1
|
Hoppe BK, Seaman RW, Hannon B, Gay E, Hicks D, Baehr C, Hill HJ, Pandit SG, Baldridge A, Berner V, AuCoin DP, Runyon S, Pravetoni M. In vitro biophysical and pharmacological profiling predicts in vivo efficacy of anti-carfentanil monoclonal antibodies in mice. Biochem Biophys Res Commun 2025; 770:151995. [PMID: 40378616 DOI: 10.1016/j.bbrc.2025.151995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/01/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
Synthetic opioids, including fentanyl and its potent analogs (F/FA) such as carfentanil, are involved in the majority of fatal and non-fatal overdoses in the United States. Despite the availability of the opioid receptor antagonists naloxone and nalmefene to treat overdose, this public health crisis highlights the need for a broader range of treatment options. To support the clinical value of drug-specific monoclonal antibodies (mAbs) as therapeutics for reducing opioid overdose toxicity, the current studies performed in vitro characterization of anti-carfentanil mAbs, and in vivo assessment of their efficacy against carfentanil-induced respiratory depression in mice. To probe the binding interaction between mAbs and carfentanil, this study employed a human mu-opioid receptor (hMOR) calcium mobilization assay and differential scanning fluorimetry. Two of the five mAbs significantly reversed carfentanil-induced respiratory depression in mice. The degree of thermal stabilization of carfentanil-bound mAb correlated with greater efficacy of a given mAb to reverse carfentanil-induced respiratory depression in mice. The reduction of carfentanil-induced hMOR activation stratified mAbs into categories that corresponded, albeit not significantly, to greater in vivo efficacy. These studies indicate that biophysical and pharmacological in vitro analyses can predict the in vivo efficacy of novel mAbs, and support further investigation of mAb-based therapeutics against carfentanil toxicity.
Collapse
Affiliation(s)
- Brooke K Hoppe
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Robert W Seaman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Bryan Hannon
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Elaine Gay
- Center for Drug Discovery, Research Triangle Institute International, Research Triangle Park, NC, 27709, USA
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Haydon J Hill
- Department of Microbiology and Immunology, University of Nevada Reno, Reno, NV, 89557, USA
| | - Sujata G Pandit
- Department of Microbiology and Immunology, University of Nevada Reno, Reno, NV, 89557, USA
| | - Austin Baldridge
- Department of Microbiology and Immunology, University of Nevada Reno, Reno, NV, 89557, USA
| | - Vanessa Berner
- Department of Microbiology and Immunology, University of Nevada Reno, Reno, NV, 89557, USA
| | - David P AuCoin
- Department of Microbiology and Immunology, University of Nevada Reno, Reno, NV, 89557, USA
| | - Scott Runyon
- Center for Drug Discovery, Research Triangle Institute International, Research Triangle Park, NC, 27709, USA
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98104, USA; Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, 98104, USA; Center for Medication Development for Substance Use Disorders, University Washington, Seattle, WA, 98104, USA.
| |
Collapse
|
2
|
Kirley TL, Norman AB. Decreased solubility and increased adsorptivity of a biotinylated humanized anti-cocaine mAb. Anal Biochem 2025; 696:115690. [PMID: 39426697 PMCID: PMC11560507 DOI: 10.1016/j.ab.2024.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Biotinylation of proteins, including antibodies, is a very useful and important modification for a variety of biochemical characterizations, including anti-drug antibody (ADA) assays used to detect antibodies raised against therapeutic antibodies. We assessed different degrees of biotin labeling of an anti-cocaine mAb currently under development for treating cocaine use disorder. We noted that higher levels of biotin labeling dramatically decreased mAb solubility, and increased the tendency to bind to surfaces, complicating characterization of the biotinylated antibody. Specifically, in phosphate buffered saline, labeling stoichiometries of more than about 3 biotin/mAb resulted in decreased recoveries due to increased binding to surfaces and decreased mAb solubility. Native gel agarose electrophoresis, differential scanning fluorimetry, and isothermal titration calorimetry all demonstrated changes in the mAb which became more pronounced above a labeling ratio of 3 biotin/mAb. At 3.0 biotin/mAb, there were minimal changes in solubility, adsorptivity, exposure of hydrophobic dye-binding sites, heat stability, and cocaine binding, in stark contrast to labeling with 5.6 biotin/mAb. Thus, the degree of biotinylation should be kept at about 3 biotin/mAb to maintain antigen binding and general structure, solubility, and stability of this mAb, a finding which may be important for other similar mAbs currently in use or under development.
