1
|
Ascenzi P, De Simone G, Zingale GA, Coletta M. Nitrite binding to myoglobin and hemoglobin: Reactivity and structural aspects. J Inorg Biochem 2025; 265:112829. [PMID: 39854981 DOI: 10.1016/j.jinorgbio.2025.112829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Nitrite (NO2-) interacts with myoglobin (Mb) and hemoglobin (Hb) behaving as a ligand of both the ferrous (i.e., Mb(II) and Hb(II)) and ferric (i.e., Mb(III) and Hb(III)) forms. However, while the binding to the Fe(III) species corresponds to the formation of a stable complex (i.e., Mb(III)-NO2- and Hb(III)-NO2-), in the case of the ferrous forms the reaction proceeds with a nitrite reductase redox process, leading to the oxidation of the heme-protein with the reduction of NO2- to NO. This event is of the utmost importance for the rapid production of NO in vivo in the blood stream and in striated muscles, being crucial for the regulation of the blood flow, and thus for O2 supply to poorly oxygenated tissues, such as the eye's retina. Further, NO2- interacts with Mb(II)-O2 and Hb(II)-O2, inducing their oxidation with a complex mechanism, which has been only partially elucidated. Mb and Hb form the complex with NO2- through the O-nitrito binding mode (i.e., Fe-ONO-), which is regulated by residues paving the heme distal side; thus, in a site-directed mutant, where HisE7 is substituted by Val, the interaction occurs in the N-nitro binding mode (i.e., Fe-N(O)O-), like in most other heme-proteins. The structure-function relationships of the interaction of NO2- with both ferric and ferrous forms of Mb and Hb are discussed here.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Accademia Nazionale dei Lincei, Via della Lungara 10, 00165 Roma, Italy; Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146 Roma, Italy.
| | - Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146 Roma, Italy
| | | | | |
Collapse
|
2
|
Moore JM, Fout AR. Tetrapodal iron complexes invoke observable intermediates in nitrate and nitrite reduction. Chem Sci 2025; 16:840-845. [PMID: 39650219 PMCID: PMC11622133 DOI: 10.1039/d4sc06570k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024] Open
Abstract
This study investigates the mechanistic pathways of nitrate and nitrite reduction by the tetrapodal iron complex [Py2Py(afamcyp)2Fe]OTf2, revealing key intermediates to elucidate the reaction process. Using UV-Vis, IR, mass and NMR spectroscopies, stable binding of oxyanions to the iron centre was observed, supporting the formation of the iron(iii)-hydroxide intermediate [Py2Py(afamcyp)2Fe(OH)]OTf2. This intermediate is less stable than in previous systems, providing insights into the behaviour of metalloenzymes. A bimetallic mechanism is proposed for nitrogen oxyanion reduction where additional iron is required to drive the complete reaction, resulting in the formation of the final nitrosyl complex, Py2Py(pimcyp)2Fe(NO), and water. Our findings enhance the understanding of iron-based reduction processes and contribute to the broader knowledge of oxyanion reduction mechanisms.
Collapse
Affiliation(s)
- Jewelianna M Moore
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Alison R Fout
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
3
|
Galinato MGI, Wyant C, Lombardo AL, MacIsaac EK, Rios-Martinez DA, Kimrey CD, Castro AA. Generating globin-like reactivities in [human serum albumin-Fe II(heme)] complex through N-donor ligand addition. J Inorg Biochem 2025; 262:112743. [PMID: 39357192 DOI: 10.1016/j.jinorgbio.2024.112743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Human serum albumin (HSA) has a strong binding affinity for heme b, forming a complex in a 1:1 ratio with the co-factor ([HSA-FeIIIheme]). This system displays spectroscopic and functional properties comparable to globins when chemical derivatives mimicking them are incorporated into the protein matrix. The aim of this study is to generate globin-like systems using [HSA-FeIIIheme] as a protein template and binding N-donor ligands (imidazole, Im; and 1-methylimidazole, 1-MeIm) to construct artificial [HSA-Fe(heme)-(N-donor)] complexes. Their electronic structure and binding thermodynamics are investigated using UV-vis and (synchronous) fluorescence spectroscopies, while ligand-protein interactions are visualized using docking simulations. The imidazole derivatives have a strong affinity for [HSA-FeIIIheme] (K ∼ 104-106), where the spontaneous binding of Im and 1-MeIm are dominated by entropic and enthalpic effects, respectively. The reduced form of the [HSA-Fe(heme)-(N-donor)] complexes demonstrate nitrite reductase (NiR) activity similar to that observed in globins, but with significant differences in their rates. [HSA-FeIIheme-(1-MeIm)] reduces nitrite ∼4× faster than the Im analogue, and ∼ 30× faster than myoglobin (Mb). The enhanced NiR activity of [HSA-FeIIheme-(1-MeIm)] is a cumulative effect of several factors including a slightly expanded and more optimal heme binding pocket, nearby residues as possible proton sources, and a H-bonding interaction between 1-MeIm and residues Arg160 and Lys181 that may have a long-distance influence on the heme π electron density.
