1
|
Faustini SE, Hall A, Brown S, Roberts S, Hill H, Stamataki Z, Jenner MW, Owen RG, Pratt G, Cook G, Richter A, Drayson MT, Kaiser MF, Heaney JLJ. Immune responses to COVID-19 booster vaccinations in intensively anti-CD38 antibody treated patients with ultra-high-risk multiple myeloma: results from the Myeloma UK (MUK) nine OPTIMUM trial. Br J Haematol 2023; 201:845-850. [PMID: 36895158 DOI: 10.1111/bjh.18714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
Multiple myeloma (MM) and anti-MM therapy cause profound immunosuppression, leaving patients vulnerable to coronavirus disease 2019 (COVID-19) and other infections. We investigated anti-severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antibodies longitudinally in ultra-high-risk patients with MM receiving risk-adapted, intensive anti-CD38 combined therapy in the Myeloma UK (MUK) nine trial. Despite continuous intensive therapy, seroconversion was achieved in all patients, but required a greater number of vaccinations compared to healthy individuals, highlighting the importance of booster vaccinations in this population. Reassuringly, high antibody cross-reactivity was found with current variants of concern, prior to Omicron subvariant adapted boostering. Multiple booster vaccine doses can provide effective protection from COVID-19, even with intensive anti-CD38 therapy for high-risk MM.
Collapse
Affiliation(s)
- Sian E Faustini
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrew Hall
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Sarah Brown
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Sadie Roberts
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Harriet Hill
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Matthew W Jenner
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Roger G Owen
- The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Guy Pratt
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gordon Cook
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
- The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Alex Richter
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mark T Drayson
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Martin F Kaiser
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| | - Jennifer L J Heaney
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Xie Y, Tian X, Zhang X, Yao H, Wu N. Immune interference in effectiveness of influenza and COVID-19 vaccination. Front Immunol 2023; 14:1167214. [PMID: 37153582 PMCID: PMC10154574 DOI: 10.3389/fimmu.2023.1167214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Vaccines are known to function as the most effective interventional therapeutics for controlling infectious diseases, including polio, smallpox, rabies, tuberculosis, influenza and SARS-CoV-2. Smallpox has been eliminated completely and polio is almost extinct because of vaccines. Rabies vaccines and Bacille Calmette-Guérin (BCG) vaccines could effectively protect humans against respective infections. However, both influenza vaccines and COVID-19 vaccines are unable to eliminate these two infectious diseases of their highly variable antigenic sites in viral proteins. Vaccine effectiveness (VE) could be negatively influenced (i.e., interfered with) by immune imprinting of previous infections or vaccinations, and repeated vaccinations could interfere with VE against infections due to mismatch between vaccine strains and endemic viral strains. Moreover, VE could also be interfered with when more than one kind of vaccine is administrated concomitantly (i.e., co-administrated), suggesting that the VE could be modulated by the vaccine-induced immunity. In this review, we revisit the evidence that support the interfered VE result from immune imprinting or repeated vaccinations in influenza and COVID-19 vaccine, and the interference in co-administration of these two types of vaccines is also discussed. Regarding the development of next-generation COVID-19 vaccines, the researchers should focus on the induction of cross-reactive T-cell responses and naive B-cell responses to overcome negative effects from the immune system itself. The strategy of co-administrating influenza and COVID-19 vaccine needs to be considered more carefully and more clinical data is needed to verify this strategy to be safe and immunogenic.
