1
|
Vuilleumier N, Pagano S, Lorthe E, Lamour J, Nehme M, Juillard C, Barbe R, Posfay-Barbe KM, Guessous I, Stringhini S, L’Huillier AG. Association between SARS-CoV-2 infection and anti-apolipoprotein A-1 antibody in children. Front Immunol 2025; 16:1521299. [PMID: 40079006 PMCID: PMC11897246 DOI: 10.3389/fimmu.2025.1521299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Background and aims Autoantibodies against apolipoprotein A-1 (AAA1) are elicited by SARS-CoV-2 infection and predict COVID-19 symptoms persistence at one year in adults, but whether this applies to children is unknown. We studied the association of SARS-CoV-2 exposure with AAA1 prevalence in children and the association of AAA1 seropositivity with symptom persistence. Methods Anti-SARS-CoV-2 and AAA1 serologies were examined in 1031 participants aged 6 months to 17 years old from the prospective SEROCOV-KIDS cohort and recruited between 12.2021 and 02.2022. Four SARS-CoV-2 serology-based groups were defined: "Infected-unvaccinated (I+/V-)", "Uninfected-vaccinated (I-/V+)", "Infected-Vaccinated (I+/V+)", and "Naïve (I-/V-)". Reported outcomes were collected using online questionnaires. Associations with study endpoints were assessed using logistic regression. Results Overall, seropositivity rates for anti-RBD, anti-N, and AAA1 were 71% (736/1031), 55% (568/1031), and 5.8% (60/1031), respectively. AAA1 showed an inverse association with age but not with any other characteristics. The I+/V- group displayed higher median AAA1 levels and seropositivity (7.9%) compared to the other groups (p ≤ 0.011), translating into a 2-fold increased AAA1 seroconversion risk (Odds ratio [OR]: 2.11, [95% Confidence Interval (CI)]: 1.22-3.65; p=0.008), unchanged after adjustment for age and sex. AAA1 seropositivity was independently associated with a 2-fold odds of symptoms persistence at ≥ 4 weeks (p ≤ 0.03) in the entire dataset and infected individuals, but not ≥ 12 weeks. Conclusions Despite the limitations of the study (cross-sectional design, patient-related outcomes using validated questionnaires), the results indicate that SARS-CoV-2 infection could elicit an AAA1 response in children, which could be independently associated with short-time symptoms persistence.
Collapse
Affiliation(s)
- Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Elsa Lorthe
- Unit of Population Epidemiology, Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
- Université Paris Cité, Inserm, National Research Institute for Agriculture, Food and the Environment, Centre for Research in Epidemiology and Statistics Paris, Paris, France
- Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Julien Lamour
- Unit of Population Epidemiology, Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Mayssam Nehme
- Unit of Population Epidemiology, Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Catherine Juillard
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
| | - Remy Barbe
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva, Switzerland
- Division of Child and Adolescent Psychiatry, Department of Woman, Child, and Adolescent Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Klara M. Posfay-Barbe
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva, Switzerland
- Division of General Pediatrics, Department of Women, Child and Adolescent Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Idris Guessous
- Unit of Population Epidemiology, Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Health and Community Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Silvia Stringhini
- Unit of Population Epidemiology, Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Health and Community Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- School of Population and Public Health and Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Arnaud G. L’Huillier
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva, Switzerland
- Pediatric Infectious Diseases Unit, Department of Women, Child and Adolescent Health, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
2
|
Rani A, Stadler JT, Marsche G. HDL-based therapeutics: A promising frontier in combating viral and bacterial infections. Pharmacol Ther 2024; 260:108684. [PMID: 38964560 DOI: 10.1016/j.pharmthera.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
3
|