Collapse
Affiliation(s)
- Mary Grace I Galinato
- Department of Chemistry & Physics, Jacksonville University, 2800 University Blvd N, Jacksonville, FL 32211, United States; School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States.
| | - Christopher Wyant
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Ashley L Lombardo
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Ethan K MacIsaac
- Department of Chemistry & Physics, Jacksonville University, 2800 University Blvd N, Jacksonville, FL 32211, United States
| | - Daniella A Rios-Martinez
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Christopher D Kimrey
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Alexandra Alfonso Castro
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| |
Collapse
|
4
|
Valianti VK, Tselios C, Pinakoulaki E. Reversible thermally induced spin crossover in the myoglobin-nitrito adduct directly monitored by resonance Raman spectroscopy. RSC Adv 2023; 13:9020-9025. [PMID: 36950070 PMCID: PMC10025812 DOI: 10.1039/d3ra00225j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
Myoglobin has been demonstrated to function as a nitrite reductase to produce nitric oxide during hypoxia. One of the most intriguing aspects of the myoglobin/nitrite interactions revealed so far is the unusual O-binding mode of nitrite to the ferric heme iron, although conflicting data have been reported for the electronic structure of this complex also raising the possibility of linkage isomerism. In this work, we applied resonance Raman spectroscopy in a temperature-dependent approach to investigate the binding of nitrite to ferric myoglobin and the properties of the formed adduct from ambient to low temperatures (293 K to 153 K). At ambient temperature the high spin state of the ferric heme Fe-O-N[double bond, length as m-dash]O species is present and upon decreasing the temperature the low spin state is populated, demonstrating that a thermally-induced spin crossover phenomenon takes place analogous to what has been observed in many transition metal complexes. The observed spin crossover is fully reversible and is not due to linkage isomerism, since the O-binding mode is retained upon the spin transition. The role of the heme pocket environment in controlling the nitrite binding mode and spin transition is discussed.
Collapse
Affiliation(s)
| | - Charalampos Tselios
- Department of Chemistry, University of Cyprus 2109 Aglantzia Cyprus
- Department of Chemical Engineering, Cyprus University of Technology Lemesos Cyprus
| | | |
Collapse
|
5
|
Zheng Y, Deng W, Liu D, Li Y, Peng K, Lorimer GH, Wang J. Redox and spectroscopic properties of mammalian nitrite reductase-like hemoproteins. J Inorg Biochem 2022; 237:111982. [PMID: 36116154 DOI: 10.1016/j.jinorgbio.2022.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023]
Abstract
Besides the canonical pathway of L-arginine oxidation to produce nitric oxide (NO) in vivo, the nitrate-nitrite-NO pathway has been widely accepted as another source for circulating NO in mammals, especially under hypoxia. To date, there have been at least ten heme-containing nitrite reductase-like proteins discovered in mammals with activities mainly identified in vitro, including four globins (hemoglobin, myoglobin, neuroglobin (Ngb), cytoglobin (Cygb)), three mitochondrial respiratory chain enzymes (cytochrome c oxidase, cytochrome bc1, cytochrome c), and three other heme proteins (endothelial nitric oxide synthase, cytochrome P450 and indoleamine 2,3-dioxygenase 1 (IDO1)). The pathophysiological functions of these proteins are closely related to their redox and spectroscopic properties, as well as their protein structure, although the physiological roles of Ngb, Cygb and IDO1 remain unclear. So far, comprehensive summaries of the redox and spectroscopic properties of these nitrite reductase-like hemoproteins are still lacking. In this review, we have mainly summarized the published data on the application of ultraviolet-visible, electron paramagnetic resonance, circular dichroism and resonance Raman spectroscopies, and X-ray crystallography in studying nitrite reductase-like activity of these 10 proteins, in order to sort out the relationships among enzymatic function, structure and spectroscopic characterization, which might help in understanding their roles in redox biology and medicine.
