1
|
Shoshi A, Xia Y, Fieschi A, Baumgarten Y, Gaißler A, Ackermann T, Reimann P, Mitschang B, Weyrich M, Bauernhansl T, Miehe R. An Analysis of Monitoring Solutions for CAR T Cell Production. Healthc Technol Lett 2025; 12:e70012. [PMID: 40365510 PMCID: PMC12073936 DOI: 10.1049/htl2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/11/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
The chimeric antigen receptor T cell (CAR T) therapy has shown remarkable results in treating certain cancers. It involves genetically modifying a patient's T cells to recognize and attack cancer cells. Despite its potential, CAR T cell therapy is complex and costly and requires the integration of multiple technologies and specialized equipment. Further research is needed to achieve the maximum potential of CAR T cell therapies and to develop effective and efficient methods for their production. This paper presents an overview of current measurement methods used in the key steps of the production of CAR T cells. The study aims to assess the state of the art in monitoring solutions and identify their potential for online monitoring. The results of this paper contribute to the understanding of measurement methods in CAR T cell manufacturing and identify areas where on-line monitoring can be improved. Thus, this research facilitates progress toward the development of effective monitoring of CAR T cell therapies.
Collapse
Affiliation(s)
- Arber Shoshi
- Graduate School of Excellence advanced Manufacturing Engineering (GSaME)University of StuttgartStuttgartGermany
- Fraunhofer Institute for Manufacturing Engineering and Automation (IPA)StuttgartGermany
- Institute of Industrial Manufacturing and Management (IFF)University of StuttgartStuttgartGermany
| | - Yuchen Xia
- Graduate School of Excellence advanced Manufacturing Engineering (GSaME)University of StuttgartStuttgartGermany
- Institute of Industrial Automation and Software Engineering (IAS)University of StuttgartStuttgartGermany
| | - Andrea Fieschi
- Graduate School of Excellence advanced Manufacturing Engineering (GSaME)University of StuttgartStuttgartGermany
- Institute for Parallel and Distributed Systems (IPVS)University of StuttgartStuttgartGermany
- Mercedes BenzStuttgartGermany
| | - Yannick Baumgarten
- Graduate School of Excellence advanced Manufacturing Engineering (GSaME)University of StuttgartStuttgartGermany
- Fraunhofer Institute for Manufacturing Engineering and Automation (IPA)StuttgartGermany
| | - Andrea Gaißler
- Fraunhofer Institute for Manufacturing Engineering and Automation (IPA)StuttgartGermany
| | - Thomas Ackermann
- Graduate School of Excellence advanced Manufacturing Engineering (GSaME)University of StuttgartStuttgartGermany
| | - Peter Reimann
- Graduate School of Excellence advanced Manufacturing Engineering (GSaME)University of StuttgartStuttgartGermany
| | - Bernhard Mitschang
- Graduate School of Excellence advanced Manufacturing Engineering (GSaME)University of StuttgartStuttgartGermany
- Institute for Parallel and Distributed Systems (IPVS)University of StuttgartStuttgartGermany
| | - Michael Weyrich
- Institute of Industrial Automation and Software Engineering (IAS)University of StuttgartStuttgartGermany
| | - Thomas Bauernhansl
- Fraunhofer Institute for Manufacturing Engineering and Automation (IPA)StuttgartGermany
- Institute of Industrial Manufacturing and Management (IFF)University of StuttgartStuttgartGermany
| | - Robert Miehe
- Fraunhofer Institute for Manufacturing Engineering and Automation (IPA)StuttgartGermany
- Institute of Industrial Manufacturing and Management (IFF)University of StuttgartStuttgartGermany
| |
Collapse
|
2
|
Patel S, McDonald JI, Mohammed H, Parthasarathy V, Hernandez V, Stuckey T, Lin AH, Gundimeda SK, Lin B, Reading J, Chan LLY. Development of a high-throughput image cytometric screening method as a research tool for immunophenotypic characterization of patient samples from clinical studies. J Immunol Methods 2024; 524:113587. [PMID: 38040192 DOI: 10.1016/j.jim.2023.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Immunophenotyping has been the primary assay for characterization of immune cells from patients undergoing therapeutic treatments in clinical research, which is critical for understanding disease progression and treatment efficacy. Currently, flow cytometry has been the dominant methodology for characterizing surface marker expression for immunological research. Flow cytometry has been proven to be an effective and efficient method for immunophenotyping, however, it requires highly trained users and a large time commitment. Recently, a novel image cytometry system (Cellaca® PLX Image Cytometer, Revvity Health Sciences, Inc., Lawrence, MA) has been developed