1
|
Meng F, Li X, Zou N, Wang X. Protein Profiling by Nanopore-Based Technology. Anal Chem 2025; 97:10110-10125. [PMID: 40326163 DOI: 10.1021/acs.analchem.5c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Proteins are the molecular foundations of life and disease responsible for understanding most biological processes. Nanopore technology devoted to revealing single-molecule behavior has made great breakthroughs for protein identification, detection and analysis, including protein sequencing. Here, we present an overview of the latest advances in protein profiling by nanopores from the identification and quantification of protein biomarkers and protein enzymes to the delineation of protein conformations and interactions at the single-molecule level, focused on the diverse and exciting approaches to protein sequencing. Furthermore, we discuss the primary challenges associated with nanopore-based protein sensing and recommend potential strategies respond to these challenges from the perspective of nanopore engineering and data processing.
Collapse
Affiliation(s)
- Funa Meng
- School of Chemistry and Chemical Engineering, Heze University, Shandong 274015, P. R. China
| | - Xin Li
- School of Chemistry and Chemical Engineering, Heze University, Shandong 274015, P. R. China
| | - Na Zou
- School of Chemistry and Chemical Engineering, Heze University, Shandong 274015, P. R. China
| | - Xueliang Wang
- School of Chemistry and Chemical Engineering, Heze University, Shandong 274015, P. R. China
| |
Collapse
|
2
|
Apriyani F, Sari SR, Petrus HTBM, Angelina M, Manurung RV, Septiani NLW, Yuliarto B, Jenie SNA. A fluorescence nanosensor based on modified sustainable silica for highly sensitive detection of the SARS-CoV-2 IgG antibody. NANOSCALE 2025; 17:5438-5446. [PMID: 39898644 DOI: 10.1039/d4nr04546g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This study presents an innovative fluorescence nanosensor utilizing modified sustainable silica for the ultra-sensitive detection of SARS-CoV-2 IgG antibodies. The sensor employs fluorescent dye-doped silica nanoparticles (FSNPs) synthesized via the sol-gel method and functionalized with rhodamine B as a fluorescent dye. Fourier-transform infrared (FTIR) analysis confirmed the successful immobilization of anti-IgG on the FSNP surface, as evidenced by the characteristic amide I and II peaks at 1641 cm-1 and 1530 cm-1, respectively. Detection of SARS-CoV-2 IgG antibodies was achieved through the enhanced fluorescence intensity of FSNP-anti-IgG at 582 nm. Optimal detection conditions were established with a 15-minute incubation period, demonstrating a linear detection range from 10-8 to 10-2 μg mL-1 and a limit of detection (LOD) of 5.3 fg mL-1. This research highlights the potential of modified sustainable silica-based fluorescence nanosensors, particularly those utilizing FSNP-anti IgG, for advancing sensitive, rapid, and cost-effective COVID-19 diagnostics, making them a viable option for pathogen detection in resource-limited settings.
Collapse
Affiliation(s)
- Firda Apriyani
- Master Program of Nanotechnology, Graduate School, Institut Teknologi Bandung, Ganesha 10, Bandung, West Java 40132, Indonesia
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, West Java 41032, Indonesia
| | - Shaimah Rinda Sari
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) B. J. Habibie, Building 452, Serpong, South Tangerang, Banten 15314, Indonesia.
| | - Himawan Tri Bayu Murti Petrus
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No 2, Yogyakarta, 55281, Indonesia
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center (CSC), Bogor, West Java 16911, Indonesia
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesa 10, Bandung, West Java 40132, Indonesia
| | - Robeth V Manurung
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesa 10, Bandung, West Java 40132, Indonesia
- Research Centre for Electronics, National Research and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) Samaun Samadikun, Jl. Cisitu Sangkuriang, Dago, Bandung, West Java 40135, Indonesia
| | - Ni Luh Wulan Septiani
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesa 10, Bandung, West Java 40132, Indonesia
- Research Centre for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) B. J. Habibie, South Tangerang 15314, Indonesia
| | - Brian Yuliarto
- Master Program of Nanotechnology, Graduate School, Institut Teknologi Bandung, Ganesha 10, Bandung, West Java 40132, Indonesia
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, West Java 41032, Indonesia
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesa 10, Bandung, West Java 40132, Indonesia
| | - S N Aisyiyah Jenie
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) B. J. Habibie, Building 452, Serpong, South Tangerang, Banten 15314, Indonesia.