Collapse
Affiliation(s)
- Terence L Kirley
- Department of Pharmacology, Physiology, and Neurobiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| | - Andrew B Norman
- Department of Pharmacology, Physiology, and Neurobiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|
3
|
Yang R, Zhang Y, Geng B, Tian Y, Tian W, Zou Y, Chen H, Chen J. Fluorescence labeling-based differential scanning fluorimetry, an effective method for protein thermal stability and protein-compound binding analysis. Int J Biol Macromol 2024; 281:136043. [PMID: 39362428 DOI: 10.1016/j.ijbiomac.2024.136043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Differential scanning fluorimetry (DSF) is widely used to assess protein thermal stability and protein-ligand interaction. However, its utility is often limited by the presence of detergents, which can affect hydrophobic binding. To tackle this issue, we developed an effective fluorescence-labeled DSF (FL-DSF) technique that tracks protein denaturation by monitoring the labeling fluorescence decrease, thus overcoming challenges typically encountered with traditional DSF methods. In this research, FL-DSF was first validated using Peroxisome Proliferators-Activated Receptor γ (PPARγ), Retinoid X Receptor α (RXRα), and Lysozyme, confirming its accuracy in determining melting curves. Expectedly, FL-DSF also exhibited strong compatibility with detergents in our investigations. Besides this, a new calculation method was proposed to characterize the protein denaturation process and evaluate protein-ligand binding. This mathematical model goes beyond traditional approaches, which simply treated the melting temperature (TM) shift as a concentration-dependent variable. Instead, it comprehensively incorporates the influence of irreversible denaturation-induced native protein loss on the equilibrium of protein-ligand binding. This methodology was successfully applied into the evaluation of binding affinity for 2 classical binding systems of PPARγ-Rosiglitazone and RXRα-CD3254. It was also utilized for the following binding screening studies, leading to the discovery of promising ligands for PPARγ, RXRα, and Lysozyme.
Collapse
Affiliation(s)
- Renjing Yang
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Yaya Zhang
- Department of Oncology, the First Affiliated Hospital of Xiamen University, PR China
| | - Bingjie Geng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Yingpu Tian
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Wenjing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Yanhong Zou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Haifeng Chen
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Junjie Chen
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China.
| |
Collapse
|
4
|
Gallant JP, Hicks D, Shi K, Moeller NH, Hoppe B, Lake EW, Baehr C, Pravetoni M, Aihara H, LeBeau AM. Identification and biophysical characterization of a novel domain-swapped camelid antibody specific for fentanyl. J Biol Chem 2024; 300:107502. [PMID: 38945452 PMCID: PMC11321312 DOI: 10.1016/j.jbc.2024.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Opioid use disorders (OUD) and overdoses are ever-evolving public health threats that continue to grow in incidence and prevalence in the United States and abroad. Current treatments consist of opioid receptor agonists and antagonists, which are safe and effective but still suffer from some limitations. Murine and humanized monoclonal antibodies (mAb) have emerged as an alternative and complementary strategy to reverse and prevent opioid-induced respiratory depression. To explore antibody applications beyond traditional heavy-light chain mAbs, we identified and biophysically characterized a novel single-domain antibody specific for fentanyl from a camelid variable-heavy-heavy (VHH) domain phage display library. Structural data suggested that VHH binding to fentanyl was facilitated by a unique domain-swapped dimerization mechanism, which accompanied a rearrangement of complementarity-determining region loops leading to the formation of a fentanyl-binding pocket. Structure-guided mutagenesis further identified an amino acid substitution that improved the affinity and relaxed the requirement for dimerization of the VHH in fentanyl binding. Our studies demonstrate VHH engagement of an opioid and inform on how to further engineer a VHH for enhanced stability and efficacy, laying the groundwork for exploring the in vivo applications of VHH-based biologics against OUD and overdose.
Collapse
Affiliation(s)
- Joseph P Gallant
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas H Moeller
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brooke Hoppe
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Eric W Lake
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA; Center for Medication Development for Substance Use Disorders, University of Washington, Seattle, Washington, USA.
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Aaron M LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
5
|
Sun NN, Xu QF, Yang MD, Li YN, Liu H, Tantai W, Shu GW, Li GL. A high-throughput differential scanning fluorimetry method for rapid detection of thermal stability and iron saturation in lactoferrin. Int J Biol Macromol 2024; 267:131285. [PMID: 38583841 DOI: 10.1016/j.ijbiomac.2024.131285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
Thermal stability and iron saturation of lactoferrin (LF) are of great significance not only for the evaluation of the biological activities of LF but also for the optimization of the isolation and drying process parameters. Differential scanning calorimetry (DSC) is a well-established and efficient method for thermal stability and iron saturation detection in LF. However, multiple DSC measurements are typically performed sequentially, thus time-consuming and low throughput. Herein, we introduced the differential scanning fluorimetry (DSF) approach to overcome such limitations. The DSF can monitor LF thermal unfolding with a commonly available real-time PCR instrument and a fluorescent dye (SYPRO orange or Glomelt), and the measured melting temperature of LF is consistent with that determined by DSC. On the basis of that, a new quantification method was established for determination of iron saturation levels using the linear correlation of the degree of ion saturation of LF with DSF measurements. Such DSF method is simple, inexpensive, rapid (<15 min), and high throughput (>96 samples per experiment), and provides a valuable alternative tool for thermal stability detection of LF and other whey proteins.