Collapse
Affiliation(s)
- Yiwen Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xuebin Tian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xiaodi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| |
Collapse
|
3
|
Moore JS, Robertson LJ, Price R, Curry G, Farnan J, Black A, Nesbit MA, McLaughlin JA, Moore T. Evaluation of the performance of a lateral flow device for quantitative detection of anti-SARS-CoV-2 IgG. CLINICAL IMMUNOLOGY COMMUNICATIONS 2022; 2:130-135. [PMID: 38013966 PMCID: PMC9472806 DOI: 10.1016/j.clicom.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The AbC-19™ lateral flow immunoassay (LFIA) performance was evaluated on plasma samples from a SARS-CoV-2 vaccination cohort, WHO international standards for anti-SARS-CoV-2 IgG (human), individuals ≥2 weeks from infection of RT-PCR confirmed SARS-CoV-2 genetic variants, as well as microorganism serology. METHODS Pre-vaccination to three weeks post-booster samples were collected from a cohort of 111 patients (including clinically extremely vulnerable patients) from Northern Ireland. All patients received Oxford-AstraZeneca COVID-19 vaccination for the first and second dose, and Pfizer-BioNTech for the third (first booster). WHO international standards, 15 samples from 2 variants of concern (Delta and Omicron) and cross-reactivity with plasma samples from other microorganism infections were also assessed on AbC-19™. RESULTS All 80 (100%) participants sampled post-booster had high positive IgG responses, compared to 38/95 (40%) participants at 6 months post-first vaccination. WHO standard results correlated with information from corresponding biological data sheets, and antibodies to all genetic variants were detected by LFIA. No cross-reactivity was found with exception of one (of five) Dengue virus samples. CONCLUSION These findings suggest BNT162b2 booster vaccination enhanced humoral immunity to SARS-CoV-2 from pre-booster levels, and that this antibody response was detectable by the LFIA. In combination with cross-reactivity, standards and genetic variant results would suggest LFIA may be a cost-effective measure to assess SARS-CoV-2 antibody status.
Collapse
Affiliation(s)
- J S Moore
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland, United Kingdom
- Integrated Diagnostics Laboratory, Ulster University, 3-5a Frederick St, Belfast, Northern Ireland, United Kingdom
| | - L J Robertson
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland, United Kingdom
- Integrated Diagnostics Laboratory, Ulster University, 3-5a Frederick St, Belfast, Northern Ireland, United Kingdom
| | - R Price
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland, United Kingdom
| | - G Curry
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland, United Kingdom
- Integrated Diagnostics Laboratory, Ulster University, 3-5a Frederick St, Belfast, Northern Ireland, United Kingdom
| | - J Farnan
- The Group Surgery, 257 North Queen Street, Belfast, Northern Ireland, United Kingdom
| | - A Black
- The Group Surgery, 257 North Queen Street, Belfast, Northern Ireland, United Kingdom
| | - M A Nesbit
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland, United Kingdom
- Integrated Diagnostics Laboratory, Ulster University, 3-5a Frederick St, Belfast, Northern Ireland, United Kingdom
| | - J A McLaughlin
- Integrated Diagnostics Laboratory, Ulster University, 3-5a Frederick St, Belfast, Northern Ireland, United Kingdom
- Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland, United Kingdom
| | - T Moore
- Biomedical Sciences Research Institute, Ulster University, Northern Ireland, United Kingdom
- Integrated Diagnostics Laboratory, Ulster University, 3-5a Frederick St, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
4
|
Halliday A, Long AE, Baum HE, Thomas AC, Shelley KL, Oliver E, Gupta K, Francis O, Williamson MK, Di Bartolo N, Randell MJ, Ben-Khoud Y, Kelland I, Mortimer G, Ball O, Plumptre C, Chandler K, Obst U, Secchi M, Piemonti L, Lampasona V, Smith J, Gregorova M, Knezevic L, Metz J, Barr R, Morales-Aza B, Oliver J, Collingwood L, Hitchings B, Ring S, Wooldridge L, Rivino L, Timpson N, McKernon J, Muir P, Hamilton F, Arnold D, Woolfson DN, Goenka A, Davidson AD, Toye AM, Berger I, Bailey M, Gillespie KM, Williams AJK, Finn A. Development and evaluation of low-volume tests to detect and characterize antibodies to SARS-CoV-2. Front Immunol 2022; 13:968317. [PMID: 36439154 PMCID: PMC9682908 DOI: 10.3389/fimmu.2022.968317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.
Collapse
Affiliation(s)
- Alice Halliday
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Anna E. Long
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Holly E. Baum
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Amy C. Thomas
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kathryn L. Shelley
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kapil Gupta
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | | | - Natalie Di Bartolo
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Matthew J. Randell
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Yassin Ben-Khoud
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ilana Kelland
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Georgina Mortimer
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Olivia Ball
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Charlie Plumptre
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kyla Chandler
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ulrike Obst
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Massimiliano Secchi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Joyce Smith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Michaela Gregorova
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Lea Knezevic
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Jane Metz
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Rachael Barr
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Begonia Morales-Aza
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Jennifer Oliver
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lucy Collingwood
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Benjamin Hitchings
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Susan Ring
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
| | - Linda Wooldridge
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Nicholas Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
| | - Jorgen McKernon
- National Infection Service, UK Health Security Agency, Southmead Hospital, Bristol, United Kingdom
| | - Peter Muir
- National Infection Service, UK Health Security Agency, Southmead Hospital, Bristol, United Kingdom
| | - Fergus Hamilton
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David Arnold
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
| | - Anu Goenka
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ashley M. Toye
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant Filton, Bristol, United Kingdom
| | - Imre Berger
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alistair J. K. Williams
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| |
Collapse
|
5
|
Dimeglio C, Trémeaux P, Herin F, Da-Silva I, Porcheron M, Martin-Blondel G, Gernigon C, Chapuy-Regaud S, Villars H, Izopet J. Post-vaccination SARS-CoV-2 antibody kinetics and protection duration against Omicron in elderly population. J Infect 2022; 85:702-769. [PMID: 36064047 PMCID: PMC9439860 DOI: 10.1016/j.jinf.2022.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Chloé Dimeglio
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France; INSERM UMR1291 - CNRS UMR5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), 31300 Toulouse, France.