Collapse
Affiliation(s)
- Yunlong Zheng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Wenwen Deng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Di Liu
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Youheng Li
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Kang Peng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | | | - Jun Wang
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
7
|
Serra I, Schmidt D, Pfanzagl V, Mlynek G, Hofbauer S, Djinović-Carugo K, Furtmüller PG, García-Rubio I, Van Doorslaer S, Obinger C. Impact of the dynamics of the catalytic arginine on nitrite and chlorite binding by dimeric chlorite dismutase. J Inorg Biochem 2021; 227:111689. [PMID: 34922158 DOI: 10.1016/j.jinorgbio.2021.111689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023]
Abstract
Chlorite dismutases (Clds) are heme b containing oxidoreductases able to decompose chlorite to chloride and molecular oxygen. This work analyses the impact of the distal, flexible and catalytic arginine on the binding of anionic angulate ligands like nitrite and the substrate chlorite. Dimeric Cld from Cyanothece sp. PCC7425 was used as a model enzyme. We have investigated wild-type CCld having the distal catalytic R127 hydrogen-bonded to glutamine Q74 and variants with R127 (i) being arrested in a salt-bridge with a glutamate (Q74E), (ii) being fully flexible (Q74V) or (iii) substituted by either alanine (R127A) or lysine (R127K). We present the electronic and spectral signatures of the high-spin ferric proteins and the corresponding low-spin nitrite complexes elucidated by UV-visible, circular dichroism and electron paramagnetic resonance spectroscopies. Furthermore, we demonstrate the impact of the dynamics of R127 on the thermal stability of the respective nitrite adducts and present the X-ray crystal structures of the nitrite complexes of wild-type CCld and the variants Q74V, Q74E and R127A. In addition, the molecular dynamics (MD) and the binding modi of nitrite and chlorite to the ferric wild-type enzyme and the mutant proteins and the interaction of the oxoanions with R127 have been analysed by MD simulations. The findings are discussed with respect to the role(s) of R127 in ligand and chlorite binding and substrate degradation.
Collapse
Affiliation(s)
- Ilenia Serra
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Daniel Schmidt
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Vera Pfanzagl
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Georg Mlynek
- Core Facility Biomolecular & Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria; Department of Structural and Computational Biology, Max Perutz Laboratories, A-1030, Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Laboratories, A-1030, Vienna, Austria; Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 5, SI-1000 Ljubljana, Slovenia
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Inés García-Rubio
- Department of Condensed Matter Physics, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain; Centro Universitario de la Defensa, 50090 Zaragoza, Spain
| | | | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
8
|
Kroneck PMH. Nature's nitrite-to-ammonia expressway, with no stop at dinitrogen. J Biol Inorg Chem 2021; 27:1-21. [PMID: 34865208 PMCID: PMC8840924 DOI: 10.1007/s00775-021-01921-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Since the characterization of cytochrome c552 as a multiheme nitrite reductase, research on this enzyme has gained major interest. Today, it is known as pentaheme cytochrome c nitrite reductase (NrfA). Part of the NH4+ produced from NO2- is released as NH3 leading to nitrogen loss, similar to denitrification which generates NO, N2O, and N2. NH4+ can also be used for assimilatory purposes, thus NrfA contributes to nitrogen retention. It catalyses the six-electron reduction of NO2- to NH4+, hosting four His/His ligated c-type hemes for electron transfer and one structurally differentiated active site heme. Catalysis occurs at the distal side of a Fe(III) heme c proximally coordinated by lysine of a unique CXXCK motif (Sulfurospirillum deleyianum, Wolinella succinogenes) or, presumably, by the canonical histidine in Campylobacter jejeuni. Replacement of Lys by His in NrfA of W. succinogenes led to a significant loss of enzyme activity. NrfA forms homodimers as shown by high resolution X-ray crystallography, and there exist at least two distinct electron transfer systems to the enzyme. In γ-proteobacteria (Escherichia coli) NrfA is linked to the menaquinol pool in the cytoplasmic membrane through a pentaheme electron carrier (NrfB), in δ- and ε-proteobacteria (S. deleyianum, W. succinogenes), the NrfA dimer interacts with a tetraheme cytochrome c (NrfH). Both form a membrane-associated respiratory complex on the extracellular side of the cytoplasmic membrane to optimize electron transfer efficiency. This minireview traces important steps in understanding the nature of pentaheme cytochrome c nitrite reductases, and discusses their structural and functional features.
Collapse
Affiliation(s)
- Peter M H Kroneck
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
9
|
Influence of the heme distal pocket on nitrite binding orientation and reactivity in Sperm Whale myoglobin. Biochem J 2021; 478:927-942. [PMID: 33543749 PMCID: PMC7925009 DOI: 10.1042/bcj20200596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/05/2022]
Abstract
Nitrite binding to recombinant wild-type Sperm Whale myoglobin (SWMb) was studied using a combination of spectroscopic methods including room-temperature magnetic circular dichroism. These revealed that the reactive species is free nitrous acid and the product of the reaction contains a nitrite ion bound to the ferric heme iron in the nitrito- (O-bound) orientation. This exists in a thermal equilibrium with a low-spin ground state and a high-spin excited state and is spectroscopically distinct from the purely low-spin nitro- (N-bound) species observed in the H64V SWMb variant. Substitution of the proximal heme ligand, histidine-93, with lysine yields a novel form of myoglobin (H93K) with enhanced reactivity towards nitrite. The nitrito-mode of binding to the ferric heme iron is retained in the H93K variant again as a thermal equilibrium of spin-states. This proximal substitution influences the heme distal pocket causing the pKa of the alkaline transition to be lowered relative to wild-type SWMb. This change in the environment of the distal pocket coupled with nitrito-binding is the most likely explanation for the 8-fold increase in the rate of nitrite reduction by H93K relative to WT SWMb.