Collapse
Affiliation(s)
- Na-Na Sun
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Qin-Feng Xu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Meng-di Yang
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yan-Ni Li
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Hao Liu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wei Tantai
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guo-Wei Shu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guo-Liang Li
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
6
|
Kirley TL, Norman AB. Novel partial reduction of the humanized anti-cocaine mAb h2E2 for selective cysteine labeling. Biochem Biophys Res Commun 2024; 692:149362. [PMID: 38071891 PMCID: PMC10872258 DOI: 10.1016/j.bbrc.2023.149362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Monoclonal antibodies are utilized for treating many diseases and disorders, as well as for basic research and development. Covalent labeling of mAbs is important for various antibody applications and creating antibody drug conjugates. Labeling at reactive lysine residues using lysine selective reagents is useful, but is non-selective and can interfere with antigen binding and interactions of the Fc antibody region. In this work, using an anti-cocaine mAb (h2E2), we utilized triphenylphosphine-3,3',3″-trisulfonic acid (TPPTS), and demonstrated for the first time reduction of disulfides in an antibody by TPPTS. More importantly, this reduction was very reproducible, limited, and selective, and permitted selective labeling of the antibody with a cysteine reactive fluorescent reagent, resulting in labeling of a few specific cysteines. Similar results were obtained using TCEP-agarose reduction. We demonstrated that both of these selective partial reduction methods gave rise to approximately two labels per mAb, mostly by selective reduction of the heavy chain to light chain disulfide bond, as demonstrated by non-reducing SDS-PAGE protein band analysis. Thus, convenient, reproducible, and selective mAb disulfide reduction was achieved under mild conditions. These labeled, partially reduced mAbs were characterized by differential scanning fluorimetry (DSF), detecting the incorporated fluorescein instead of an exogenously added dye, and for antigen (cocaine) binding by isothermal titration calorimetry (ITC). Both the structure and antigen binding of the mAb was maintained. This novel selective reduction and labeling is generally relevant to modification of antibodies and to future development of conjugated mAbs for experimental and therapeutic purposes.
Collapse
Affiliation(s)
- Terence L Kirley
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| | - Andrew B Norman
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|
7
|
Tomioka Y, Nagatoishi S, Nakagawa M, Tsumoto K, Arakawa T, Akuta T. Ferguson plot analysis of multiple intermediate species of thermally unfolded bovine serum albumin. Biophys Chem 2023; 301:107095. [PMID: 37611350 DOI: 10.1016/j.bpc.2023.107095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Ferguson plot was used to characterize the multiple intermediate species of bovine serum albumin (BSA) upon thermal unfolding. Differential scanning calorimetry showed an irreversible melting of BSA in Tris-HCl and phosphate buffers with a mid-transition temperature, Tm, of ∼68 °C. Thermally unfolded BSA was analyzed by agarose native gel electrophoresis stained by Coomassie blue and SYPRO Orange staining as a function of pH or protein concentration. SYPRO Orange was used to stain unfolded proteins. BSA heated at 70 and 80 °C, i.e., above the Tm, formed multiple intermediate species, which depended on the pH between 7.0 and 8.0, protein concentration and which buffer was used. These intermediate species were analyzed by Ferguson plot, which showed that BSA heated at 60 °C had a similar size to the native BSA, indicating that they are either native or native-like state consistent with no SYPRO Orange staining. The intermediate species observed at higher temperatures with the mobility less than that of the native BSA showed a steeper Ferguson plot and were stained by SYPRO Orange, indicating that these species had a larger hydrodynamic size than the native BSA and were unfolded.
Collapse
Affiliation(s)
- Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Satoru Nagatoishi
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Masataka Nakagawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Kouhei Tsumoto
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA 92130, USA.