| | - Pauline Trémeaux
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France; INSERM UMR1291 - CNRS UMR5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), 31300 Toulouse, France
| | - Fabrice Herin
- Occupational Diseases Department, Toulouse University Hospital, 31000 Toulouse, France; Inserm UMR 1295: Center for research in population health (CERPOP)- Department of Epidemiology and Public Health, Toulouse. University of Toulouse III F-31073, 37, allées Jules Guesde, 31073 Toulouse, France
| | - Isabelle Da-Silva
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France
| | - Marion Porcheron
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France
| | - Guillaume Martin-Blondel
- INSERM UMR1291 - CNRS UMR5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), 31300 Toulouse, France; Infectious and Tropical Diseases Department, Toulouse University Hospital, 31300 Toulouse, France
| | - Caroline Gernigon
- Occupational Diseases Department, Toulouse University Hospital, 31000 Toulouse, France; Inserm UMR 1295: Center for research in population health (CERPOP)- Department of Epidemiology and Public Health, Toulouse. University of Toulouse III F-31073, 37, allées Jules Guesde, 31073 Toulouse, France
| | | | - Hélène Villars
- Inserm UMR 1295: Center for research in population health (CERPOP)- Department of Epidemiology and Public Health, Toulouse. University of Toulouse III F-31073, 37, allées Jules Guesde, 31073 Toulouse, France; CHU Toulouse (Toulouse University Hospital) Geriatric Department, Hôpital Purpan Pavillon Leriche Place Baylac, 31300 Toulouse, France
| | - Jacques Izopet
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France; INSERM UMR1291 - CNRS UMR5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), 31300 Toulouse, France
| |
Collapse
|
6
|
Moody R, Sonda S, Johnston FH, Smith KJ, Stephens N, McPherson M, Flanagan KL, Plebanski M. Antibodies against Spike protein correlate with broad autoantigen recognition 8 months post SARS-CoV-2 exposure, and anti-calprotectin autoantibodies associated with better clinical outcomes. Front Immunol 2022; 13:945021. [PMID: 36032086 PMCID: PMC9403331 DOI: 10.3389/fimmu.2022.945021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Autoantibodies to multiple targets are found during acute COVID-19. Whether all, or some, persist after 6 months, and their correlation with sustained anti-SARS-CoV-2 immunity, is still controversial. Herein, we measured antibodies to multiple SARS-CoV-2 antigens (Wuhan-Hu-1 nucleoprotein (NP), whole spike (S), spike subunits (S1, S2 and receptor binding domain (RBD)) and Omicron spike) and 102 human proteins with known autoimmune associations, in plasma from healthcare workers 8 months post-exposure to SARS-CoV-2 (n=31 with confirmed COVID-19 disease and n=21 uninfected controls (PCR and anti-SARS-CoV-2 negative) at baseline). IgG antibody responses to SARS-CoV-2 antigens were significantly higher in the convalescent cohort than the healthy cohort, highlighting lasting antibody responses up to 8 months post-infection. These were also shown to be cross-reactive to the Omicron variant spike protein at a similar level to lasting anti-RBD antibodies (correlation r=0.89). Individuals post COVID-19 infection recognised a common set of autoantigens, specific to this group in comparison to the healthy controls. Moreover, the long-term level of anti-Spike IgG was associated with the breadth of autoreactivity post-COVID-19. There were further moderate positive correlations between anti-SARS-CoV-2 responses and 11 specific autoantigens. The most commonly recognised autoantigens were found in the COVID-19 convalescent cohort. Although there was no overall correlation in self-reported symptom severity and anti-SARS-CoV-2 antibody levels, anti-calprotectin antibodies were associated with return to healthy normal life 8 months post infection. Calprotectin was also the most common target for autoantibodies, recognized by 22.6% of the overall convalescent cohort. Future studies may address whether, counter-intuitively, such autoantibodies may play a protective role in the pathology of long-COVID-19.
