1
|
Nurisyah S, Iyori M, Hasyim AA, Amru K, Itani K, Nakamura K, Zainal KH, Halik H, Djaharuddin I, Bukhari A, Asih PBS, Syafruddin D, Yoshida S, Idris I, Yusuf Y. Evaluation of an E. coli-expressed spike protein-based in-house ELISA system for assessment of antibody responses after COVID-19 infection and vaccination. NARRA J 2025; 5:e1250. [PMID: 40352206 PMCID: PMC12059849 DOI: 10.52225/narra.v5i1.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/18/2025] [Indexed: 05/14/2025]
Abstract
Evaluating long-term immunity after COVID-19 infection and vaccination is critical for managing potential outbreaks. The aim of this study was to develop a cost-effective in-house enzyme-linked immunosorbent assay (ELISA) based on Escherichia coli-expressed SARS-CoV-2 spike protein (E-S1) for antibody detection and to evaluate its performance. The system was validated by comparing the in-house ELISA results with those obtained using a commercial ELISA with HEK293-expressed spike protein (H-S1). Recombinant SARS-CoV-2 spike protein was produced in E. coli, purified, and validated for antigenicity via ELISA. Indirect ELISAs with both E-S1 and H-S1 antigens were performed on 386 serum samples from COVID-19 survivors, vaccinated individuals, and pre-pandemic controls collected at different time points. The E-S1 ELISA showed a statistically significant but weak correlation with H-S1 ELISA across all samples (r=0.205; p=0.0001). Stronger correlations were observed among vaccinated individuals with prior infection on day 90 (r=0.6017; p<0.001) and in naïve vaccine recipients on day 30 (r=0.5361; p=0.0003). Pre-pandemic sera from a rural population in Sumba Island exhibited high background reactivity in E-S1 ELISA, likely due to anti-E. coli antibodies, while urban pre-pandemic sera from Jakarta showed a stronger correlation with H-S1 ELISA. This suggests potential regional or immune background differences influencing assay performance. Although E-S1 retained antigenic properties, its diagnostic utility is limited by non-specific reactivity and reduced sensitivity compared to H-S1. In conclusion, E. coli expression systems may not be ideal for producing spike protein-based ELISA antigens specific to SARS-CoV-2. Alternative expression systems, such as human or baculovirus, could enhance diagnostic accuracy and specificity for COVID-19 antibody detection.
Collapse
Affiliation(s)
- Sitti Nurisyah
- Department of Pulmonology and Respiratory Medicine, Universitas Hasanuddin, Makassar, Indonesia
- Dr. Tadjuddin Chalid Hospital, Makassar, Indonesia
| | - Mitsuhiro Iyori
- Research Institute of Pharmaceutical Science, Musashino University, Nishitokyo, Japan
| | - Ammar A. Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Khaeriah Amru
- Dr. Tadjuddin Chalid Hospital, Makassar, Indonesia
- Department of Medical Education, Universitas Hasanuddin, Makassar, Indonesia
| | - Kei Itani
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Kurumi Nakamura
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Kartika H. Zainal
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | | | - Irawaty Djaharuddin
- Department of Pulmonology and Respiratory Medicine, Universitas Hasanuddin, Makassar, Indonesia
- Dr. Wahidin Soedirohusodo Hospital, Makassar, Indonesia
| | - Agussalim Bukhari
- Department of Clinical Nutrition, Universitas Hasanuddin, Makassar, Indonesia
| | - Puji BS. Asih
- National Research and Innovation Agency, Jakarta, Indonesia
| | - Din Syafruddin
- Department of Parasitology, Universitas Hasanuddin, Makassar, Indonesia
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Irfan Idris
- Department of Physiology, Universitas Hasanuddin, Makassar, Indonesia
| | - Yenni Yusuf
- Department of Parasitology, Universitas Hasanuddin, Makassar, Indonesia
| |
Collapse
|
2
|
Islam EA, Fegan JE, Zeppa JJ, Ahn SK, Ng D, Currie EG, Lam J, Moraes TF, Gray-Owen SD. Adjuvant-dependent impacts on vaccine-induced humoral responses and protection in preclinical models of nasal and genital colonization by pathogenic Neisseria. Vaccine 2025; 48:126709. [PMID: 39817984 DOI: 10.1016/j.vaccine.2025.126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/05/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Neisseria gonorrhoeae, which causes the sexually transmitted infection gonorrhea and Neisseria meningitidis, a leading cause of bacterial meningitis and septicemia, are closely related human-restricted pathogens that inhabit distinct primary mucosal niches. While successful vaccines against invasive meningococcal disease have been available for decades, the rapid rise in antibiotic resistance has led to an urgent need to develop an effective gonococcal vaccine. Several surface antigens are shared among these two pathogens, making cross-species protection an exciting prospect. However, the type of vaccine-mediated immune response required to achieve protection against respiratory versus genital infection remains ill defined. In this study, we utilize well established mouse models of female lower genital tract colonization by N. gonorrhoeae and upper respiratory tract colonization by N. meningitidis to examine the performance of transferrin binding protein B (TbpB) vaccines formulated with immunologically distinct vaccine adjuvants. We demonstrate that vaccine-mediated protection is influenced by the choice of adjuvant, with Th1/2-balanced adjuvants performing optimally against N. gonorrhoeae, and both Th1/2-balanced and Th2-skewing adjuvants leading to a significant reduction in N. meningitidis burden. We further establish a lack of correlation between protection status and the humoral response or bactericidal titre. Combined, this work supports the feasibility for a single vaccine formulation to achieve pan-neisserial coverage.