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| |
Collapse
|
8
|
Kirley TL, Norman AB. Characterization and optimization of fluorescein isothiocyanate labeling of humanized h2E2 anti-cocaine mAb. Biochem Biophys Rep 2023; 35:101520. [PMID: 37554426 PMCID: PMC10404603 DOI: 10.1016/j.bbrep.2023.101520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
Fluorescein isothiocyanate (FITC) is widely used to fluorescently label reactive lysine residues on proteins, including antibodies. The rate and extent of labeling varies with reaction conditions, concentration of label, and the concentration and nature of the protein. Fluorescently labeled proteins are very useful, and one use for FITC labeled mAbs is development of assays to measure anti-mAb antibodies produced in vivo during treatment with antibody therapeutics. Our laboratory has developed a humanized anti-cocaine mAb (h2E2) intended for the treatment of cocaine use disorders. Thus, a well characterized FITC labeled h2E2 mAb is needed to quantitate possible anti-mAb antibodies. The time course of labeling and the relative incorporation of FITC into the heavy and light chains, as well as into the Fab and Fc portions of the mAb, was assessed. A novel use of differential scanning fluorimetry in the absence of any extrinsic fluorophore was developed and demonstrated to be capable of measuring antigen (cocaine) binding. In addition, the effect of increasing degrees of labeling by FITC on the thermodynamic parameters driving the binding of cocaine to the mAb was assessed via isothermal titration calorimetry (ITC). This binding technique, unlike others developed recently to measure cocaine binding, is not dependent on, or subject to interference by, the absorbance or fluorescence of the incorporated FITC label. The methods and results reported herein guide the optimization of FITC labeling needed for anti-mAb assays and other assays important for the development of therapeutic mAbs, which are some of the most specific and clinically useful drugs available.
Collapse
Affiliation(s)
- Terence L. Kirley
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Andrew B. Norman
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|
9
|
Kirley TL, Norman AB. Reformulation and Thermal Stability of a Therapeutic Anti-Cocaine mAb. J Pharm Sci 2023; 112:1595-1602. [PMID: 37011728 PMCID: PMC10192021 DOI: 10.1016/j.xphs.2023.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
We concentrated and reformulated the anti-cocaine mAb, h2E2, to reduce the amount of sucrose and histidine buffer infused with the mAb, to satisfy FDA maximum exposure levels for those components for use in clinical trials. After concentration of the original 20 mg/ml mAb, 4 reformulation buffers were evaluated for suitability. The concentration of histidine was reduced from 10 mM to 3 or 0 mM, and the concentration of sucrose reduced from 10% to 2, 4, or 6%. The approximately 100 mg/ml reformulated mAb samples were analyzed for oligomer formation, aggregation, concentration of the emulsifier polysorbate 80, and thermal stability. These reformulated mAb samples were also assessed for their stability at 40°C from 1 day to 12 weeks. As expected, long term thermal resistance to oligomer formation increased as a function of increasing sucrose concentration. Interestingly, unbuffered reformulated mAb displayed a less than or equal to tendency to form oligomers and aggregates, compared to the histidine buffered samples. Importantly, even after 12 weeks at 40°C, all the reformulated samples displayed little aggregation, and bound their antigen (cocaine) with identical affinities and thermodynamics, as measured by isothermal titration calorimetry (ITC). These ITC thermodynamic binding parameters are consistent with recently published values for the original formulation of this mAb. In all reformulated samples there was a slight decrease in the number of cocaine binding sites after 12 weeks at 40°C, likely due to the parallel small increase in soluble oligomeric antibody, suggesting that soluble oligomeric mAb may no longer bind cocaine with high affinity.
Collapse
Affiliation(s)
- Terence L Kirley
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575.
| | - Andrew B Norman
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575
| |
Collapse
|
10
|
Kirley TL, Norman AB. Isothermal titration calorimetry determination of thermodynamics of binding of cocaine and its metabolites to humanized h2E2 anti-cocaine mAb. Biochem Biophys Rep 2022; 32:101354. [PMID: 36186732 PMCID: PMC9516381 DOI: 10.1016/j.bbrep.2022.101354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
We analyzed the thermodynamics of binding of cocaine and several cocaine metabolites to a humanized anti-cocaine mAb (h2E2), which is under development for the treatment of cocaine use disorders, using isothermal titration calorimetry. The calculated equilibrium dissociation (binding) constants were consistent with previous findings using other methods. All three ligands that display high affinity (nM) binding to the mAb (cocaine, cocaethylene, and benzoylecgonine) displayed similar enthalpically driven binding with substantial enthalpy-entropy compensation. The increased affinity of the cocaethylene metabolite compared to cocaine and benzoylecgonine is mostly attributable to a substantially less negative entropic binding component for cocaethylene, resulting in a more favorable binding energy, and thus, a higher affinity. The much lower affinity cocaine metabolites, norcocaine and ecgonine methyl ester, have much lower binding enthalpies than the high affinity ligands, and in contrast to the three high affinity ligands, have favorable (positive) entropic thermodynamic components of binding. Surprisingly, approximately 3.7 molecules of norcocaine are bound per mAb Fab site, as determined by isothermal titration calorimetry. This is in contrast to the three high affinity ligands, which bound with the expected stoichiometry of one drug molecule bound per one mAb Fab site. The results are discussed in relation to the previously published Fab:benzoylecgonine crystal structure for this h2E2 mAb, and compared to the isothermal titration calorimetry results published previously using an unrelated anti-cocaine mAb, mAb08. ITC was used to measure the thermodynamics of ligand binding to anti-cocaine h2E2 mAb. Binding of high and low affinity cocaine metabolites were compared to cocaine binding. Low affinity metabolites have favorable/positive entropic binding components. h2E2 mAb ITC results differ from those published for mAb08 anti-cocaine mAb. Surprisingly, ≈3.7 molecules of low affinity norcocaine are bound per mAb Fab site.