Collapse
Affiliation(s)
- Rhiane Moody
- School of Health and Biomedical Science, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Sabrina Sonda
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Fay H. Johnston
- Public Health Services, Department of Health, Tasmania, TAS, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kylie J. Smith
- Public Health Services, Department of Health, Tasmania, TAS, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Nicola Stephens
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Michelle McPherson
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Katie L. Flanagan
- School of Health and Biomedical Science, STEM College, RMIT University, Bundoora, VIC, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Science, STEM College, RMIT University, Bundoora, VIC, Australia
- *Correspondence: Magdalena Plebanski,
| |
Collapse
|
7
|
Grikscheit K, Rabenau HF, Ghodratian Z, Widera M, Wilhelm A, Toptan Grabmair T, Hoehl S, Layer E, Helfritz F, Ciesek S. Characterization of the Antibody and Interferon-Gamma Release Response after a Second COVID-19 Booster Vaccination. Vaccines (Basel) 2022; 10:vaccines10071163. [PMID: 35891326 PMCID: PMC9323888 DOI: 10.3390/vaccines10071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
The emergence of SARS-CoV-2 Omicron subvariants prompted countries to call for accelerated booster vaccinations to limit disease and transmission. Here, we characterized correlates of protection over time after the second booster or after Omicron BA.1 infection comparing variants of concern (VOCs). Sera from subjects before and two and seven weeks after the second booster or after Omicron infection were examined for the level of Spike receptor-binding-domain (RBD)-specific antibodies. Furthermore, neutralizing antibodies (nABs) were characterized in in vitro neutralization assays comparing the variants of concern Alpha, Beta, Delta, and Omicron BA.1 and BA.2 against the ancestral strain B.1. Here, the second booster resulted in an increase in anti-RBD-IgG-antibodies, remaining nearly constant over time, accompanied by an increase in nABs against B.1 and the VOCs Alpha, Beta, Delta, and Omicron BA.1 and BA.2. However, compared to B.1, the neutralizing capacity against the Omicron subvariants remained low and was limited after the second booster vaccination. This indicates that antibody-mediated protection against infection with this VOC is unlikely, as evidenced by the fact that three individuals of our study cohort became infected with Omicron BA.1 after the second booster. T cell activation was measured by interferon-gamma release assays in a subgroup of subjects and was increased in all subjects tested after the second booster vaccination, correlating with the amount of Spike-specific antibodies. In subjects with Omicron BA.1 breakthrough infection, a significant increase in nABs to all VOCs studied was observed independently of booster vaccinations. Taken together, our data indicate that a second booster or Omicron BA.1 infection mediate a substantial increase in anti-Spike IgG antibodies; however, infection with Omicron BA.1 induced a stronger increase in neutralizing antibodies against the different VOCs
Collapse
Affiliation(s)
- Katharina Grikscheit
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Holger F. Rabenau
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Zahra Ghodratian
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Alexander Wilhelm
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Tuna Toptan Grabmair
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Sebastian Hoehl
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Emily Layer
- Health Protection Authority of the City of Frankfurt am Main, 60313 Frankfurt am Main, Germany;
| | - Fabian Helfritz
- Bürgerhospital Frankfurt, Nibelungenallee 37-41, 60318 Frankfurt am Main, Germany;
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
- German Centre for Infection Research (DZIF), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch Translational Medicine and Pharmcology, 60596 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
8
|