Frias MA, Pagano S, Bararpour N, Sidibé J, Kamau F, Fétaud-Lapierre V, Hudson P, Thomas A, Lecour S, Strijdom H, Vuilleumier N. People living with HIV display increased anti-apolipoprotein A1 auto-antibodies, inflammation, and kynurenine metabolites: a case-control study. Front Cardiovasc Med 2024; 11:1343361. [PMID: 38414919 PMCID: PMC10896987 DOI: 10.3389/fcvm.2024.1343361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Objective This study aimed to study the relationship between auto-antibodies against apolipoprotein A1 (anti-apoA1 IgG), human immunodeficiency virus (HIV) infection, anti-retroviral therapy (ART), and the tryptophan pathways in HIV-related cardiovascular disease. Design This case-control study conducted in South Africa consisted of control volunteers (n = 50), people living with HIV (PLWH) on ART (n = 50), and untreated PLWH (n = 44). Cardiovascular risk scores were determined, vascular measures were performed, and an extensive biochemical characterisation (routine, metabolomic, and inflammatory systemic profiles) was performed. Methods Anti-apoA1 IgG levels were assessed by an in-house ELISA. Inflammatory biomarkers were measured with the Meso Scale Discovery® platform, and kynurenine pathway metabolites were assessed using targeted metabolomic profiling conducted by liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS). Results Cardiovascular risk scores and vascular measures exhibited similarities across the three groups, while important differences were observed in systemic inflammatory and tryptophan pathways. Anti-apoA1 IgG seropositivity rates were 15%, 40%, and 70% in control volunteers, PLWH ART-treated, and PLWH ART-naïve, respectively. Circulating anti-apoA1 IgG levels were significantly negatively associated with CD4+ cell counts and positively associated with viremia and pro-inflammatory biomarkers (IFNγ, TNFα, MIPα, ICAM-1, VCAM-1). While circulating anti-apoA1 IgG levels were associated with increased levels of kynurenine in both control volunteers and PLWH, the kynurenine/tryptophan ratio was significantly increased in PLWH ART-treated. Conclusion HIV infection increases the humoral response against apoA1, which is associated with established HIV severity criteria and kynurenine pathway activation.
Collapse
Affiliation(s)
- Miguel A. Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nasim Bararpour
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Genetics, Stanford University, Stanford, CA, United States
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, United States
| | - Jonathan Sidibé
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Festus Kamau
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Vanessa Fétaud-Lapierre
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Hudson
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Aurélien Thomas
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Sandrine Lecour
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hans Strijdom
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
L'Huillier AG, Pagano S, Baggio S, Meyer B, Andrey DO, Nehme M, Guessous I, Eberhardt CS, Huttner A, Posfay-Barbe KM, Yerly S, Siegrist CA, Kaiser L, Vuilleumier N. Autoantibodies against apolipoprotein A-1 after COVID-19 predict symptoms persistence. Eur J Clin Invest 2022; 52:e13818. [PMID: 35598178 PMCID: PMC9348059 DOI: 10.1111/eci.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND SARS-CoV-2 infection triggers different auto-antibodies, including anti-apolipoprotein A-1 IgGs (AAA1), which could be of concern as mediators of persistent symptoms. We determined the kinetics of AAA1 response over after COVID-19 and the impact of AAA1 on the inflammatory response and symptoms persistence. METHODS All serologies were assessed at one, three, six and twelve months in 193 hospital employees with COVID-19. ROC curve analyses and logistic regression models (LRM) were used to determine the prognostic accuracy of AAA1 and their association with patient-reported COVID-19 symptoms persistence at 12 months. Interferon (IFN)-α and-γ production by AAA1-stimulated human monocyte-derived macrophages (HMDM) was assessed in vitro. RESULTS AAA1 seropositivity was 93% at one month and declined to 15% at 12 months after COVID-19. Persistent symptoms at 12 months were observed in 45.1% of participants, with a predominance of neurological (28.5%), followed by general (15%) and respiratory symptoms (9.3%). Over time, strength of correlations between AAA1 and anti-SARS-COV2 serologies decreased, but remained significant. From the 3rd month on, AAA1 levels predicted persistent respiratory symptoms (area under the curves 0.72-0.74; p < 0.001), independently of disease severity, age and gender (adjusted odds ratios 4.81-4.94; p = 0.02), while anti-SARS-CoV-2 serologies did not. AAA1 increased IFN-α production by HMDMs (p = 0.03), without affecting the IFN-γ response. CONCLUSION COVID-19 induces a marked though transient AAA1 response, independently predicting one-year persistence of respiratory symptoms. By increasing IFN-α response, AAA1 may contribute to persistent symptoms. If and how AAA1 levels assessment could be of use for COVID-19 risk stratification remains to be determined.