Collapse
Affiliation(s)
- Epshita A Islam
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Jamie E Fegan
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Joseph J Zeppa
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Dixon Ng
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Elissa G Currie
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Jessica Lam
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Trevor F Moraes
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
3
|
Fegan JE, Islam EA, Curran DM, Ng D, Au NYT, Currie EG, Zeppa JJ, Lam J, Schryvers AB, Moraes TF, Gray-Owen SD. Rational selection of TbpB variants yields a bivalent vaccine with broad coverage against Neisseria gonorrhoeae. NPJ Vaccines 2025; 10:10. [PMID: 39814726 PMCID: PMC11736018 DOI: 10.1038/s41541-024-01054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025] Open
Abstract
Neisseria gonorrhoeae is an on-going public health problem due in part to the lack of success with efforts to develop an efficacious vaccine to prevent this sexually transmitted infection. The gonococcal transferrin binding protein B (TbpB) is an attractive candidate vaccine antigen. However, it exhibits high levels of antigenic variability, posing a significant obstacle in evoking a broadly protective immune response. Here, we utilize phylogenetic information to rationally select TbpB variants for inclusion into a gonococcal vaccine and identify two TbpB variants that together elicit a highly cross-reactive antibody response against a diverse panel of TbpB variants and clinically relevant gonococcal strains. This formulation performed well in experimental proxies of real-world usage, including eliciting bactericidal activity against diverse gonococcal strains and decreasing the median duration of colonization after vaginal infection in female mice. These data support the use of a combination of TbpB variants for a broadly protective gonococcal vaccine.
Collapse
Affiliation(s)
- Jamie E Fegan
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Epshita A Islam
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - David M Curran
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Dixon Ng
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Natalie Y T Au
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Elissa G Currie
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Joseph J Zeppa
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jessica Lam
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Trevor F Moraes
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Scott D Gray-Owen
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Kawashima T, Nakamura M, Sakono M. A one-process production of completely biotinylated proteins in a T7 expression system. Biotechnol Appl Biochem 2024; 71:1070-1078. [PMID: 38770738 DOI: 10.1002/bab.2598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Streptavidin is a tetrameric protein with high specificity and affinity for biotin. The interaction between avidin and biotin has become a valuable tool in nanotechnology. In recent years, the site-specific biotin modification of proteins using biotin ligases, such as BirA, has attracted attention. This study established an in vivo method for achieving the complete biotinylation of target proteins using a single plasmid co-expressing BirA and its target proteins. Specifically, a biotin-modified protein was produced in Escherichia coli strain BL21(DE3) using a single plasmid containing genes encoding both BirA and a protein fused to BirA's substrate sequence, Avitag. This approach simplifies the production of biotinylated proteins in E. coli and allows the creation of various biotinylated protein types through gene replacement. Furthermore, the biotin modification rate of the obtained target protein could be evaluated using Native-PAGE without performing complicated isolation operations of biotinylated proteins. In Native-PAGE, biotin-modified proteins and unmodified proteins were confirmed as clearly different bands, and it was possible to easily derive the modification rate from the respective band intensities.