as a complementary method to flow cytometry for performing rapid and high-throughput immunophenotyping. In this work, we demonstrated an image cytometric screening method to characterize immune cell populations, streamlining the analysis of routine surface marker panels. The T cell, B cell, NK cell, and monocyte populations of 46 primary PBMC samples from subjects enrolled in autoimmune and oncological disease study cohorts were analyzed with two optimized immunophenotyping staining kits: Panel 1 (CD3, CD56, CD14) and Panel 2 (CD3, CD56, CD19). We validated the proposed image cytometry method by comparing the Cellaca® PLX and the AuroraTM flow cytometer (Cytek Biosciences, Fremont, CA). The image cytometry system was employed to generate bright field and fluorescent images, as well as scatter plots for multiple patient PBMC samples. In addition, the image cytometry method can directly determine cell concentrations for downstream assays. The results demonstrated comparable CD3, CD14, CD19, and CD56 cell populations from the primary PBMC samples, which showed an average of 5% differences between flow and image cytometry. The proposed image cytometry method provides a novel research tool to potentially streamline immunophenotyping workflow for characterizing patient samples in clinical studies.
Collapse
Affiliation(s)
- Samir Patel
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA
| | - James I McDonald
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA
| | - Hamza Mohammed
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA
| | | | - Veronica Hernandez
- Allen Institute for Immunology, 615 Westlake Avenue N, Seattle, WA 98109, USA
| | - Tyanna Stuckey
- Allen Institute for Immunology, 615 Westlake Avenue N, Seattle, WA 98109, USA
| | - Allen H Lin
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA
| | | | - Bo Lin
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA
| | - Julian Reading
- Allen Institute for Immunology, 615 Westlake Avenue N, Seattle, WA 98109, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA.
| |
Collapse
|
3
|
Zhou Y, Jadlowsky J, Baiduc C, Klattenhoff AW, Chen Z, Bennett AD, Pumphrey NJ, Jakobsen BK, Riley JL. Chimeric antigen receptors enable superior control of HIV replication by rapidly killing infected cells. PLoS Pathog 2023; 19:e1011853. [PMID: 38100526 PMCID: PMC10773964 DOI: 10.1371/journal.ppat.1011853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/08/2024] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Engineered T cells hold great promise to become part of an effective HIV cure strategy, but it is currently unclear how best to redirect T cells to target HIV. To gain insight, we generated engineered T cells using lentiviral vectors encoding one of three distinct HIV-specific T cell receptors (TCRs) or a previously optimized HIV-targeting chimeric antigen receptor (CAR) and compared their functional capabilities. All engineered T cells had robust, antigen-specific polyfunctional cytokine profiles when mixed with artificial antigen-presenting cells. However, only the CAR T cells could potently control HIV replication. TCR affinity enhancement did not augment HIV control but did allow TCR T cells to recognize common HIV escape variants. Interestingly, either altering Nef activity or adding additional target epitopes into the HIV genome bolstered TCR T cell anti-HIV activity, but CAR T cells remained superior in their ability to control HIV replication. To better understand why CAR T cells control HIV replication better than TCR T cells, we performed a time course to determine when HIV-specific T cells were first able to activate Caspase 3 in HIV-infected targets. We demonstrated that CAR T cells recognized and killed HIV-infected targets more rapidly than TCR T cells, which correlates with their ability to control HIV replication. These studies suggest that the speed of target recognition and killing is a key determinant of whether engineered T cell therapies will be effective against infectious diseases.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie Jadlowsky
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Caitlin Baiduc
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alex W. Klattenhoff
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhilin Chen
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | - Bent K. Jakobsen
- Adaptimmune Ltd, Abingdon, United Kingdom
- Immunocore Ltd., Abingdon, United Kingdom
| | - James L. Riley