Collapse
Affiliation(s)
- Arnaud G L'Huillier
- Department of Woman, Pediatric Infectious Diseases Unit, Child and Adolescent Medicine, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Stephanie Baggio
- Division of Prison Health, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.,Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Diego O Andrey
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Mayssam Nehme
- Division of Primary Care Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Idris Guessous
- Division of Primary Care Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Christiane S Eberhardt
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Angela Huttner
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Klara M Posfay-Barbe
- Department of Woman, Pediatric Infectious Diseases Unit, Child and Adolescent Medicine, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Sabine Yerly
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| |
Collapse
|
5
|
Pagano S, Yerly S, Meyer B, Juillard C, Suh N, Le Terrier C, Daguer JP, Farrera-Soler L, Barluenga S, Piumatti G, Hartley O, Lemaitre B, Eberhardt CS, Siegrist CA, Eckerle I, Stringhini S, Guessous I, Kaiser L, Pugin J, Winssinger N, Vuilleumier N. SARS-CoV-2 infection as a trigger of humoral response against apolipoprotein A-1. Eur J Clin Invest 2021; 51:e13661. [PMID: 34324704 PMCID: PMC8420318 DOI: 10.1111/eci.13661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Unravelling autoimmune targets triggered by SARS-CoV-2 infection may provide crucial insights into the physiopathology of the disease and foster the development of potential therapeutic candidate targets and prognostic tools. We aimed at determining (a) the association between anti-SARS-CoV-2 and anti-apoA-1 humoral response and (b) the degree of linear homology between SARS-CoV-2, apoA-1 and Toll-like receptor 2 (TLR2) epitopes. DESIGN Bioinformatics modelling coupled with mimic peptides engineering and competition experiments were used to assess epitopes sequence homologies. Anti-SARS-CoV-2 and anti-apoA-1 IgG as well as cytokines were assessed by immunoassays on a case-control (n = 101), an intensive care unit (ICU; n = 126) and a general population cohort (n = 663) with available samples in the pre and post-pandemic period. RESULTS Using bioinformatics modelling, linear sequence homologies between apoA-1, TLR2 and Spike epitopes were identified but without experimental evidence of cross-reactivity. Overall, anti-apoA-1 IgG levels were higher in COVID-19 patients or anti-SARS-CoV-2 seropositive individuals than in healthy donors or anti-SARS-CoV-2 seronegative individuals (P < .0001). Significant and similar associations were noted between anti-apoA-1, anti-SARS-CoV-2 IgG, cytokines and lipid profile. In ICU patients, anti-SARS-CoV-2 and anti-apoA-1 seroconversion rates displayed similar 7-day kinetics, reaching 82% for anti-apoA-1 seropositivity. In the general population, SARS-CoV-2-exposed individuals displayed higher anti-apoA-1 IgG seropositivity rates than nonexposed ones (34% vs 16.8%; P = .004). CONCLUSION COVID-19 induces a marked humoral response against the major protein of high-density lipoproteins. As a correlate of poorer prognosis in other clinical settings, such autoimmunity signatures may relate to long-term COVID-19 prognosis assessment and warrant further scrutiny in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Sabine Yerly
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Catherine Juillard
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Noémie Suh
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Christophe Le Terrier
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Jean-Pierre Daguer
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Lluc Farrera-Soler
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Sofia Barluenga
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Giovanni Piumatti
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of BioMedicine, Università della Svizzera Italiana, Lugano, Switzerland
| | - Oliver Hartley
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Switzerland
| | - Barbara Lemaitre
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Christiane S Eberhardt
- Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Isabella Eckerle
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Silvia Stringhini
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva, Switzerland
| | - Idris Guessous
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Jerome Pugin
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Nicolas Winssinger
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| |
Collapse
|
6
|