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesa 10, Bandung, West Java 40132, Indonesia
| |
Collapse
|
3
|
Klepp LI, Bigi MM, Villafañe L, Blanco FC, Malinge L P, Bigi F. Production of functional bovine IL-22 in a mammalian episomal expression system. Vet Immunol Immunopathol 2025; 279:110863. [PMID: 39615285 DOI: 10.1016/j.vetimm.2024.110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
Interleukin 22 is a member of the interleukin-10 superfamily of cytokines. This protein has a dual role as an inflammatory and anti-inflammatory molecule dependent on the context. IL-22 is produced mainly by immune cells and seems to have non-hematopoietic cells as its target. In this work, we report the production of bovine IL-22 for the first time in a semi-stable expression system in mammalian cells. We showed that this recombinant IL-22 possesses biological activity in bovine macrophages infected with Mycobacterium bovis and is easy to produce in large quantities. Given its role in the defence against infections, the IL-22 produced in this work has potential applications in scientific research as well as in immunotherapy to treat diseases in cattle.
Collapse
Affiliation(s)
- Laura I Klepp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | | | - Luciana Villafañe
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | - Federico C Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | | | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| |
Collapse
|
4
|
Orosa Vázquez I, Díaz M, Zúñiga Rosales Y, Amada K, Chang J, Relova Hernández E, Tundidor Y, Roblejo Balbuena H, Monzón G, Torres Rives B, Noa Romero E, Carrillo Valdés D, Valdivia Álvarez I, Delahanty Fernández A, Díaz C, Solozabal J, Gil M, Sánchez B, Rojas G, Marcheco B, Carmenate T. Studying the Humoral Response against SARS-CoV-2 in Cuban COVID-19 Recovered Patients. J Immunol Res 2024; 2024:7112940. [PMID: 39359695 PMCID: PMC11446615 DOI: 10.1155/2024/7112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/30/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Understanding the immune response generated by SARS-CoV-2 is critical for assessing efficient therapeutic protocols and gaining insights into the durability of protective immunity. The current work was aimed at studying the specific humoral responses against SARS-CoV-2 in Cuban COVID-19 convalescents. We developed suitable tools and methods based on ELISA methodology, for supporting this evaluation. Here, we describe the development of an ELISA for the quantification of anti-RBD IgG titers in a large number of samples and a similar test in the presence of NH4SCN as chaotropic agent for estimating the RBD specific antibody avidity. Additionally, a simple and rapid ELISA based on antibody-mediated blockage of the binding RBD-ACE2 was implemented for detecting, as a surrogate of conventional test, the levels of anti-RBD inhibitory antibodies in convalescent sera. In a cohort of 273 unvaccinated convalescents, we identified higher anti-RBD IgG titer (1 : 1,330, p < 0.0001) and higher levels of inhibitory antibodies blocking RBD-ACE2 binding (1 : 216, p < 0.05) among those who had recovered from severe illness. Our results suggest that disease severity, and not demographic features such as age, sex, and skin color, is the main determinant of the magnitude and neutralizing ability of the anti-RBD antibody response. An additional paired longitudinal assessment in 14 symptomatic convalescents revealed a decline in the antiviral antibody response and the persistence of neutralizing antibodies for at least 4 months after the onset of symptoms. Overall, SARS-CoV-2 infection elicits different levels of antibody response according to disease severity that declines over time and can be monitored using our homemade serological assays.