Collapse
|
10
|
Mihoc D, Lupu LM, Wiegand P, Kleinekofort W, Müller O, Völklein F, Glocker MO, Barka F, Barka G, Przybylski M. Antibody Epitope and Affinity Determination of the Myocardial Infarction Marker Myoglobin by SPR-Biosensor Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:106-113. [PMID: 32838528 DOI: 10.1021/jasms.0c00234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Myoglobin (MG) is a biomarker for heart muscle injury, making it a potential target protein for early detection of myocardial infarction. Elevated myoglobin levels alone have low specificity for acute myocardial infarction (AMI) but in combination with cardiac troponin T have been considered highly efficient diagnostic biomarkers. Myoglobin is a monomeric heme protein with a molecular weight of 17 kDa that is found in skeletal and cardiac tissue as an intracellular storage unit of oxygen. MG consists of eight α-helices connected by loops and a heme group responsible for oxygen-binding. Monoclonal antibodies are widely used analytical tools in biomedical research and have been employed for immunoanalytical detection of MG. However, the epitope(s) recognized by MG antibodies have been hitherto unknown. Precise molecular identification of the epitope(s) recognized by antibodies is of key importance for the development of MG as a diagnostic biomarker. The epitope of a monoclonal MG antibody was identified by proteolytic epitope extraction mass spectrometry in combination with surface plasmon resonance (SPR) biosensor analysis. The MG antibody was immobilized both on an affinity microcolumn and a gold SPR chip. The SPR kinetic analysis provided an affinity-binding constant KD of 270 nM for MG. Binding of a tryptic peptide mixture followed by elution of the epitope from the SPR-MS affinity interface by mild acidification provided a single-epitope peptide located at the C-terminus [146-153] [YKELGFQG] of MG. The specificity and affinity of the epitope were ascertained by synthesis and affinity-mass spectrometric characterization of the epitope peptide.
Collapse
Affiliation(s)
- Delia Mihoc
- Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry (STZ), Marktstrasse 29, 65428 Rüsselsheim am Main, Germany
| | - Loredana-Mirela Lupu
- Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry (STZ), Marktstrasse 29, 65428 Rüsselsheim am Main, Germany
| | - Pascal Wiegand
- Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry (STZ), Marktstrasse 29, 65428 Rüsselsheim am Main, Germany
| | - Wolfgang Kleinekofort
- Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry (STZ), Marktstrasse 29, 65428 Rüsselsheim am Main, Germany
- Institute for Microtechnologies (IMTECH), Rhein Main University, 65428 Rüsselsheim am Main, Germany
| | - Oliver Müller
- Institute for Microtechnologies (IMTECH), Rhein Main University, 65428 Rüsselsheim am Main, Germany
| | - Friedemann Völklein
- Institute for Microtechnologies (IMTECH), Rhein Main University, 65428 Rüsselsheim am Main, Germany
| | - Michael O Glocker
- Department of Immunology, Proteome Centre, Medical University Rostock, Schillingallee 69, 18055 Rostock, Germany
| | - Frederik Barka
- Sunchrom GmbH, Industriestr. 27, 61381 Friedrichsdorf, Germany
| | - Günes Barka
- Sunchrom GmbH, Industriestr. 27, 61381 Friedrichsdorf, Germany
| | - Michael Przybylski
- Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry (STZ), Marktstrasse 29, 65428 Rüsselsheim am Main, Germany
| |
Collapse
|
11
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
12
|
Sinnott M, Malhotra S, Madhusudhan MS, Thalassinos K, Topf M. Combining Information from Crosslinks and Monolinks in the Modeling of Protein Structures. Structure 2020; 28:1061-1070.e3. [DOI: 10.1016/j.str.2020.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022]
|
13
|
Zou W, Tao Y, Freindorf M, Cremer D, Kraka E. Local vibrational force constants – From the assessment of empirical force constants to the description of bonding in large systems. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
DeMartino AW, Kim‐Shapiro DB, Patel RP, Gladwin MT. Nitrite and nitrate chemical biology and signalling. Br J Pharmacol 2019; 176:228-245. [PMID: 30152056 PMCID: PMC6295445 DOI: 10.1111/bph.14484] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Inorganic nitrate (NO3 - ), nitrite (NO2 - ) and NO are nitrogenous species with a diverse and interconnected chemical biology. The formation of NO from nitrate and nitrite via a reductive 'nitrate-nitrite-NO' pathway and resulting in vasodilation is now an established complementary route to traditional NOS-derived vasodilation. Nitrate, found in our diet and abundant in mammalian tissues and circulation, is activated via reduction to nitrite predominantly by our commensal oral microbiome. The subsequent in vivo reduction of nitrite, a stable vascular reserve of NO, is facilitated by a number of haem-containing and molybdenum-cofactor proteins. NO generation from nitrite is enhanced during physiological and pathological hypoxia and in disease states involving ischaemia-reperfusion injury. As such, modulation of these NO vascular repositories via exogenously supplied nitrite and nitrate has been evaluated as a therapeutic approach in a number of diseases. Ultimately, the chemical biology of nitrate and nitrite is governed by local concentrations, reaction equilibrium constants, and the generation of transient intermediates, with kinetic rate constants modulated at differing physiological pH values and oxygen tensions. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
