, hepatic tumors are composed of a heterogeneous population of cells including liver cancer stem cells (LCSC). Yet, a precise understanding of why stem cells become cancerous is still lacking. There is unmet need to develop robust protocols for the successful isolation of LCSCs from human tissue resection material as to assist in the development of molecular targeted therapies. Here we review the research progress made in the isolation and characterization of LCSCs by considering a wide range of cell surface markers and sorting methods, as applied to side populations, microsphere cultures and the gradient centrifugation method. We emphasize the different fluorescence activated cell sorting methods and the possibility to enrich LCSCs by immunomagnetic beads. We review the specificity of functional assays by considering ABCG transporter and ALDH1 enzyme activities and evaluate the in vivo tumorigenicity of LCSCs in highly sensitive bioassays. Finally, we evaluate different LCSC markers in association with viral and non-viral liver disease and explore the potential of novel drug delivery systems targeting CD133, EpCAM, CD13 and CD90 for the development of molecular targeted therapies. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Liu
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
16
|
Endotoxin Tolerance in Abdominal Aortic Aneurysm Macrophages, In Vitro: A Case-Control Study. Antioxidants (Basel) 2020; 9:antiox9090896. [PMID: 32967278 PMCID: PMC7554856 DOI: 10.3390/antiox9090896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Macrophages are implicated in the pathogenesis of abdominal aortic aneurysm (AAA). This study examined the environmentally conditioned responses of AAA macrophages to inflammatory stimuli. Plasma- and blood-derived monocytes were separated from the whole blood of patients with AAA (30–45 mm diameter; n = 33) and sex-matched control participants (n = 44). Increased concentrations of pro-inflammatory and pro-oxidant biomarkers were detected in the plasma of AAA patients, consistent with systemic inflammation and oxidative stress. However, in monocyte-derived macrophages, a suppressed cytokine response was observed in AAA compared to the control following stimulation with lipopolysaccharide (LPS) (tumor necrosis factor alpha (TNF-α) 26.9 ± 3.3 vs. 15.5 ± 3.2 ng/mL, p < 0.05; IL-6 3.2 ± 0.6 vs. 1.4 ± 0.3 ng/mL, p < 0.01). LPS-stimulated production of 8-isoprostane, a biomarker of oxidative stress, was also markedly lower in AAA compared to control participants. These findings are consistent with developed tolerance in human AAA macrophages. As Toll-like receptor 4 (TLR4) has been implicated in tolerance, macrophages were examined for changes in TLR4 expression and distribution. Although TLR4 mRNA and protein expression were unaltered in AAA, cytosolic internalization of receptors and lipid rafts was found. These findings suggest the inflamed, pro-oxidant AAA microenvironment favors macrophages with an endotoxin-tolerant-like phenotype characterized by a diminished capacity to produce pro-inflammatory mediators that enhance the immune response.
Collapse
|
17
|
Gradišnik L, Milojević M, Velnar T, Maver U. Isolation, characterisation and phagocytic function of human macrophages from human peripheral blood. Mol Biol Rep 2020; 47:6929-6940. [PMID: 32876844 DOI: 10.1007/s11033-020-05751-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Macrophages are among the most important cells of the immune system. Among other functions, they take part in almost all defense actions against foreign bodies and bacteria, being particularly important in infections, wound healing, and foreign body reactions. Considering their importance for the health of the human body, as well as their important role in several diseases, the in vitro studies based on these cells, are a crucial research field. Taking all mentioned into account, this study describes a simple isolation method of human macrophages (MFUM-HMP-001 and MFUM-HMP-002 cell lines) from peripheral blood. For this purpose, the morphology, the viability, and the phagocytotic activity of the isolated cells were tested. The Immunostaining of MFUM-HMP-001 and MFUM-HMP-002 cells confirmed the macrophage cell markers CD68, CD80, and CD163/M130. The phagocytotic activity was marked in both MFUM-HMP-001 and MFUM-HMP-002 cells, as was the phagocytosis of the pHrodo green Escherichia coli bioparticles conjugates, which was enhanced with the addition of lipopolysaccharide. The cells were stable and exhibited good growth. According to our results, both cell lines are useful for the development of novel macrophage cell-based in vitro models.