Collapse
Affiliation(s)
- Ivette Orosa Vázquez
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Marianniz Díaz
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Yaima Zúñiga Rosales
- National Center of Medical Genetics, 31st Avenue, N°3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | - Klayris Amada
- Julio Trigo Hospital, km 7½ Calzada de Bejucal, Diez de Octubre, Havana, Cuba
| | - Janoi Chang
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | | | - Yaima Tundidor
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Hilda Roblejo Balbuena
- National Center of Medical Genetics, 31st Avenue, N°3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | - Giselle Monzón
- National Center of Medical Genetics, 31st Avenue, N°3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | - Bárbara Torres Rives
- National Center of Medical Genetics, 31st Avenue, N°3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | - Enrique Noa Romero
- Research Center of Civil Defense, José de las Lajas, San, Mayabeque, Cuba
| | | | | | | | - Claudia Díaz
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Joaquín Solozabal
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Mileidys Gil
- Julio Trigo Hospital, km 7½ Calzada de Bejucal, Diez de Octubre, Havana, Cuba
| | - Belinda Sánchez
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Gertrudis Rojas
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Beatriz Marcheco
- National Center of Medical Genetics, 31st Avenue, N°3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | - Tania Carmenate
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| |
Collapse
|
5
|
Li Y, Lu SM, Wang JL, Yao HP, Liang LG. Progress in SARS-CoV-2, diagnostic and clinical treatment of COVID-19. Heliyon 2024; 10:e33179. [PMID: 39021908 PMCID: PMC11253070 DOI: 10.1016/j.heliyon.2024.e33179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background Corona Virus Disease 2019(COVID-19)is a global pandemic novel coronavirus infection disease caused by Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Although rapid, large-scale testing plays an important role in patient management and slowing the spread of the disease. However, there has been no good and widely used drug treatment for infection and transmission of SARS-CoV-2. Key findings Therefore, this review updates the body of knowledge on viral structure, infection routes, detection methods, and clinical treatment, with the aim of responding to the large-section caused by SARS-CoV-2. This paper focuses on the structure of SARS-CoV-2 viral protease, RNA polymerase, serine protease and main proteinase-like protease as well as targeted antiviral drugs. Conclusion In vitro or clinical trials have been carried out to provide deeper thinking for the pathogenesis, clinical diagnosis, vaccine development and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Si-Ming Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Clinical in Vitro Diagnostic Techniques, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Long Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Guo Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Grayo S, Sagno H, Diassy O, Zogbelemou JB, Kondabo SJ, Houndekon M, Dellagi K, Vigan-Womas I, Rourou S, Hamouda WB, Benabdessalem C, Ahmed MB, Tordo N. Snapshot of Anti-SARS-CoV-2 IgG Antibodies in COVID-19 Recovered Patients in Guinea. J Clin Med 2024; 13:2965. [PMID: 38792506 PMCID: PMC11122401 DOI: 10.3390/jcm13102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Because the regular vaccine campaign started in Guinea one year after the COVID-19 index case, the profile of naturally acquired immunity following primary SARS-CoV-2 infection needs to be deepened. Methods: Blood samples were collected once from 200 patients (90% of African extraction) who were recovered from COVID-19 for at least ~2.4 months (72 days), and their sera were tested for IgG antibodies to SARS-CoV-2 using an in-house ELISA assay against the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike1 protein (RBD/S1-IH kit). Results: Results revealed that 73% of sera (146/200) were positive for IgG to SARS-CoV-2 with an Optical Density (OD) ranging from 0.13 to 1.19 and a median value of 0.56 (IC95: 0.51-0.61). The median OD value at 3 months (1.040) suddenly decreased thereafter and remained stable around OD 0.5 until 15 months post-infection. The OD median value was slightly higher in males compared to females (0.62 vs. 0.49), but the difference was not statistically significant (p-value: 0.073). In contrast, the OD median value was significantly higher among the 60-100 age group (0.87) compared to other groups, with a noteworthy odds ratio compared to the 0-20 age group (OR: 9.69, p-value: 0.044*). Results from the RBD/S1-IH ELISA kit demonstrated superior concordance with the whole spike1 protein ELISA commercial kit compared to a nucleoprotein ELISA commercial kit. Furthermore, anti-spike1 protein ELISAs (whole spike1 and RBD/S1) revealed higher seropositivity rates. Conclusions: These findings underscore the necessity for additional insights into naturally acquired immunity against COVID-19 and emphasize the relevance of specific ELISA kits for accurate seropositivity rates.