Chen Z, Zhang Y, Wang M, Islam MS, Liao P, Hu Y, Chen X. Humoral and Cellular Immune Responses of COVID-19 vaccines against SARS-Cov-2 Omicron variant: a systemic review. Int J Biol Sci 2022; 18:4629-4641. [PMID: 35874952 PMCID: PMC9305266 DOI: 10.7150/ijbs.73583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has undergone multiple mutations since its emergence, and its latest variant, Omicron (B.1.1.529), is the most contagious variant of concern (VOC) which poses a major and imminent threat to public health. Since firstly reported by World Health Organization (WHO) in November 2021, Omicron variant has been spreading rapidly and has become the dominant variant in many countries worldwide. Omicron is the most mutated variant so far, containing 60 mutations in its genome, including 37 mutations in the S-protein. Since all current COVID-19 vaccines in use were developed based on ancestral SARS-CoV-2 strains, whether they are protective against Omicron is a critical question which has been the center of study currently. In this article, we systemically reviewed the studies regarding the effectiveness of 2- or 3-dose vaccines delivered in either homologous or heterologous manner. The humoral and cellular immune responses elicited by various vaccine regimens to protect against Omicron variant are discussed. Current understanding of the molecular basis underlying immune escape of Omicron was also analyzed. These studies indicate that two doses of vaccination are insufficient to elicit neutralizing antibody responses against Omicron variant. Nevertheless, Omicron-specific humoral immune responses can be enhanced by booster dose of almost all type vaccines in certain degree, and heterologous vaccination strategy may represent a better choice than homogenous regimens. Intriguingly, results of studies indicate that all current vaccines are still able to elicit robust T cell response against Omicron. Future focus should be the development of Omicron variant vaccine, which may induce potent humoral as well as cellular immune responses simultaneously against all known variants of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
9
|
Lamerton RE, Marcial-Juarez E, Faustini SE, Perez-Toledo M, Goodall M, Jossi SE, Newby ML, Chapple I, Dietrich T, Veenith T, Shields AM, Harper L, Henderson IR, Rayes J, Wraith DC, Watson SP, Crispin M, Drayson MT, Richter AG, Cunningham AF. SARS-CoV-2 Spike- and Nucleoprotein-Specific Antibodies Induced After Vaccination or Infection Promote Classical Complement Activation. Front Immunol 2022; 13:838780. [PMID: 35860286 PMCID: PMC9289266 DOI: 10.3389/fimmu.2022.838780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Antibodies specific for the spike glycoprotein (S) and nucleocapsid (N) SARS-CoV-2 proteins are typically present during severe COVID-19, and induced to S after vaccination. The binding of viral antigens by antibody can initiate the classical complement pathway. Since complement could play pathological or protective roles at distinct times during SARS-CoV-2 infection we determined levels of antibody-dependent complement activation along the complement cascade. Here, we used an ELISA assay to assess complement protein binding (C1q) and the deposition of C4b, C3b, and C5b to S and N antigens in the presence of antibodies to SARS-CoV-2 from different test groups: non-infected, single and double vaccinees, non-hospitalised convalescent (NHC) COVID-19 patients and convalescent hospitalised (ITU-CONV) COVID-19 patients. C1q binding correlates strongly with antibody responses, especially IgG1 levels. However, detection of downstream complement components, C4b, C3b and C5b shows some variability associated with the subject group from whom the sera were obtained. In the ITU-CONV, detection of C3b-C5b to S was observed consistently, but this was not the case in the NHC group. This is in contrast to responses to N, where median levels of complement deposition did not differ between the NHC and ITU-CONV groups. Moreover, for S but not N, downstream complement components were only detected in sera with higher IgG1 levels. Therefore, the classical pathway is activated by antibodies to multiple SARS-CoV-2 antigens, but the downstream effects of this activation may differ depending the disease status of the subject and on the specific antigen targeted.