Collapse
|
11
|
Hicks D, Baehr C, Silva-Ortiz P, Khaimraj A, Luengas D, Hamid FA, Pravetoni M. Advancing humanized monoclonal antibody for counteracting fentanyl toxicity towards clinical development. Hum Vaccin Immunother 2022; 18:2122507. [PMID: 36194773 PMCID: PMC9746415 DOI: 10.1080/21645515.2022.2122507] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 09/04/2022] [Indexed: 12/15/2022] Open
Abstract
Innovative therapies to complement current treatments are needed to curb the growing incidence of fatal overdoses related to synthetic opioids. Murine and chimeric monoclonal antibodies (mAb) specific for fentanyl and its analogs have demonstrated pre-clinical efficacy in preventing and reversing drug-induced toxicity in rodent models. However, mAb-based therapeutics require extensive engineering as well as in vitro and in vivo characterization to advance to first-in-human clinical trials. Here, novel murine anti-fentanyl mAbs were selected for development based on affinity for fentanyl, and efficacy in counteracting the pharmacological effects of fentanyl in mice. Humanization and evaluation of mutations designed to eliminate predicted post-translational modifications resulted in two humanized mAbs that were effective at preventing fentanyl-induced pharmacological effects in rats. These humanized mAbs showed favorable biophysical properties with respect to aggregation and hydrophobicity by chromatography-based assays, and thermostability by dynamic scanning fluorimetry. These results collectively support that the humanized anti-fentanyl mAbs developed herein warrant further clinical development for treatment of fentanyl toxicity.
Collapse
Affiliation(s)
- Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Pedro Silva-Ortiz
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Diego Luengas
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Fatima A. Hamid
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- School of Medicine, Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Kirley TL, Norman AB. Critical evaluation of fluorescent dyes to evaluate the stability and ligand binding properties of an anti-cocaine mAb, h2E2. J Immunol Methods 2022; 508:113323. [PMID: 35843267 DOI: 10.1016/j.jim.2022.113323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Monoclonal antibodies have become a mainstay of modern drug development. However, unlike small molecule drugs, mAbs are large proteins that need to be characterized for their stability, heterogeneity, and tendency to aggregate. Many different extrinsic fluorescent dyes have been used to monitor the thermal stability, aggregation, and ligand binding characteristics of many different proteins. Some of these dyes change their fluorescence when bound to proteins due to changes in the hydrophobicity of their microenvironment (solvatochromic dyes such as Sypro Orange), while others respond to differences in rotational mobilities (rotor dyes such as DASPMI), and others have been used to detect fibrils and amyloid-like protein aggregation (amyloid dyes such as Thioflavin T). Previously, we used DASPMI dye and differential scanning fluorimetry to quantitate the binding of cocaine and cocaine metabolites to a humanized anti-cocaine h2E2 mAb under development for the treatment of cocaine use disorders. In the present study, we evaluated six dyes in these three classes for their ability to monitor domain denaturation and cocaine binding of the h2E2 mAb, both in its clinical formulation buffer and in PBS buffer. We noted that the Thioflavin T dye commonly used to assess amyloid formation was also capable of monitoring h2E2 mAb thermal denaturation and ligand binding using differential scanning calorimetry. However, unlike the DASPMI dye, the Thioflavin T dye caused a dose-dependent stabilization of the unliganded (apo) mAb, and when using the methodology developed with the DASPMI dye, decreased the apparent affinity of the mAb for cocaine as a function of dye concentration. Thus, although Thioflavin T differential fluorimetry data appears to be suitable for measuring cocaine affinity for this h2E2 mAb, the apparent mAb Kd values for cocaine are dependent on Thioflavin T dye concentration, reinforcing and extending the unique use of the DASPMI dye for this purpose.
Collapse
Affiliation(s)
- Terence L Kirley
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, United States of America.