Collapse
Affiliation(s)
- Solène Grayo
- Institut Pasteur de Guinée, Conakry BP 4416, Guinea; (H.S.); (N.T.)
| | - Houlou Sagno
- Institut Pasteur de Guinée, Conakry BP 4416, Guinea; (H.S.); (N.T.)
| | - Oumar Diassy
- Agence Nationale de Sécurité Sanitaire, Conakry BP 797, Guinea;
| | | | | | - Marilyn Houndekon
- Centre Médico-Social de L’ambassade de France, Conakry BP 295, Guinea; (J.-B.Z.); (M.H.)
| | - Koussay Dellagi
- Direction Internationale, Institut Pasteur, 75724 Paris, France;
| | | | - Samia Rourou
- Institut Pasteur de Tunis, Tunis BP 74-1002, Tunisia; (S.R.); : (C.B.); (M.B.A.)
| | - Wafa Ben Hamouda
- Institut Pasteur de Tunis, Tunis BP 74-1002, Tunisia; (S.R.); : (C.B.); (M.B.A.)
| | | | - Melika Ben Ahmed
- Institut Pasteur de Tunis, Tunis BP 74-1002, Tunisia; (S.R.); : (C.B.); (M.B.A.)
| | - Noël Tordo
- Institut Pasteur de Guinée, Conakry BP 4416, Guinea; (H.S.); (N.T.)
| |
Collapse
|
7
|
Valerio TL, Anastácio R, da Silva SS, de Oliveira CC, Vidotti M. An overview of electrochemical biosensors used for COVID-19 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2164-2176. [PMID: 38536084 DOI: 10.1039/d3ay02042h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
This short review presents the latest advances in the field of electrochemical biosensors, focusing particularly on impedimetric biosensors for the direct measurement of analytes. As a source of study we have chosen to describe these advances in the latest global health crisis originated from the COVID-19 pandemic, initiated by the SARS-CoV-2 virus. In this period, the necessity for swift and precise detection methods has grown rapidly due to an imminent need for the development of an analytical method to identify and isolate infected patients as an attempt to control the spreading of the disease. Traditional approaches such as the enzyme-linked immunosorbent assay (ELISA), were extensively used during the SARS-CoV-2 pandemic, but their drawbacks, including slow response time, became evident. In this context, the potential of electrochemical biosensors as an alternative for COVID-19 detection was emphasized. These biosensors merge electrochemical technology with bioreceptors, offering benefits such as rapidity, accuracy, portability, and real-time result provision. Additionally, we present instances of electrochemical biosensors modified with conductive polymers, eliminating the necessity for an electrochemical probe. The adaptability of the developed materials and devices facilitated the prompt production of electrochemical biosensors during the pandemic, creating opportunities for broader applications in infectious disease diagnosis.
Collapse
Affiliation(s)
- Tatiana Lima Valerio
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| | - Raquel Anastácio
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| | - Stella Schuster da Silva
- Laboratório de Células Inflamatórias e Neoplásicas (LCIN) e Laboratório de Investigação de Polissacarídeos Sulfatados (LIPS), Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Carolina Camargo de Oliveira
- Laboratório de Células Inflamatórias e Neoplásicas (LCIN) e Laboratório de Investigação de Polissacarídeos Sulfatados (LIPS), Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Marcio Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
8
|
Li Y, Luo L, Kong Y, Li Y, Wang Q, Wang M, Li Y, Davenport A, Li B. Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosens Bioelectron 2024; 249:116018. [PMID: 38232451 DOI: 10.1016/j.bios.2024.116018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Molecularly imprinted polymers (MIPs) are the equivalent of natural antibodies and have been widely used as synthetic receptors for the detection of disease biomarkers. Benefiting from their excellent chemical and physical stability, low-cost, relative ease of production, reusability, and high selectivity, MIP-based electrochemical sensors have attracted great interest in disease diagnosis and demonstrated superiority over other biosensing techniques. Here we compare various types of MIP-based electrochemical sensors with different working principles. We then evaluate the state-of-the-art achievements of the MIP-based electrochemical sensors for the detection of different biomarkers, including nucleic acids, proteins, saccharides, lipids, and other small molecules. The limitations, which prevent its successful translation into practical clinical settings, are outlined together with the potential solutions. At the end, we share our vision of the evolution of MIP-based electrochemical sensors with an outlook on the future of this promising biosensing technology.