Barik SK, Mohanty KK, Mohanty AK, Rawat P, Gopal G, Bisht D, Patil SA, Singh R, Sharma D, Tripathy SP, Tandon R, Singh TP, Jena S. Identification and differential expression of serotransferrin and apolipoprotein A-I in the plasma of HIV-1 patients treated with first-line antiretroviral therapy. BMC Infect Dis 2020; 20:898. [PMID: 33246440 PMCID: PMC7694411 DOI: 10.1186/s12879-020-05610-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background Plasma proteins are known to interfere the drug metabolism during therapy. As limited information is available regarding the role of plasma proteins in HIV drug resistance during ART in HIV/AIDS patients, the present study aimed to identify and characterize the differentially expressed plasma proteins in the drug resistant and drug respondent groups of HIV-1 infected patients with > 6 years of first line ART. Methods Four-drug resistant (treatment failure) and four-drug respondent (treatment responder) patients were selected for plasma proteomic analysis based on viral load and drug resistance associated mutations from a cohort study designed on the first line ART patients who were enrolled in the antiretroviral therapy center, Sarojini Naidu Medical College, Agra, India from December 2009 to November 2016. After depleting high abundant proteins, plasma proteins were resolved using two-dimensional gel electrophoresis on IPG strips, pH range of 3–10. Spots were selected in the gel based on the density of staining which was common in the drug resistant and drug respondent groups separately. The fold change of each spot was calculated using image-J. Each protein spot was identified using the matrix assisted laser desorption/ionization-time of flight/time of flight (MALDI-TOF/TOF) after tryptic digestion. Peptide peaks were identified through flex analysis version 3.3, and a search against a protein data base using the internal Mascot. Gene ontology study was completed through STRING v.11 and Panther15.0. Results Out of eight spots from 2D gel samples analyzed by MALDITOF/TOF, two proteins were found to have significant score (> 56) after Flex analysis. These two proteins were identified to be apolipoprotein A1 and serotransferrin. The fold change expression of these two proteins were analyzed in drug resistant and drug respondent group. Apolipoprotein-A1 and serotransferrin were observed to be expressed 1.76 and 1.13-fold more respectively in drug respondent group compared to drug resistant group. The gene ontology analysis revealed the involvement of these two proteins in various important physiological processes. Conclusion Apolipoprotein A-I and serotransferrin were found to be expressed more in drug respondent group compared to drug resistant group. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-020-05610-6.
Collapse
Affiliation(s)
- Sushanta Kumar Barik
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India
| | - Keshar Kunja Mohanty
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India.
| | | | - Preeti Rawat
- National Dairy Research Institute, ICAR, Karnal, 132001, India
| | - G Gopal
- Cancer Institute, Chennai, 600020, India
| | - Deepa Bisht
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India
| | - Shripad A Patil
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India
| | - Rananjay Singh
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India
| | - Devesh Sharma
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India
| | | | - Rekha Tandon
- Sarojini Naidu Medical College, Agra, 282002, India
| | | | - Srikanta Jena
- Ravenshaw University, Cuttack, Odisha, 753003, India
| |
Collapse
|
7
|
Satta N, Weppe R, Pagano S, Frias M, Juillard C, Vuilleumier N. Auto-antibodies against apolipoprotein A-1 block cancer cells proliferation and induce apoptosis. Oncotarget 2020; 11:4266-4280. [PMID: 33245719 PMCID: PMC7679029 DOI: 10.18632/oncotarget.27814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022] Open
Abstract
Auto-antibodies against apoA-1 (anti-apoA-1 IgGs) have been identified as important actors of atherosclerosis development through pro-inflammatory and pro-atherogenic properties and to also induce apoptosis in tumoral neuronal and lymphocyte derived cell lines through unknown mechanisms. The purpose of this study was to explore the cellular pathways involved in tumoral cell survival modulated by anti-apoA-1 antibodies. We observed that anti-apoA-1 antibodies induce growth arrest (in G2/M phase) and cell apoptosis through caspase 3 activation, accompanied by a selective p53 phosphorylation on serine 15. RNA sequencing indicated that anti-apoA-1 IgGs affect the expression of more than 950 genes belonging to five major groups of genes and respectively involved in i) cell proliferation inhibition, ii) p53 stabilisation and regulation, iii) apoptosis regulation, iv) inflammation regulation, and v) oxidative stress. In conclusion, anti-apoA-1 antibodies seem to have a role in blocking tumoral cell proliferation and survival, by activating a major tumor suppressor protein and by modulating the inflammatory and oxidative stress response. Further investigations are needed to explore a possible anti-cancer therapeutic approach of these antibodies in very specific and circumscribed conditions.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Rémy Weppe