Collapse
Affiliation(s)
- Rachel E. Lamerton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Edith Marcial-Juarez
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Sian E. Faustini
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Siân E. Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Iain Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, and Birmingham Community Healthcare National Health Service Trust, Birmingham, United Kingdom
| | - Thomas Dietrich
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, and Birmingham Community Healthcare National Health Service Trust, Birmingham, United Kingdom
| | - Tonny Veenith
- Department of Critical Care Medicine, University Hospitals Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Adrian M. Shields
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Lorraine Harper
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Julie Rayes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David C. Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Mark T. Drayson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex G. Richter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Shields AM, Faustini SE, Hill HJ, Al-Taei S, Tanner C, Ashford F, Workman S, Moreira F, Verma N, Wagg H, Heritage G, Campton N, Stamataki Z, Drayson MT, Klenerman P, Thaventhiran JED, Elkhalifa S, Goddard S, Johnston S, Huissoon A, Bethune C, Elcombe S, Lowe DM, Patel SY, Savic S, Richter AG, Burns SO. Increased Seroprevalence and Improved Antibody Responses Following Third Primary SARS-CoV-2 Immunisation: An Update From the COV-AD Study. Front Immunol 2022; 13:912571. [PMID: 35720400 PMCID: PMC9201027 DOI: 10.3389/fimmu.2022.912571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background Patients with primary and secondary antibody deficiency are vulnerable to COVID-19 and demonstrate diminished responses following two-dose SARS-CoV-2 vaccine schedules. Third primary vaccinations have been deployed to enhance their humoral and cellular immunity. Objectives To determine the immunogenicity of the third primary SARS-CoV-2 immunisation in a heterogeneous cohort of patients with antibody deficiency. Methods Participants enrolled in the COV-AD study were sampled before and after their third vaccine dose. Serological and cellular responses were determined using ELISA, live-virus neutralisation and ELISPOT assays. Results Following a two-dose schedule, 100% of healthy controls mounted a serological response to SARS-CoV-2 vaccination, however, 38.6% of individuals with antibody deficiency remained seronegative. A third primary SARS-CoV-2 vaccine significantly increased anti-spike glycoprotein antibody seroprevalence from 61.4% to 76.0%, the magnitude of the antibody response, its neutralising capacity and induced seroconversion in individuals who were seronegative after two vaccine doses. Vaccine-induced serological responses were broadly cross-reactive against the SARS-CoV-2 B.1.1.529 variant of concern, however, seroprevalence and antibody levels remained significantly lower than healthy controls. No differences in serological responses were observed between individuals who received AstraZeneca ChAdOx1 nCoV-19 and Pfizer BioNTech 162b2 during their initial two-dose vaccine schedule. SARS-CoV-2 infection-naive participants who had received a heterologous vaccine as a third dose were significantly more likely to have a detectable T cell response following their third vaccine dose (61.5% vs 11.1%). Conclusion These data support the widespread use of third primary immunisations to enhance humoral immunity against SARS-CoV-2 in individuals with antibody deficiency.
Collapse
Affiliation(s)
- Adrian M. Shields
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Clinical Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Sian E. Faustini
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Harriet J. Hill
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Saly Al-Taei
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Chloe Tanner
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Fiona Ashford
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Sarita Workman
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Fernando Moreira
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Nisha Verma
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Hollie Wagg
- Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Gail Heritage
- Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Naomi Campton
- Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Mark T. Drayson
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Shuayb Elkhalifa
- Department of Immunology, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Sarah Goddard
- Department of Clinical Immunology, University Hospitals North Midlands, Stoke-on-Trent, United Kingdom
| | - Sarah Johnston
- Department of Clinical Immunology, North Bristol NHS Trust, Bristol, United Kingdom
| | - Aarnoud Huissoon
- Department of Clinical Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Claire Bethune
- Department of Allergy and Clinical Immunology, University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | - Suzanne Elcombe
- Department of Allergy and Clinical Immunology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - David M. Lowe
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Smita Y. Patel
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) Oxford Biomedical Centre, University of Oxford, Oxford, United Kingdom
| | - Sinisa Savic
- Department of Allergy and Clinical Immunology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Alex G. Richter
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Clinical Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
11
|
Khandia R, Singhal S, Alqahtani T, Kamal MA, El-Shall NA, Nainu F, Desingu PA, Dhama K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2022; 209:112816. [PMID: 35093310 PMCID: PMC8798788 DOI: 10.1016/j.envres.2022.112816] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
Since the appearance in the late of December 2019, SARS-CoV-2 is rapidly evolving and mutating continuously, giving rise to various variants with variable degrees of infectivity and lethality. The virus that initially appeared in China later mutated several times, wreaking havoc and claiming many lives worldwide amid the ongoing COVID-19 pandemic. After Alpha, Beta, Gamma, and Delta variants, the most recently emerged variant of concern (VOC) is the Omicron (B.1.1.529) that has evolved due to the accumulation of high numbers of mutations especially in the spike protein, raising concerns for its ability to evade from pre-existing immunity acquired through vaccination or natural infection as well as overpowering antibodies-based therapies. Several theories are on the surface to explain how the Omicron has gathered such a high number of mutations within less time. Few of them are higher mutation rates within a subgroup of population and then its introduction to a larger population, long term persistence and evolution of the virus in immune-compromised patients, and epizootic infection in animals from humans, where under different immune pressures the virus mutated and then got reintroduced to humans. Multifaceted approach including rapid diagnosis, genome analysis of emerging variants, ramping up of vaccination drives and receiving booster doses, efficacy testing of vaccines and immunotherapies against newly emerged variants, updating the available vaccines, designing of multivalent vaccines able to generate hybrid immunity, up-gradation of medical facilities and strict implementation of adequate prevention and control measures need to be given high priority to handle the on-going SARS-CoV-2 pandemic successfully.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, MP, India.