| | - Daniel B. Kim‐Shapiro
- Department of PhysicsWake Forest UniversityWinston‐SalemNCUSA
- Translational Science CenterWake Forest UniversityWinston‐SalemNCUSA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
15
|
Wang B, Shi Y, Tejero J, Powell SM, Thomas LM, Gladwin MT, Shiva S, Zhang Y, Richter-Addo GB. Nitrosyl Myoglobins and Their Nitrite Precursors: Crystal Structural and Quantum Mechanics and Molecular Mechanics Theoretical Investigations of Preferred Fe -NO Ligand Orientations in Myoglobin Distal Pockets. Biochemistry 2018; 57:4788-4802. [PMID: 29999305 PMCID: PMC6474360 DOI: 10.1021/acs.biochem.8b00542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The globular dioxygen binding heme protein myoglobin (Mb) is present in several species. Its interactions with the simple nitrogen oxides, namely, nitric oxide (NO) and nitrite, have been known for decades, but the physiological relevance has only recently become more fully appreciated. We previously reported the O-nitrito mode of binding of nitrite to ferric horse heart wild-type (wt) MbIII and human hemoglobin. We have expanded on this work and report the interactions of nitrite with wt sperm whale (sw) MbIII and its H64A, H64Q, and V68A/I107Y mutants whose dissociation constants increase in the following order: H64Q < wt < V68A/I107Y < H64A. We also report their X-ray crystal structures that reveal the O-nitrito mode of binding of nitrite to these derivatives. The MbII-mediated reductions of nitrite to NO and structural data for the wt and mutant MbII-NOs are described. We show that their FeNO orientations vary with distal pocket identity, with the FeNO moieties pointing toward the hydrophobic interiors when the His64 residue is present but toward the hydrophilic exterior when this His64 residue is absent in this set of mutants. This correlates with the nature of H-bonding to the bound NO ligand (nitrosyl O vs N atom). Quantum mechanics and hybrid quantum mechanics and molecular mechanics calculations help elucidate the origin of the experimentally preferred NO orientations. In a few cases, the calculations reproduce the experimentally observed orientations only when the whole protein is taken into consideration.
Collapse
Affiliation(s)
- Bing Wang
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Yelu Shi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Castle Point on Hudson,
Hoboken, NJ 07030
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, 3550 Terrace
Street, Pittsburgh, PA 15261
| | - Samantha M. Powell
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Leonard M. Thomas
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Mark T. Gladwin
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, 3550 Terrace
Street, Pittsburgh, PA 15261
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA
15213
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Castle Point on Hudson,
Hoboken, NJ 07030
| | - George B. Richter-Addo
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| |
Collapse
|
16
|
Hong S, Yan JJ, Karmalkar DG, Sutherlin KD, Kim J, Lee YM, Goo Y, Mascharak PK, Hedman B, Hodgson KO, Karlin KD, Solomon EI, Nam W. A mononuclear nonheme {FeNO} 6 complex: synthesis and structural and spectroscopic characterization. Chem Sci 2018; 9:6952-6960. [PMID: 30210769 PMCID: PMC6124912 DOI: 10.1039/c8sc01962b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/18/2018] [Indexed: 01/19/2023] Open
Abstract
While the synthesis and characterization of {FeNO}7,8,9 complexes have been well documented in heme and nonheme iron models, {FeNO}6 complexes have been less clearly understood. Herein, we report the synthesis and structural and spectroscopic characterization of mononuclear nonheme {FeNO}6 and iron(iii)-nitrito complexes bearing a tetraamido macrocyclic ligand (TAML), such as [(TAML)FeIII(NO)]- and [(TAML)FeIII(NO2)]2-, respectively. First, direct addition of NO(g) to [FeIII(TAML)]- results in the formation of [(TAML)FeIII(NO)]-, which is sensitive to moisture and air. The spectroscopic data of [(TAML)FeIII(NO)]-, such as 1H nuclear magnetic resonance and X-ray absorption spectroscopies, combined with computational study suggest the neutral nature of nitric oxide with a diamagnetic Fe center (S = 0). We also provide alternative pathways for the generation of [(TAML)FeIII(NO)]-, such as the iron-nitrite reduction triggered by protonation in the presence of ferrocene, which acts as an electron donor, and the photochemical iron-nitrite reduction. To the best of our knowledge, the present study reports the first photochemical nitrite reduction in nonheme iron models.