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Miguel Frias
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Catherine Juillard
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| |
Collapse
|
8
|
Yu M, Kim SY, Morin EE, Schwendeman A. Reply. Arthritis Rheumatol 2020; 72:1234-1236. [PMID: 32103638 DOI: 10.1002/art.41237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Minzhi Yu
- University of Michigan, Ann Arbor, MI
| | | | | | | |
Collapse
|
9
|
Vuilleumier N. Anti‐Apolipoprotein A‐I in Systemic Lupus Erythematosus: Comment on the Article by Kim et al. Arthritis Rheumatol 2020; 72:1233-1234. [DOI: 10.1002/art.41235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Satta N, Frias MA, Vuilleumier N, Pagano S. Humoral Immunity Against HDL Particle: A New Perspective in Cardiovascular Diseases? Curr Pharm Des 2020; 25:3128-3146. [PMID: 31470782 DOI: 10.2174/1381612825666190830164917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Autoimmune diseases are closely associated with cardiovascular diseases (CVD). Over the last decades, the comprehension of atherosclerosis, the principal initiator of CVD, evolved from a lipidcentered disease to a predominant inflammatory and immune response-driven disease displaying features of autoimmunity against a broad range of auto-antigens, including lipoproteins. Among them, high density lipoproteins (HDL) are important actors of cholesterol transport and bear several anti-atherogenic properties, raising a growing interest as therapeutic targets to decrease atherosclerosis and CVD burden, with nevertheless rather disappointing results so far. Reflecting HDL composition complexity, autoimmune responses and autoantibodies against various HDL components have been reported. RESULTS In this review, we addressed the important complexity of humoral autoimmunity towards HDL and particularly how this autoimmune response could help improving our understanding of HDL biological implication in atherosclerosis and CVD. We also discussed several issues related to specific HDL autoantibody subclasses characteristics, including etiology, prognosis and pathological mechanisms according to Rose criteria. CONCLUSION Finally, we addressed the possible clinical value of using these antibodies not only as potential biomarkers of atherogenesis and CVD, but also as a factor potentially mitigating the benefit of HDL-raising therapies.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Miguel A Frias
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
11
|
Song A, Li Z, Luo Z, Lu X, Wang R, Liu L, Xia W, Wan Z, Zhang T, Su B, Jiang W, Wu H. Effects of Early and Delayed Antiretroviral Therapy on Plasma Anti-CD4 Autoreactive IgG and Its Association With CD4 + T-Cell Recovery in Acute HIV-Infected Individuals. Front Pharmacol 2020; 11:449. [PMID: 32322209 PMCID: PMC7157619 DOI: 10.3389/fphar.2020.00449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Plasma levels of anti-CD4 autoantibodies are increased in chronically HIV-infected patients and inversely correlated with CD4+ T-cell recovery under viral-suppressive antiretroviral therapy (ART). However, it remains unknown the effect of early ART on plasma anti-CD4 autoantibody levels in acute HIV infection (AHI). Methods In this cohort study, we evaluated the effect of early and delayed initiation of ART on plasma anti-CD4 autoantibody levels in AHI individuals (n = 90). Blood samples were collected from men who had sex with men (MSM) with acute infection, pre-ART, and 4, 24, 48, and 96 weeks after ART. Plasma levels of anti-CD4 immunoglobulin G (IgG) were measured by ELISA. Results We found that plasma anti-CD4 IgG levels were significantly increased in AHI individuals compared with healthy controls (HCs) prior to ART. Notably, early ART decreased plasma anti-CD4 IgG to the levels similar to HCs starting at 24 weeks (W). However, delayed initiation of ART did not significantly reduce plasma anti-CD4 IgG levels in AHI individuals. Moreover, the peripheral CD4+ T-cell counts were inversely correlated with plasma anti-CD4 IgG levels in AHI individuals at 48 and 96 W after early ART but not after delayed ART. Conclusions Taken together, our findings demonstrate for the first time that early ART, but not delayed initiation of ART, is effective in influencing anti-CD4 autoantibody production and recovering CD4+ T-cell counts in AHI individuals.