Collapse
Affiliation(s)
- Yixuan Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Liuxiong Luo
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Yingqi Kong
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Yujia Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Quansheng Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, 150036, China
| | - Mingqing Wang
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Ying Li
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, WC1N 3BG, UK
| | - Andrew Davenport
- Department of Renal Medicine, University College London, London, NW3 2PF, UK
| | - Bing Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
9
|
Thawany P, Khanna A, Tiwari UK, Deep A. L-cysteine/MoS 2 modified robust surface plasmon resonance optical fiber sensor for sensing of Ferritin and IgG. Sci Rep 2023; 13:5297. [PMID: 37002282 PMCID: PMC10064954 DOI: 10.1038/s41598-023-31152-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
L-cysteine conjugated molybdenum disulphide (MoS2) nanosheets have been covalently attached to a gold coated surface plasmon resonance (SPR) optical fiber to prepare a robust and stable sensor. Owing to the multifunctionality of the deposited nanosheet conjugate, the antibodies are also covalently conjugated in the subsequent step to realize the design of a SPR optical fiber biosensor for the two important bioanalytes namely, Ferritin and Immunoglobin G (IgG). The different stages of the biosensor preparation have been characterized and verified with microscopic and spectroscopic techniques. A uniform and stable deposition of the L-cysteine/MoS2 nanosheets has allowed the biosensor to be reused for multiple times. Unlike the peeling-off of the MoS2 coatings from the gold layer reported previously in the case of physically adsorbed nanomaterial, the herein adopted strategy addresses this critical concern. It has also been possible to use the single SPR fiber for both Ferritin and IgG bioassay experiments by regenerating the sensor and immobilizing two different antibodies in separate steps. For ferritin, the biosensor has delivered a linear sensor response (SPR wavelength shifts) in the concentration range of 50-400 ng/mL, while IgG has been successfully sensed from 50 to 250 µg/mL. The limit of detection for Ferritin and IgG analysis have been estimated to be 12 ng/mL and 7.2 µg/mL, respectively. The biosensors have also been verified for their specificity for the targeted molecule only. A uniform and stable deposition of the nanomaterial conjugate, reproducibility, regeneration capacity, a good sensitivity, and the specificity can be highlighted as some of key features of the L-cysteine/MoS2 optical fiber biosensor. The system can be advocated as a useful biosensor setup for the sensitive biosensing of Ferritin and IgG.
Collapse
Affiliation(s)
- Priyanka Thawany
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh, 160030, India
| | - Ashima Khanna
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh, 160030, India
| | - Umesh K Tiwari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh, 160030, India.
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh, 160030, India.