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Zurowski D, Patel S, Hui D, Ka M, Hernandez C, Love AC, Lin B, Moore A, Chan LLY. High-throughput method to analyze the cytotoxicity of CAR-T Cells in a 3D tumor spheroid model using image cytometry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:65-72. [PMID: 36758833 DOI: 10.1016/j.slasd.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Solid tumors account for approximately 90% of all adult human cancers. As such, the development of novel cellular therapies has become of increasing importance to target solid tumor malignancies, such as prostate, lung, breast, bladder, colon, and liver cancers. One such cellular therapy relies on the use of chimeric antigen receptor T cells (CAR-T cells). CAR-T cells are engineered to target specific antigens on tumor cells. To date, there are six FDA-approved CAR-T cell therapies that have been utilized for hematologic B cell malignancies. Immune cell trafficking and immunosuppressive factors within the tumor microenvironment increase the relative difficulty in developing a robust CAR-T cell therapy against solid tumors. Therefore, it is critical to develop novel methodologies for high-throughput phenotypic and functional assays using 3D tumor spheroid models to assess CAR-T cell products against solid tumors. In this manuscript, we discuss the use of CAR-T cells targeted towards PSMA, an antigen that is found on prostate cancer tumor cells, the second most common cause of cancer deaths among men worldwide. We demonstrate the use of high-throughput, plate-based image cytometry to characterize CAR-T cell-mediated cytotoxic potency against 3D prostate tumor spheroids. We were able to kinetically evaluate the efficacy and therapeutic value of PSMA CAR-T cells by analyzing the cytotoxicity against prostate tumor spheroids. In addition, the CAR-T cells were fluorescently labeled to visually identify the location of the T cells as cytotoxicity occurs, which may provide more meaningful information for assessing the functionality of the CAR-T cells. The proposed image cytometry method can overcome limitations placed on traditional methodologies to effectively assess cell-mediated 3D tumor spheroid cytotoxicity and efficiently generate time- and dose-dependent results.
Collapse
Affiliation(s)
- David Zurowski
- Department of Analytical Development, Cell Therapy, Resilience, Inc. East Norriton, PA 19403, USA
| | - Samir Patel
- Department of Advanced Technology R&D, Nexcelom from PerkinElmer, Lawrence, MA 01843, USA.
| | - Daniel Hui
- Department of Analytical Development, Cell Therapy, Resilience, Inc. East Norriton, PA 19403, USA
| | - Mignane Ka
- Department of Analytical Development, Cell Therapy, Resilience, Inc. East Norriton, PA 19403, USA
| | - Charles Hernandez
- Department of Advanced Technology R&D, Nexcelom from PerkinElmer, Lawrence, MA 01843, USA
| | - Andrea C Love
- Department of Advanced Technology R&D, Nexcelom from PerkinElmer, Lawrence, MA 01843, USA
| | - Bo Lin
- Department of Advanced Technology R&D, Nexcelom from PerkinElmer, Lawrence, MA 01843, USA
| | - Andrea Moore
- Department of Analytical Development, Cell Therapy, Resilience, Inc. East Norriton, PA 19403, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom from PerkinElmer, Lawrence, MA 01843, USA
| |
Collapse
|
5
|
Sun YJ, Chen YC, Hua WK, Wu SCY, Chan LLY. Comparison of chimeric antigen receptor-T cell-mediated cytotoxicity assays with suspension tumor cells using plate-based image cytometry method. Cytometry A 2023; 103:27-38. [PMID: 35869932 DOI: 10.1002/cyto.a.24673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 07/13/2022] [Indexed: 01/20/2023]
Abstract
In the recent decade, chimeric antigen receptor (CAR)-T cell therapy has revolutionized strategies for cancer treatments due to its highly effective clinical efficacy and response for B cell malignancies. The success of CAR-T cell therapy has stimulated the increase in the research and development of various CAR constructs to target different tumor types. Therefore, a robust and efficient in vitro potency assay is needed to quickly identify potential CAR gene design from a library of construct candidates. Image cytometry methodologies have been utilized for various CAR-T cell-mediated cytotoxicity assay using different fluorescent labeling methods, mainly due to their ease-of-use, ability to capture cell images for verification, and higher throughput performance. In this work, we employed the Celigo Image Cytometer to evaluate and compare two CAR-T cell-mediated cytotoxicity assays using GFP-expressing or fluorescent dye-labeled myeloma and plasmacytoma cells. The GFP-based method demonstrated higher sensitivity in detecting CAR-T cell-mediated cytotoxicity when compared to the CMFDA/DAPI viability method. We have established the criteria and considerations for the selection of cytotoxicity assays that are fit-for-purpose to ensure the results produced are meaningful for the specific testing conditions.