Collapse
Affiliation(s)
- Aixin Song
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC, United States
| | - Xiaofan Lu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Rui Wang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Lifeng Liu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Wei Xia
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Zhuang Wan
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC, United States
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| |
Collapse
|
12
|
Non-Linear Relationship between Anti-Apolipoprotein A-1 IgGs and Cardiovascular Outcomes in Patients with Acute Coronary Syndromes. J Clin Med 2019; 8:jcm8071002. [PMID: 31324073 PMCID: PMC6679072 DOI: 10.3390/jcm8071002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Autoantibodies against apolipoprotein A-I (anti-apoA-I IgGs) are prevalent in atherosclerosis-related conditions. It remains elusive whether they improve the prognostic accuracy of the Global Registry of Acute Coronary Events (GRACE) score 2.0 (GS) in acute coronary syndromes (ACS). In this prospective multicenter registry, 1713 ACS patients were included and followed for 1 year. The primary endpoint (major adverse cardiovascular events (MACE)) was defined as the composite of myocardial infarction, stroke (including transient ischemic attack), or cardiovascular (CV) death with individual events independently adjudicated. Plasma levels of anti-apoA-I IgGs upon study inclusion were assessed using ELISA. The association between anti-apoA-I IgGs and incident MACE was assessed using Cox models with splines and C-statistics. One-year MACE incidence was 8.4% (144/1713). Anti-apoA-I IgG levels were associated with MACE with a non-linear relationship (p = 0.01), which remained unchanged after adjusting for the GS (p = 0.04). The hazard increased progressively across the two first anti-apoA-I IgG quartiles before decreasing thereafter. Anti-apoA-I IgGs marginally improved the prognostic accuracy of the GS (c-statistics increased from 0.68 to 0.70). In this multicenter study, anti-apoA-I IgGs were predictive of incident MACE in ACS independently of the GS but in a nonlinear manner. The practical implications of these findings remain to be defined.
Collapse
|
13
|
Gencer B, Pagano S, Vuilleumier N, Satta N, Delhumeau-Cartier C, Meier C, Bavamian S, Montecucco F, Mach F, Calmy A. Clinical, behavioral and biomarker predictors of PCSK9 levels in HIV-infected patients naïve of statin therapy: A cross-sectional analysis from the Swiss HIV cohort. Atherosclerosis 2019; 284:253-259. [PMID: 30827714 DOI: 10.1016/j.atherosclerosis.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/06/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Better characterization of Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) profile is currently needed to tailor appropriate lipid-lowering strategies in HIV patients. METHODS HIV-infected individuals aged ≥ 40 years and naive of statin therapy included in the Swiss HIV cohort study were screened for PCSK9 levels with a routine blood sample collection in 2014 at the Geneva University Hospitals. An exploratory linear regression model was built including clinical (age, sex, ethnicity, cardiovascular risk factors, body mass index, low CD4 defined as ≤200 cells/μl, leucocytes, lymphocytes, platelet, antiretroviral therapy), behavioral (tobacco and marijuana smoking, alcohol use and physical activity) and biomarker (CRP, TNF-α, IL-8, Il-10 and MCP-1) to investigate association with continuous PCSK9 levels. RESULTS We studied 239 HIV-infected individuals who met inclusion criteria and available PCSK9 levels with a mean age of 49 years. 35 subjects (14.6%) reported marijuana consumption, of whom 20 (57.1%) reported daily consumption and 15 (6.3%) occasional use. PCSK9 levels were correlated with low-density lipoprotein-cholesterol (LDL-C). Our exploratory model identified marijuana consumption (p=0.023) and low CD4 values (p=0.020) as significantly associated factors with higher PCSK9 levels. No association was found with Framingham risk score. Patients with marijuana consumption had significantly higher levels of PCSK9 with a dose-response effect (p < 0.001); the association persisted after adjustment for the calculated Framingham risk score (p=0.003) and additional adjustment for clinical variables (p=0.027). CONCLUSIONS In HIV-infected individuals naïve of statin treatment, marijuana consumption and low CD4 values are associated with higher PCSK9 levels independently of clinically relevant confounding factors.
Collapse
Affiliation(s)
- Baris Gencer
- Cardiology Division; Geneva University Hospitals, Switzerland.
| | - Sabrina Pagano
- Laboratory Medicine Division, Geneva University Hospitals, Switzerland
| | | | - Nathalie Satta
- Laboratory Medicine Division, Geneva University Hospitals, Switzerland
| | | | - Christoph Meier
- Chief Medical Officer, University Hospital Basel, Switzerland
| | - Sabine Bavamian
- Division of Infectious Diseases, HIV Unit, Geneva University Hospitals, Switzerland
| | - Fabrizio Montecucco
- First Clinical of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR),University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
| | - François Mach
- Cardiology Division; Geneva University Hospitals, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, HIV Unit, Geneva University Hospitals, Switzerland
| |
Collapse
|