Collapse
Affiliation(s)
- Seungwoo Hong
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . .,Department of Chemistry , Sookmyung Women's University , Seoul 04310 , Korea
| | - James J Yan
- Department of Chemistry , Stanford University , Stanford , California 94305 , USA .
| | - Deepika G Karmalkar
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea .
| | - Kyle D Sutherlin
- Department of Chemistry , Stanford University , Stanford , California 94305 , USA .
| | - Jin Kim
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea .
| | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea .
| | - Yire Goo
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea .
| | - Pradip K Mascharak
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , USA
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Stanford University , California 94025 , USA . ;
| | - Keith O Hodgson
- Department of Chemistry , Stanford University , Stanford , California 94305 , USA . .,Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Stanford University , California 94025 , USA . ;
| | - Kenneth D Karlin
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , USA . .,Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Stanford University , California 94025 , USA . ;
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . .,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| |
Collapse
|
17
|
Lábas A, Menyhárd DK, Harvey JN, Oláh J. First Principles Calculation of the Reaction Rates for Ligand Binding to Myoglobin: The Cases of NO and CO. Chemistry 2018; 24:5350-5358. [PMID: 29285802 DOI: 10.1002/chem.201704867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Ligand binding by proteins is among the most fundamental processes in nature. Among these processes the binding of small gas molecules, such as O2 , CO and NO to heme proteins has traditionally received vivid interest, which was further boosted by their recently recognized significant role in gas sensing in the body. At the heart of the binding of these ligands to the heme group is the spinforbidden reaction between high-spin iron(II) and the ligand yielding a low-spin adduct. We use computational means to address the complete mechanism of CO and NO binding by myoglobin. Considering that it involves several steps occurring on different time scales, molecular dynamics simulations were performed to address the diffusion of the ligand through the enzyme, and DFT calculations in combination with statistical rate calculation to investigate the spin-forbidden reaction. The calculations yielded rate constants in qualitative agreement with experiments and revealed that the bottleneck of NO and CO binding is different; for NO, diffusion was found to be rate-limiting, whereas for CO, the spin-forbidden step is the slowest.
Collapse
Affiliation(s)
- Anikó Lábas
- Department of Inorganic Chemistry, Budapest University of Technology and Economics, H-1111, Budapest, Szent Gellért tér 4., Hungary
| | - Dóra K Menyhárd
- MTA-ELTE Protein Modelling Research Group, H-1117, Budapest, Pázmány Péter st. 1/A, Hungary
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, B-3001, Leuven Celestijnenlaan 200F- box 2404, Belgium
| | - Julianna Oláh
- Department of Inorganic Chemistry, Budapest University of Technology and Economics, H-1111, Budapest, Szent Gellért tér 4., Hungary
| |
Collapse
|
18
|
Ioannou A, Pinakoulaki E. Probing nitrite coordination in horseradish peroxidase by resonance Raman spectroscopy: Detection of two binding sites. J Inorg Biochem 2017; 169:79-85. [PMID: 28160625 DOI: 10.1016/j.jinorgbio.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 11/15/2022]
Abstract
Nitrite is a powerful oxidant that affects the activity of peroxidases towards various substrates and leads to heme macrocycle modifications in members of the peroxidase family, such as the horseradish peroxidase (HRP). We have applied resonance Raman spectroscopy to investigate the structural properties of the species formed in the reaction of NO2- with the ferric form of HRP. Our data demonstrate that the heme nitrovinyl group is partially formed at near neutral pH, without coordination of NO2- to the heme Fe. Nitrite coordinates to the heme Fe at acidic pH in the nitro binding mode, characterized by the detection of the ν(Fe-NO2) at 563cm-1, δ(FeNO2) at 822cm-1 and νsym(NO2) at 1272cm-1. The sensitivity of the vibrations of the heme Fe-nitro complex to H/D exchange indicates H-bonding interaction of the heme-bound ligand with the distal environment that determines the NO2- binding mode. A model describing the different modes of NO2- binding in HRP is presented.