| | - Andrew B Norman
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, United States of America
| |
Collapse
|
13
|
Kirley TL, Greis KD, Norman AB. Tyrosine nitration of a humanized anti-cocaine mAb differentially affects ligand binding of cocaine and its metabolites. Biochem Biophys Rep 2022; 30:101278. [PMID: 35600901 PMCID: PMC9115314 DOI: 10.1016/j.bbrep.2022.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/03/2022] Open
Abstract
Tetranitromethane was used to selectively modify tyrosine residues of a humanized anti-cocaine mAb (h2E2), under development for the treatment of cocaine use disorders. The effect of mild tyrosine nitration on the affinity of cocaine and two high affinity cocaine metabolites, cocaethylene and benzoylecgonine, was assessed using differential scanning fluorimetry to measure ligand affinities via ligand-induced thermal stabilization of the mAb antigen binding region. Nitrated tyrosine residues were identified by mass spectral analysis of thermolysin peptides. One objective was to understand the binding affinity differences observed for these three ligands, which are not explained by the published crystal structure of the h2E2 mAb Fab fragment co-crystalized with benzoylecgonine, since the carboxylic acid of benzoylecgonine that is esterified to form cocaine and cocaethylene is not in contact with the mAb. Importantly, the binding affinity of the cocaine metabolite benzoylecgonine was not decreased by mild nitration, whereas the binding affinities of cocaine and cocaethylene were decreased about two-fold. These ligands differ only in the substituent attached to the carboxylate moiety of the compound, with benzoylecgonine having an unesterified carboxylate, and cocaine and cocaethylene having methyl and ethyl esters, respectively, at this position. The results are consistent with nitration of light chain tyrosine residue 34, resulting in a less favorable interaction with cocaine and cocaethylene carboxylate esters, while not affecting binding of benzoylecgonine. Thus, light chain Tyr34 residue may have molecular interactions with cocaine and cocaethylene not present for benzoylecgonine, leading to the observed affinity differences for these three ligands.
Collapse
Key Words
- ABC, 50 mM ammonium bicarbonate buffer
- BE, benzoylecgonine
- CE, cocaethylene
- Coc, cocaine
- Cocaine binding
- DASPMI rotor dye
- DASPMI, (4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide
- DSF, differential scanning fluorimetry
- Differential scanning fluorimetry
- Ligand affinity
- Monoclonal antibody
- PBS, phosphate buffered saline
- TNM, tetranitromethane
- TmB, Boltzmann fit derived melting temperature
- TmD, temperature of the maximum of the first derivative of the melting curve
- Tyrosine nitration
- h2E2, humanized anti-cocaine monoclonal antibody
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Terence L. Kirley
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Kenneth D. Greis
- Department of Cancer Biology, Proteomics Laboratory, College of Medicine, University of Cincinnati, 3125 Eden Avenue, Cincinnati, OH, 45267-0521, USA
| | - Andrew B. Norman
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|
14
|
Kopra K, Valtonen S, Mahran R, Kapp JN, Hassan N, Gillette W, Dennis B, Li L, Westover KD, Plückthun A, Härmä H. Thermal Shift Assay for Small GTPase Stability Screening: Evaluation and Suitability. Int J Mol Sci 2022; 23:7095. [PMID: 35806100 PMCID: PMC9266822 DOI: 10.3390/ijms23137095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Thermal unfolding methods are commonly used as a predictive technique by tracking the protein's physical properties. Inherent protein thermal stability and unfolding profiles of biotherapeutics can help to screen or study potential drugs and to find stabilizing or destabilizing conditions. Differential scanning calorimetry (DSC) is a 'Gold Standard' for thermal stability assays (TSA), but there are also a multitude of other methodologies, such as differential scanning fluorimetry (DSF). The use of an external probe increases the assay throughput, making it more suitable for screening studies, but the current methodologies suffer from relatively low sensitivity. While DSF is an effective tool for screening, interpretation and comparison of the results is often complicated. To overcome these challenges, we compared three thermal stability probes in small GTPase stability studies: SYPRO Orange, 8-anilino-1-naphthalenesulfonic acid (ANS), and the Protein-Probe. We studied mainly KRAS, as a proof of principle to obtain biochemical knowledge through TSA profiles. We showed that the Protein-Probe can work at lower concentration than the other dyes, and its sensitivity enables effective studies with non-covalent and covalent drugs at the nanomolar level. Using examples, we describe the parameters, which must be taken into account when characterizing the effect of drug candidates, of both small molecules and Designed Ankyrin Repeat Proteins.
Collapse
Affiliation(s)
- Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Salla Valtonen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Jonas N. Kapp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (J.N.K.); (A.P.)
| | - Nazia Hassan
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - William Gillette
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, 8560 Progress Dr., Frederick, MD 21702, USA;
| | - Bryce Dennis
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (J.N.K.); (A.P.)
| | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| |
Collapse
|
15
|
Oxidation of specific tryptophan residues inhibits high affinity binding of cocaine and its metabolites to a humanized anti-cocaine mAb. J Biol Chem 2022; 298:101689. [PMID: 35143837 PMCID: PMC8908252 DOI: 10.1016/j.jbc.2022.101689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cocaine addiction remains a serious problem lacking an effective pharmacological treatment. Thus, we have developed a high-affinity anti-cocaine monoclonal antibody (mAb), h2E2, for the treatment of cocaine use disorders. We show that selective tryptophan (Trp) oxidation by 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) resulted in a loss of high-affinity binding of cocaine to this mAb. The newly developed use of excess methionine (Met) to protect mAb met residues from AAPH oxidation did not substantially attenuate the effects of oxidation on cocaine binding but greatly decreased the modification of met residues in the mAb. Similar large decreases in ligand affinity (5000–10,000-fold) upon oxidation were observed using cocaine and two cocaine metabolites, cocaethylene and benzoylecgonine, which also bind with nanomolar affinity to this h2E2 mAb. The decrease in binding affinity was accompanied by a decrease of approximately 50% in Trp fluorescence, and increases in mAb 310 to 370 nm absorbance were consistent with the presence of oxidized forms of Trp. Finally, mass spectral analysis of peptides derived from control and AAPH-oxidized mAb indicated that excess free met did effectively protect mAb met residues from oxidation, and that AAPH-oxidized mAb heavy-chain Trp33 and light-chain Trp91 residues are important for cocaine binding, consistent with a recently derived h2E2 Fab fragment crystal structure containing bound benzoylecgonine. Thus, protection of the anti-cocaine h2E2 mAb from Trp oxidation prior to its clinical administration is critical for its proposed therapeutic use in the treatment of cocaine use disorders.
Collapse
|
16
|
Kirley TL, Norman AB. Cocaine binding to the Fab fragment of a humanized anti-cocaine mAb quantitated by dye absorption and fluorescence spectroscopy. J Immunol Methods 2021; 496:113103. [PMID: 34298065 PMCID: PMC8338881 DOI: 10.1016/j.jim.2021.113103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
In this work, we establish that cocaine binding to the Fab fragment of a recombinant humanized anti-cocaine mAb (h2E2) can be directly and easily quantitated using simple and inexpensive absorption and fluorescence measurements, employing dyes typically used for differential scanning fluorimetry, DASPMI and SYPRO Orange. For concentrated samples of the Fab fragment, absorbance spectroscopy employing these dyes reveals the number of cocaine sites present, using either DASPMI (by measuring the increase in dye absorbance) or SYPRO Orange (by measuring the change in dye maximal absorbance wavelength). Interestingly, we observed that cocaine binding to the Fab fragment had a much different effect on the SYPRO Orange dye absorbance than previously reported for the intact h2E2 mAb, resulting in a large decrease in the total dye absorbance for the Fab fragment, in contrast to previous results with the intact h2E2 mAb. For dilute samples of Fab fragment, a dye fluorescence emission spectroscopy assay was developed to quantitate the number of cocaine (and other high affinity cocaine metabolites) binding sites via the ligand-induced decrease in fluorescence emission of both of these extrinsic dyes. The difference in the cocaine titrations for the high affinity (Kd < 30 nM) ligands, cocaine, cocaethylene and benzoylecgonine and the low affinity (Kd > 30 μM) ligands, norcocaine, ecgonine methyl ester, and ecgonine were obvious using this assay. These simple, direct, and inexpensive techniques should prove useful for evaluation of other small molecule antigen binding Fab fragments, enabling quantitation and rapid biochemical assessments necessary for determining Fab fragment suitability for in vivo uses and other assays and experiments.
Collapse
Affiliation(s)
- Terence L Kirley
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, United States of America.
| | - Andrew B Norman
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, United States of America
| |
Collapse
|
17
|
Kirley TL, Norman AB. Ligand binding to a humanized anti-cocaine mAb measured by dye absorption spectroscopy. Biochem Biophys Res Commun 2021; 535:93-98. [PMID: 33348081 PMCID: PMC7855642 DOI: 10.1016/j.bbrc.2020.12.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022]
Abstract
Here we demonstrate that the antigen binding function of a humanized anti-cocaine mAb (h2E2) can be directly and easily determined using simple and inexpensive absorption spectroscopy and dyes commonly used for differential scanning fluorimetry, such as DASPMI and SYPRO Orange. Therapeutic monoclonal antibodies are commonly formulated in buffers which can interfere with necessary functional assays, containing additives and excipients such as mild detergents. Using the undiluted therapeutic product h2E2 mAb in its formulation buffer containing 0.01% polysorbate 80, the number of antigen/cocaine binding sites can be determined by the increase in absorbance (for DASPMI dye) or by the decrease in absorbance maximum wavelength (for SYPRO Orange dye), confirming proper function of the therapeutic mAb product. This ligand-induced visible dye absorption change can also be used to qualitatively evaluate the relative affinities of various metabolites of cocaine. These results are confirmed and extended by binding data obtained in the same formulation buffer using intrinsic tyrosine and tryptophan fluorescence quenching by cocaine, as well as by differential scanning fluorimetry. Interestingly, the binding of the cocaine metabolite norcocaine was demonstrated to be differentially affected by the pH 6 formulation buffer used for this mAb, presumably due to the differential ionizability of the demethylated norcocaine tropane ring nitrogen. This simple, direct, and inexpensive technique should prove useful for evaluation of other small molecule binding mAbs directly in their formulation buffers containing detergent, allowing rapid functional assessment of the produced therapeutic proteins.