- Institute of Nano Science and Technology, Sector-81, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
10
|
Rodríguez MC, Ceaglio N, Gugliotta A, Villarraza J, Garay E, Fuselli A, Gastaldi V, Tardivo MB, Antuña S, Fontana D, Prieto C. Design and optimization of an IgG human ELISA assay reactive to recombinant RBD SARS-CoV-2 protein. Appl Microbiol Biotechnol 2022; 106:7933-7948. [DOI: 10.1007/s00253-022-12254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
11
|
Rando HM, Brueffer C, Lordan R, Dattoli AA, Manheim D, Meyer JG, Mundo AI, Perrin D, Mai D, Wellhausen N, Gitter A, Greene CS. Molecular and Serologic Diagnostic Technologies for SARS-CoV-2. ARXIV 2022:arXiv:2204.12598v2. [PMID: 35547240 PMCID: PMC9094103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 04/28/2022] [Indexed: 01/09/2023]
Abstract
The COVID-19 pandemic has presented many challenges that have spurred biotechnological research to address specific problems. Diagnostics is one area where biotechnology has been critical. Diagnostic tests play a vital role in managing a viral threat by facilitating the detection of infected and/or recovered individuals. From the perspective of what information is provided, these tests fall into two major categories, molecular and serological. Molecular diagnostic techniques assay whether a virus is present in a biological sample, thus making it possible to identify individuals who are currently infected. Additionally, when the immune system is exposed to a virus, it responds by producing antibodies specific to the virus. Serological tests make it possible to identify individuals who have mounted an immune response to a virus of interest and therefore facilitate the identification of individuals who have previously encountered the virus. These two categories of tests provide different perspectives valuable to understanding the spread of SARS-CoV-2. Within these categories, different biotechnological approaches offer specific advantages and disadvantages. Here we review the categories of tests developed for the detection of the SARS-CoV-2 virus or antibodies against SARS-CoV-2 and discuss the role of diagnostics in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552); the National Human Genome Research Institute (R01 HG010067)
| | | | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Anna Ada Dattoli
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Manheim
- 1DaySooner, Delaware, United States of America; Risk and Health Communication Research Center, School of Public Health, University of Haifa, Haifa, Israel; Technion, Israel Institute of Technology, Haifa, Israel · Funded by Center for Effective Altruism, Long Term Future Fund
| | - Jesse G Meyer
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America · Funded by National Institute of General Medical Sciences (R35 GM142502)
| | - Ariel I Mundo
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Dimitri Perrin
- School of Computer Science, Queensland University of Technology, Brisbane, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, Australia
| | - David Mai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, and Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Morgridge Institute for Research, Madison, Wisconsin, United States of America · Funded by John W. and Jeanne M. Rowe Center for Research in Virology
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552); the National Human Genome Research Institute (R01 HG010067)
| |
Collapse
|
12
|
Conzentino MS, Gonçalves ACA, Paula NM, Rego FGM, Zanette DL, Aoki MN, Nardin JM, Huergo LF. A magnetic bead immunoassay to detect high affinity human IgG reactive to SARS-CoV-2 Spike S1 RBD produced in Escherichia coli. Braz J Microbiol 2022; 53:1263-1269. [PMID: 35426068 PMCID: PMC9009495 DOI: 10.1007/s42770-022-00753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
Immunological assays to detect SARS-CoV-2 Spike Receptor Binding Domain (RBD) antigen seroconversion in humans are important tools to monitor the levels of protecting antibodies in the population in response to infection and/or immunization. Here we describe a simple, low cost, and high throughput Ni2+ magnetic bead immunoassay to detect human IgG reactive to Spike S1 RBD Receptor Binding Domain produced in Escherichia coli. A 6xHis-tagged Spike S1 RBD was expressed in E. coli and purified by affinity chromatography. The protein was mobilized on the surface of Ni2+ magnetic beads and used to investigate the presence of reactive IgG in the serum obtained from pre-pandemic and COVID-19 confirmed cases. The method was validated with a cohort of 290 samples and an area under the receiver operating characteristic curve of 0.94 was obtained. The method was operated with > 82% sensitivity at 98% specificity and was also able to track human IgG raised in response to vaccination with Comirnaty at > 85% sensitivity. The IgG signal obtained with the described method was well-correlated with the signal obtained when pre fusion Spike produced in HEK cell lines was used as antigen. This novel low-cost and high throughput immunoassay may act as an important tool to investigate protecting IgG antibodies against SARS-CoV-2 in the human population.