Collapse
Affiliation(s)
- Androulla Ioannou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Eftychia Pinakoulaki
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| |
Collapse
|
19
|
Ioannou A, Lambrou A, Daskalakis V, Pinakoulaki E. Coupling of helix E-F motion with the O-nitrito and 2-nitrovinyl coordination in myoglobin. Biophys Chem 2017; 221:10-16. [DOI: 10.1016/j.bpc.2016.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
20
|
Nitrite coordination in myoglobin. J Inorg Biochem 2017; 166:49-54. [DOI: 10.1016/j.jinorgbio.2016.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022]
|
21
|
Kia R, Safari F. Synthesis, spectral and structural characterization and computational studies of rhenium(I)-tricarbonyl nitrito complexes of 2,2′-bipyridine and 2,9-dimethylphenanthroline ligands: π-Accepting character of the diimine ligands. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.08.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
He C, Ogata H, Lubitz W. Elucidation of the heme active site electronic structure affecting the unprecedented nitrite dismutase activity of the ferriheme b proteins, the nitrophorins. Chem Sci 2016; 7:5332-5340. [PMID: 30155185 PMCID: PMC6020753 DOI: 10.1039/c6sc01019a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/23/2016] [Indexed: 12/14/2022] Open
Abstract
Nitrophorins (NPs) catalyze the nitrite dismutation reaction that is unprecedented in ferriheme proteins. Despite progress in studying the reaction mechanism, fundamental issues regarding the correlation of the structural features with the nitrite dismutase activity of NPs remain elusive. On the other hand, it has been shown that the nitrite complexes of NPs are unique among those of the ferriheme proteins since some of their electron paramagnetic resonance (EPR) spectra show significant highly anisotropic low spin (HALS) signals with large gmax values over 3.2. The origin of HALS signals in ferriheme proteins or models is not well understood, especially in cases where axial ligands other than histidine are present. In this study several mutations were introduced in NP4. The related nitrite coordination and dismutation reaction were investigated. As a result, the EPR spectra of the NP-nitrite complexes were found to be tightly correlated with the extent of heme ruffling and protonation state of the proximal His ligand-dictated by an extended H-bonding network at the heme active site. Furthermore, it is established that the two factors are essential in determining the nitrite dismutase activity of NPs. These results may provide a valuable guide for identifying or designing novel heme proteins with similar activity.
Collapse
Affiliation(s)
- Chunmao He
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 , Mülheim an der Ruhr , Germany . ;
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 , Mülheim an der Ruhr , Germany . ;
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 , Mülheim an der Ruhr , Germany . ;
| |
Collapse
|
23
|
Lambrou A, Ioannou A, Pinakoulaki E. Spin Crossover in Nitrito-Myoglobin as Revealed by Resonance Raman Spectroscopy. Chemistry 2016; 22:12176-80. [PMID: 27417111 DOI: 10.1002/chem.201601738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Alexandra Lambrou
- Department of Chemistry; University of Cyprus, PO Box 20537; 1678 Nicosia Cyprus
| | - Androulla Ioannou
- Department of Chemistry; University of Cyprus, PO Box 20537; 1678 Nicosia Cyprus
| | - Eftychia Pinakoulaki
- Department of Chemistry; University of Cyprus, PO Box 20537; 1678 Nicosia Cyprus
| |
Collapse
|
24
|
Soloviov M, Meuwly M. Reproducing kernel potential energy surfaces in biomolecular simulations: Nitric oxide binding to myoglobin. J Chem Phys 2016; 143:105103. [PMID: 26374062 DOI: 10.1063/1.4929527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multidimensional potential energy surfaces based on reproducing kernel-interpolation are employed to explore the energetics and dynamics of free and bound nitric oxide in myoglobin (Mb). Combining a force field description for the majority of degrees of freedom and the higher-accuracy representation for the NO ligand and the Fe out-of-plane motion allows for a simulation approach akin to a mixed quantum mechanics/molecular mechanics treatment. However, the kernel-representation can be evaluated at conventional force-field speed. With the explicit inclusion of the Fe-out-of-plane (Fe-oop) coordinate, the dynamics and structural equilibrium after photodissociation of the ligand are correctly described compared to experiment. Experimentally, the Fe-oop coordinate plays an important role for the ligand dynamics. This is also found here where the isomerization dynamics between the Fe-ON and Fe-NO state is significantly affected whether or not this co-ordinate is explicitly included. Although the Fe-ON conformation is metastable when considering only the bound (2)A state, it may disappear once the (4)A state is included. This explains the absence of the Fe-ON state in previous experimental investigations of MbNO.