Collapse
Affiliation(s)
- Takuma Kawashima
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| | - Mitsuki Nakamura
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| | - Masafumi Sakono
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
5
|
Fegan JE, Islam EA, Curran DM, Ng D, Au N, Currie EG, Zeppa J, Lam J, Schryvers AB, Moraes TF, Gray-Owen SD. Rational selection of TbpB variants elucidates a bivalent vaccine formulation with broad spectrum coverage against Neisseria gonorrhoeae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611798. [PMID: 39282273 PMCID: PMC11398527 DOI: 10.1101/2024.09.07.611798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Neisseria gonorrhoeae is the causative agent of gonorrhea, an on-going public health problem due in part to the lack of success with efforts to develop an efficacious vaccine to prevent this sexually transmitted infection. An attractive candidate vaccine antigen because of its essential function and surface exposure, the gonococcal transferrin binding protein B (TbpB) exhibits high levels of antigenic variability which poses a significant obstacle in evoking a broadly protective vaccine composition. Here, we utilize phylogenetic information to rationally select TbpB variants for inclusion into a potential gonococcal vaccine and identify two TbpB variants that when formulated together elicit a highly cross-reactive antibody response in both rabbits and mice against a diverse panel of TbpB variants and clinically relevant gonococcal strains. Further, this formulation performed well in experimental proxies of real-world usage, including eliciting bactericidal activity against 8 diverse gonococcal strains and decreasing the median duration of colonization after vaginal infection in female mice by two heterologous strains of N. gonorrhoeae . Together, these data support the use of a combination of TbpB variants for a broadly protective gonococcal vaccine.
Collapse
|
6
|
Halder S, Jaiswal N, Koley H, Mahata N. Cloning, improved expression and purification of invasion plasmid antigen D (IpaD): an effector protein of enteroinvasive Escherichia coli (EIEC). Biotechnol Genet Eng Rev 2024; 40:409-435. [PMID: 36871167 DOI: 10.1080/02648725.2023.2184027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
The widespread increase in broad-spectrum antimicrobial resistance is making it more difficult to treat gastrointestinal infections. Enteroinvasive Escherichia coli is a prominent etiological agent of bacillary dysentery, invading via the fecal-oral route and exerting virulence on the host via the type III secretion system. IpaD, a surface-exposed protein on the T3SS tip that is conserved among EIEC and Shigella, may serve as a broad immunogen for bacillary dysentery protection. For the first time, we present an effective framework for improving the expression level and yield of IpaD in the soluble fraction for easy recovery, as well as ideal storage conditions, which may aid in the development of new protein therapies for gastrointestinal infections in the future. To achieve this, uncharacterized full length IpaD gene from EIEC was cloned into pHis-TEV vector and induction parameters were optimized for enhanced expression in the soluble fraction. After affinity-chromatography based purification, 61% pure protein with a yield of 0.33 mg per litre of culture was obtained. The purified IpaD was retained its secondary structure with a prominent α-helical structure as well as functional activity during storage, at 4°C, -20°C and -80°C using 5% sucrose as cryoprotectants, which is a critical criterion for protein-based treatments.
Collapse
Affiliation(s)
- Sudeshna Halder
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Namita Jaiswal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Hemanta Koley
- Department Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| |
Collapse
|
7
|
Tsoneva DK, Ivanov MN, Vinciguerra M. Liquid Liver Biopsy for Disease Diagnosis and Prognosis. J Clin Transl Hepatol 2023; 11:1520-1541. [PMID: 38161500 PMCID: PMC10752811 DOI: 10.14218/jcth.2023.00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 01/03/2024] Open
Abstract
Liver diseases are a major burden worldwide, the scope of which is expected to further grow in the upcoming years. Clinically relevant liver dysfunction-related blood markers such as alanine aminotransferase and aspartate aminotransferase have limited accuracy. Nowadays, liver biopsy remains the gold standard for several liver-related pathologies, posing a risk of complication due to its invasive nature. Liquid biopsy is a minimally invasive approach, which has shown substantial potential in the diagnosis, prognosis, and monitoring of liver diseases by detecting disease-associated particles such as proteins and RNA molecules in biological fluids. Histones are the core components of the nucleosomes, regulating essential cellular processes, including gene expression and DNA repair. Following cell death or activation of immune cells, histones are released in the extracellular space and can be detected in circulation. Histones are stable in circulation, have a long half-life, and retain their post-translational modifications. Here, we provide an overview of the current research on histone-mediated liquid biopsy methods for liver diseases, with a focus on the most common detection methods.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
8
|
Design and Production of Hybrid Antigens for Targeting Integral Outer Membrane Proteins in Gram-Negative Bacteria. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2414:115-140. [PMID: 34784035 DOI: 10.1007/978-1-0716-1900-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Metal ion transporters in the outer membrane of gram-negative bacteria that are responsible for acquiring iron and zinc are attractive vaccine targets due to their essential function. The core function is mediated by an integral outer membrane TonB-dependent transporter (TBDT) that mediates the transport of the metal ion across the outer membrane. Some TBDTs also have a surface lipoprotein (SLP) that assists in the efficient capture of the metal ion-containing host protein from which the metal ion is extracted. The challenges in producing the integral outer membrane protein for a commercial subunit vaccine prompted us to develop a hybrid antigen strategy in which surface loops of the TBDT are displayed on the lipoprotein, which can readily be produced as a soluble protein. The focus of this chapter will be on the methods for production of hybrid antigens and evaluating the immune response they elicit.
Collapse
|