Collapse
Affiliation(s)
- Marcelo S Conzentino
- Setor Litoral, UFPR Matinhos, Rua Jaguariaíva, Tv. Caiobá, 512, Matinhos, 83260-000, PR, Brazil
| | - Ana C A Gonçalves
- Setor Litoral, UFPR Matinhos, Rua Jaguariaíva, Tv. Caiobá, 512, Matinhos, 83260-000, PR, Brazil
| | - Nigella M Paula
- Setor Litoral, UFPR Matinhos, Rua Jaguariaíva, Tv. Caiobá, 512, Matinhos, 83260-000, PR, Brazil
| | - Fabiane G M Rego
- Post-Graduation Program in Pharmaceutical Sciences, UFPR, Curitiba, PR, Brazil
| | | | - Mateus N Aoki
- Instituto Carlos Chagas - FioCruz, Curitiba, PR, Brazil
| | | | - Luciano Fernandes Huergo
- Setor Litoral, UFPR Matinhos, Rua Jaguariaíva, Tv. Caiobá, 512, Matinhos, 83260-000, PR, Brazil.
| |
Collapse
|
13
|
Focosi D, Franchini M, Maggi F. Modified Hemagglutination Tests for COVID-19 Serology in Resource-Poor Settings: Ready for Prime-Time? Vaccines (Basel) 2022; 10:406. [PMID: 35335038 PMCID: PMC8953758 DOI: 10.3390/vaccines10030406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
During the ongoing COVID-19 pandemic, serology has suffered several manufacturing and budget bottlenecks. Kode technology exposes exogenous antigens on the surface of cells; in the case of red blood cells, modified cells are called kodecytes, making antibody-antigen reactions detectable by the old-fashioned hemagglutination test. In this commentary, we review evidence supporting the utility of SARS-CoV-2 Spike kodecytes for clinical diagnostic purposes and serosurveys in resource-poor settings.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
14
|
Hussein NA, Ali EAA, El-Hakim AE, Tabll AA, El-Shershaby A, Salamony A, Shaheen MNF, Ali I, Elshall M, Shahein YE. Assessment of specific human antibodies against SARS-CoV-2 receptor binding domain by rapid in-house ELISA. Hum Antibodies 2022; 30:105-115. [PMID: 35431235 DOI: 10.3233/hab-220003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The recently emerged SARS-CoV-2 caused a global pandemic since the last two years. The urgent need to control the spread of the virus and rapid application of the suitable health measures raised the importance of available, rapid, and accurate diagnostic approaches. OBJECTIVE The purpose of this study is to describe a rapid in-house optimized ELISA based on the expression of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in a prokaryotic system. METHODS We show the expression of the 30 kDa recombinant SARS-CoV-2 RBD-6×His in four different E. coli strains (at 28∘C using 0.25mM IPTG) including the expression strain E. coli BL21 (DE3) Rosetta Gami. SARS-CoV-2 rRBD-6×His protein was purified, refolded, and used as an antigen coat to assess antibody response in human sera against SARS-CoV-2 infection. RESULTS The assessment was carried out using a total of 155 human sero-positive and negative SARS-CoV-2 antibodies. The ELISA showed 69.5% sensitivity, 88% specificity, 78.5% agreement, a positive predictive value (PPV) of 92.3%, and a negative predictive value of 56.5%. Moreover, the optical density (OD) values of positive samples significantly correlated with the commercial kit titers. CONCLUSIONS Specific human antibodies against SARS-CoV-2 spike protein were detected by rapid in-house ELISA in sera of human COVID-19-infected patients. The availability of this in-house ELISA protocol would be valuable for various diagnostic and epidemiological applications, particularly in developing countries. Future studies are planned for the use of the generated SARS-CoV-2 rRBD-6×His protein in vaccine development and other diagnostic applications.
Collapse
Affiliation(s)
- Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Esraa A A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Amr E El-Hakim
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
- Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| | - Asmaa El-Shershaby
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Azza Salamony
- Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| | - Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ibrahim Ali
- Parasitology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mahmoud Elshall
- Parasitology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|