Collapse
Affiliation(s)
- Yu-Jun Sun
- Department of Research and Development, GenomeFrontier Therapeutics, Taipei City, Taiwan
| | - Yi-Chun Chen
- Department of Research and Development, GenomeFrontier Therapeutics, Taipei City, Taiwan
| | - Wei-Kai Hua
- Department of Research and Development, GenomeFrontier Therapeutics, Taipei City, Taiwan
| | - Sareina Chiung-Yuan Wu
- Department of Research and Development, GenomeFrontier Therapeutics, Taipei City, Taiwan
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom from PerkinElmer, Lawrence, Massachusetts, USA
| |
Collapse
|
6
|
Preclinical In Vitro and In Vivo Models for Adoptive Cell Therapy of Cancer. Cancer J 2022; 28:257-262. [PMID: 35880934 DOI: 10.1097/ppo.0000000000000609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
ABSTRACT Adoptive cellular therapies are making major strides in the treatment of cancer, both for hematologic and solid tumors. These cellular products include chimeric antigen receptor T cells and T-cell receptor-modified T cells, tumor-infiltrating lymphocytes, marrow-infiltrating T cells, natural killer cells as well as macrophage-based therapeutics. Advancement in genomics, computational biology, immunology, and cell therapy manufacturing has facilitated advancement of adoptive T cell therapies into the clinic, whereas clinical efficacy has driven Food and Drug Administration approvals. The growth of adoptive cellular therapy has, in turn, led to innovation in the preclinical models available, from ex vivo cell-based models to in vivo xenograft models of treatment. This review focuses on the development and application of in vitro models and in vivo models (cell line xenograft, humanized mice, and patient-derived xenograft models) that directly evaluate these human cellular products.
Collapse
|
7
|
Chanda MK, Shudde CE, Piper TL, Zheng Y, Courtney AH. Combined analysis of T cell activation and T cell-mediated cytotoxicity by imaging cytometry. J Immunol Methods 2022; 506:113290. [PMID: 35644255 PMCID: PMC9202232 DOI: 10.1016/j.jim.2022.113290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
Immunotherapies for the treatment of cancer have spurred the development of new drugs that seek to harness the ability of T cells to recognize and kill malignant cells. There is a substantial need to evaluate how these experimental drugs influence T cell functional outputs in co-culture systems that contain cancerous cells. We describe an imaging cytometry-based platform that can simultaneously quantify activated T cells and the capacity of these T cells to kill cancer cells. Our platform was developed using the Nur77-GFP reporter system because GFP expression provides a direct readout of T cell activation that is induced by T cell antigen receptor (TCR) signaling. We combined the Nur77-GFP reporter system with a cancer cell line that displays a TCR-specific antigen and evaluated the relationship between T cell activation and cancer cell death. We demonstrate that imaging cytometry can be used to quantify the number of activated cytotoxic CD8+ T cells (CTLs) and the capacity of these CTLs to recognize and kill adherent MC38 cancer cells. We tested whether this platform could evaluate heterogenous lymphocyte populations by quantifying the proportion of antigen-specific activated T cells in co-cultures that contain unresponsive lymphocytes. The effects of a SRC family kinase inhibitor on CTL activation and MC38 cell death were also determined. Our findings demonstrate that the Nur77-GFP reporter system can be used to evaluate the effects of diverse treatment conditions on T cell-cancer co-cultures in a microtiter plate-based format by imaging cytometry. We anticipate the combined analysis of T cell activation with T cell-mediated cancer cell death can be used to rapidly assess immuno-oncology drug candidates and T cell-based therapeutics.
Collapse
|