Collapse
Affiliation(s)
- Lidija Gradišnik
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
- AMEU-ECM Maribor, Slovenska 17, 2000, Maribor, Slovenia
| | - Marko Milojević
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Tomaž Velnar
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
- AMEU-ECM Maribor, Slovenska 17, 2000, Maribor, Slovenia.
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia.
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
- Faculty of Medicine, Department of Pharmacology, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
18
|
Hopewell EL, Cox C. Manufacturing Dendritic Cells for Immunotherapy: Monocyte Enrichment. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:155-160. [PMID: 32055643 PMCID: PMC7005329 DOI: 10.1016/j.omtm.2019.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells play a key role in activation of the immune system as potent antigen-presenting cells. This pivotal position, along with the ability to generate dendritic cells from monocytes and ready uptake of antigen, makes them an intriguing vehicle for immunotherapy for a variety of indications. Since the first reported trial using dendritic cells in 1995, they have been used in trials all over the world for a plethora of indications. Monocyte-derived dendritic cells are generated from whole blood or apheresis products by culturing enriched monocytes in the presence of interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF). A variety of methods can be used for enrichment of monocytes for generation of clinical-grade dendritic cells and are summarized herein.
Collapse
Affiliation(s)
- Emily L Hopewell
- Cell and Gene Therapy Manufacturing, Indiana University, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Cheryl Cox
- Cellular Therapy Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
19
|
Meital LT, Windsor MT, Perissiou M, Schulze K, Magee R, Kuballa A, Golledge J, Bailey TG, Askew CD, Russell FD. Omega-3 fatty acids decrease oxidative stress and inflammation in macrophages from patients with small abdominal aortic aneurysm. Sci Rep 2019; 9:12978. [PMID: 31506475 PMCID: PMC6736886 DOI: 10.1038/s41598-019-49362-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is associated with inflammation and oxidative stress, the latter of which contributes to activation of macrophages, a prominent cell type in AAA. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to limit oxidative stress in animal models of AAA. The aim of this study was to evaluate the effect of the n-3 PUFA docosahexaenoic acid (DHA) on antioxidant defence in macrophages from patients with AAA. Cells were obtained from men with small AAA (diameter 3.0–4.5 cm, 75 ± 6 yr, n = 19) and age- matched male controls (72 ± 5 yr, n = 41) and incubated with DHA for 1 h before exposure to 0.1 µg/mL lipopolysaccharide (LPS) for 24 h. DHA supplementation decreased the concentration of tumour necrosis factor-α (TNF-α; control, 42.1 ± 13.6 to 5.1 ± 2.1 pg/ml, p < 0.01; AAA, 25.2 ± 9.8 to 1.9 ± 0.9 pg/ml, p < 0.01) and interleukin-6 (IL-6; control, 44.9 ± 7.7 to 5.9 ± 2.0 pg/ml, p < 0.001; AAA, 24.3 ± 5.2 to 0.5 ± 0.3 pg/ml, p < 0.001) in macrophage supernatants. DHA increased glutathione peroxidase activity (control, 3.2 ± 0.3 to 4.1 ± 0.2 nmol/min/ml/μg protein, p = 0.004; AAA, 2.3 ± 0.5 to 3.4 ± 0.5 nmol/min/ml/μg protein, p = 0.008) and heme oxygenase-1 mRNA expression (control, 1.5-fold increase, p < 0.001). The improvements in macrophage oxidative stress status serve as a stimulus for further investigation of DHA in patients with AAA.
Collapse
Affiliation(s)
- Lara T Meital
- Centre for Genetics, Ecology & Physiology, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia.,VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | - Mark T Windsor
- VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | - Maria Perissiou
- VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | | | - Rebecca Magee
- Sunshine Coast University Hospital, Birtinya, Qld, Australia
| | - Anna Kuballa
- Centre for Genetics, Ecology & Physiology, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,Department of Vascular and Endovascular Surgery, Townsville Hospital, Townsville, Australia
| | - Tom G Bailey
- VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia.,Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, Qld, Australia
| | - Christopher D Askew
- VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | - Fraser D Russell
- Centre for Genetics, Ecology & Physiology, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia. .,VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia.
| |
Collapse
|