| | - Shailja Singhal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, MP, India
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, 62529, Abha, Saudi Arabia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW, 2770, Novel Global Community Educational Foundation, Australia
| | - Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, 22758, Egypt
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Perumal Arumugam Desingu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560012, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| |
Collapse
|
12
|
Anti-SARS-CoV-2S Antibody Levels in Healthcare Workers 10 Months after the Administration of Two BNT162b2 Vaccine Doses in View of Demographic Characteristic and Previous COVID-19 Infection. Vaccines (Basel) 2022; 10:vaccines10050741. [PMID: 35632498 PMCID: PMC9146273 DOI: 10.3390/vaccines10050741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Antibody levels that confer full protection against SARS-CoV-2 infection after the administration of different vaccine brands as well as the factors influencing the humoral immune response have been analyzed extensively ever since the vaccination program was launched in late 2020. The aim of this study was to determine anti-SARS-CoV-2S antibody titers in 100 healthcare workers 10 months after the administration of two BNT162b2 vaccine doses, and to investigate the influence of demographic characteristics, the presence of comorbidities and history of COVID-19 infection. The results were compared with antibody levels that were determined eight months after the administration of two BNT162b2 vaccine doses in our previous study. Antibody levels in venous blood serum were measured by the ECLIA method with the use of the Roche Cobas e411 analyzer. In all tested subjects, antibody titers remained high 10 months after vaccination, particularly in recovered COVID-19 patients, and only a minor decrease was observed relative to the values noted two months earlier.
Collapse
|
13
|
Sahay RR, Patil DY, Sapkal GN, Deshpande GR, Shete AM, Nyayanit DA, Kumar S, Yadav PD. SARS-CoV-2 Delta and delta derivatives impact on neutralization of Covishield recipient sera. J Infect 2022; 84:e36-e38. [PMID: 35192896 PMCID: PMC8857767 DOI: 10.1016/j.jinf.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Rima R Sahay
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India, Pin-411021
| | - Deepak Y Patil
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India, Pin-411021
| | - Gajanan N Sapkal
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India, Pin-411021
| | - Gururaj R Deshpande
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India, Pin-411021
| | - Anita M Shete
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India, Pin-411021
| | - Dimpal A Nyayanit
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India, Pin-411021
| | - Sanjay Kumar
- Department of Neurosurgery, Command Hospital (Southern Command), Armed Forces Medical College, Pune, Maharashtra, India, 411040
| | - Pragya D Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India, Pin-411021.
| |
Collapse
|
14
|
Abas AH, Marfuah S, Idroes R, Kusumawaty D, Fatimawali, Park MN, Siyadatpanah A, Alhumaydhi FA, Mahmud S, Tallei TE, Emran TB, Kim B. Can the SARS-CoV-2 Omicron Variant Confer Natural Immunity against COVID-19? Molecules 2022; 27:2221. [PMID: 35408618 PMCID: PMC9000495 DOI: 10.3390/molecules27072221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still ongoing, with no signs of abatement in sight. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of this pandemic and has claimed over 5 million lives, is still mutating, resulting in numerous variants. One of the newest variants is Omicron, which shows an increase in its transmissibility, but also reportedly reduces hospitalization rates and shows milder symptoms, such as in those who have been vaccinated. As a result, many believe that Omicron provides a natural vaccination, which is the first step toward ending the COVID-19 pandemic. Based on published research and scientific evidence, we review and discuss how the end of this pandemic is predicted to occur as a result of Omicron variants being surpassed in the community. In light of the findings of our research, we believe that it is most likely true that the Omicron variant is a natural way of vaccinating the masses and slowing the spread of this deadly pandemic. While the mutation that causes the Omicron variant is encouraging, subsequent mutations do not guarantee that the disease it causes will be less severe. As the virus continues to evolve, humans must constantly adapt by increasing their immunity through vaccination.
Collapse
Affiliation(s)
- Abdul Hawil Abas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Siti Marfuah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Aceh, Indonesia;
| | - Diah Kusumawaty
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia;
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia;
| | - Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 97178-53577, Iran;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Shafi Mahmud
- Department of Genome Science, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| |
Collapse
|