Collapse
Affiliation(s)
- Terence L Kirley
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| | - Andrew B Norman
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|
18
|
Kirley TL, Norman AB. Multi-domain unfolding of the Fab fragment of a humanized anti-cocaine mAb characterized by non-reducing SDS-PAGE. Biochem Biophys Res Commun 2020; 533:580-585. [PMID: 32988582 PMCID: PMC7655625 DOI: 10.1016/j.bbrc.2020.09.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023]
Abstract
Monoclonal antibodies and their fragments are widely used for research and therapy. Fab fragments are useful since they retain antigen binding specificity, but being smaller proteins, are better able to penetrate biological compartments and tumors, and do not induce Fc-dependent immunological system activation. Our laboratory developed an anti-cocaine mAb (named h2E2) for the treatment of cocaine use disorders, which is currently in advanced pre-clinical development. We are also interested in the Fab fragment of this mAb for potential therapy of acute cocaine overdose. Previously, we showed that this mAb and its F(ab')2 and Fab fragments undergo discrete domain unfolding, as detected by non-reducing SDS-PAGE, and that ligand-induced protein thermal stabilization can be quantitated utilizing differential scanning fluorimetry in the absence of SDS. Here, we demonstrate that multiple Fab protein gel bands observed using non-reducing SDS-PAGE in the presence and absence of cocaine and its metabolites can be explained and interpreted based on the differential stabilization of two unfolding domains in the Fab fragment. The variable domain is stabilized by ligands against SDS unfolding, while the constant domain is not. This data and its interpretation are also supported by differential scanning fluorimetry data for the Fab fragment in SDS. It is likely that these non-reducing SDS-PAGE results and the gel band domain unfolding model will be applicable to other small molecule binding antibodies. Thus, non-reducing SDS-PAGE is a widely available and simple method for assessing domain stability and multi-step unfolding of Fab fragments.
Collapse
Affiliation(s)
- Terence L Kirley
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| | - Andrew B Norman
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|
19
|
Kirley TL, Norman AB. Ligand binding to a humanized anti-cocaine mAb detected by non-reducing SDS-PAGE. Biochem Biophys Rep 2020; 23:100795. [PMID: 32817883 PMCID: PMC7424207 DOI: 10.1016/j.bbrep.2020.100795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Monoclonal antibodies are very useful tools in experimental biology, as well as being valuable and effective therapeutic drugs. They can be targeted against proteins with varied functions, or against small molecules of interest to both researchers and clinicians, such as drugs of abuse, including cocaine. Since there is no currently FDA approved pharmacological treatment for cocaine abuse, our laboratory has developed an anti-cocaine mAb for the treatment of cocaine use disorders. This humanized anti-cocaine antibody, named h2E2, has been thoroughly characterized both functionally and structurally, in preparation for the start of clinical development. We previously showed that this mAb could be characterized by sequential thermal unfolding of antibody domains using non-reducing SDS-PAGE. We also demonstrated that ligand-induced protein stabilization can be used to quantitatively measure cocaine and cocaine metabolite binding to the h2E2 mAb, utilizing differential scanning fluorimetry. Here, we demonstrate the utility of non-reducing SDS-PAGE for the qualitative assessment of binding of cocaine and some of its metabolites, both to the intact mAb, as well as to fragments containing the antigen binding site (Fab and F(ab’)2 fragments). These results clearly show a ligand concentration dependence of the stabilization of the cocaine binding domain in non-reducing SDS-PAGE, as well as visually differentiating the relative binding affinities of various cocaine metabolites. Thus, non-reducing SDS-PAGE is a simple and widely available technique that is useful as a measure of binding of cocaine and its metabolites to the h2E2 mAb, and it is likely that this technique will also be applicable to other small molecule-directed mAbs. Cocaine and metabolite mAb binding are visually assessed by non-reducing SDS-PAGE. Ligand-induced changes are observed with the intact mAb, F(ab’)2, and Fab fragments. No ligand-induced changes in gel bands are observed for the Fc mAb fragment. The ligand-induced differential banding patterns are ligand concentration dependent. High affinity cocaine metabolites cause the effect, low affinity metabolites do not.
Collapse
Key Words
- Antibody domain unfolding
- BE, benzoyl ecgonine
- CE, cocaethylene
- COC, cocaine
- Cocaine binding
- Cocaine metabolites
- DSF, differential scanning fluorimetry
- EG, ecgonine
- EME, ecgonine methyl ester
- Electrophoretic migration
- Monoclonal antibody
- NC, norcocaine
- NR SDS-PAGE, non-reducing SDS-PAGE
- Non-reducing SDS-PAGE
- h2E2, humanized anti-cocaine monoclonal antibody
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Terence L Kirley
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Andrew B Norman
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|