Collapse
Affiliation(s)
- Maksym Soloviov
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
25
|
Wojdyła Z, Borowski T. DFT study of the mechanism of manganese quercetin 2,3-dioxygenase: quest for origins of enzyme unique nitroxygenase activity and regioselectivity. J Biol Inorg Chem 2016; 21:475-89. [DOI: 10.1007/s00775-016-1356-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
|
26
|
Galinato MGI, Fogle RS, Stetz A, Galan JF. Modulating the nitrite reductase activity of globins by varying the heme substituents: Utilizing myoglobin as a model system. J Inorg Biochem 2015; 154:7-20. [PMID: 26544504 DOI: 10.1016/j.jinorgbio.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 11/18/2022]
Abstract
Globins, such as hemoglobin (Hb) and myoglobin (Mb), have gained attention for their ability to reduce nitrite (NO2(-)) to nitric oxide (NO). The molecular interactions that regulate this chemistry are not fully elucidated, therefore we address this issue by investigating one part of the active site that may control this reaction. Here, the effects of the 2,4-heme substituents on the nitrite reductase (NiR) reaction, and on the structures and energies of the ferrous nitrite intermediates, are investigated using Mb as a model system. This is accomplished by studying Mbs with hemes that have different 2,4-R groups, namely diacetyldeuteroMb (-acetyl), protoMb (wild-type (wt) Mb, -vinyl), deuteroMb (-H), and mesoMb (-ethyl). While trends on the natural charge on Fe and O-atom of bound nitrite are observed among the series of Mbs, the Fe(II)-NPyr (Pyr=pyrrole) and Fe(II)-NHis93 (His=histidine) bond lengths do not significantly change. Kinetic analysis shows increasing NiR activity as follows: diacetyldeuteroMb<wt Mb<deuteroMb<mesoMb. Nitrite binding energy calculations of the different Mb(II)-nitrite conformations demonstrate the N-bound complexes to be more stable than the O-bound complexes for all the different types of heme structures, with diacetyldeuteroMb having the greatest nitrite binding affinity. Spectral deconvolution on the final product generated from the reaction between Mb(II) and NO2(-) for the reconstituted Mbs indicates the formation of 1:1 Mb(III) and Mb(II)-NO. The electronic changes induced by the -R groups on the 2,4-positions do not alter the stoichiometric ratio of the products, resembling wt Mb.
Collapse
Affiliation(s)
- Mary Grace I Galinato
- School of Science-Chemistry, Penn State Erie, The Behrend College, Erie, PA 16563, United States.
| | - Robert S Fogle
- School of Science-Chemistry, Penn State Erie, The Behrend College, Erie, PA 16563, United States
| | - Amanda Stetz
- School of Science-Chemistry, Penn State Erie, The Behrend College, Erie, PA 16563, United States
| | - Jhenny F Galan
- Dept. of Marine Sciences, Texas A&M at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, United States.
| |
Collapse
|
27
|
Raichlin S, Pecht I, Sheves M, Cahen D. Protein Electronic Conductors: Hemin-Substrate Bonding Dictates Transport Mechanism and Efficiency across Myoglobin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Raichlin S, Pecht I, Sheves M, Cahen D. Protein Electronic Conductors: Hemin-Substrate Bonding Dictates Transport Mechanism and Efficiency across Myoglobin. Angew Chem Int Ed Engl 2015; 54:12379-83. [DOI: 10.1002/anie.201505951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 11/09/2022]
|
29
|
Zhang TT, Liu YD, Zhong RG. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study. J Inorg Biochem 2015; 150:126-32. [DOI: 10.1016/j.jinorgbio.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 01/26/2023]
|
30
|
Sundararajan M, Neese F. Distal Histidine Modulates the Unusual O-Binding of Nitrite to Myoglobin: Evidence from the Quantum Chemical Analysis of EPR Parameters. Inorg Chem 2015; 54:7209-17. [DOI: 10.1021/acs.inorgchem.5b00557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mahesh Sundararajan
- Theoretical Chemistry
Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
31
|
Mingos DMP. A theoretical analysis of ambivalent and ambiphilic Lewis acid/bases with symmetry signatures. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
He C, Howes BD, Smulevich G, Rumpel S, Reijerse EJ, Lubitz W, Cox N, Knipp M. Nitrite Dismutase Reaction Mechanism: Kinetic and Spectroscopic Investigation of the Interaction between Nitrophorin and Nitrite. J Am Chem Soc 2015; 137:4141-50. [DOI: 10.1021/ja512938u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunmao He
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Barry D. Howes
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino(Fi), Italy
| | - Giulietta Smulevich
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino(Fi), Italy
| | - Sigrun Rumpel
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward J. Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Knipp
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Faculty
of Chemistry and Biochemistry, Ruhr University, Universitätsstrasse 150, D-44780 Bochum, Germany
| |
Collapse
|
33
|
Tejero J, Sparacino-Watkins CE, Ragireddy V, Frizzell S, Gladwin MT. Exploring the mechanisms of the reductase activity of neuroglobin by site-directed mutagenesis of the heme distal pocket. Biochemistry 2015; 54:722-33. [PMID: 25554946 PMCID: PMC4410703 DOI: 10.1021/bi501196k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Neuroglobin
(Ngb) is a six-coordinate globin that can catalyze
the reduction of nitrite to nitric oxide. Although this reaction is
common to heme proteins, the molecular interactions in the heme pocket
that regulate this reaction are largely unknown. We have shown that
the H64L Ngb mutation increases the rate of nitrite reduction by 2000-fold
compared to that of wild-type Ngb [Tiso, M., et al. (2011) J. Biol. Chem. 286, 18277–18289]. Here we explore
the effect of distal heme pocket mutations on nitrite reduction. For
this purpose, we have generated mutations of Ngb residues Phe28(B10),
His64(E7), and Val68(E11). Our results indicate a dichotomy in the
reactivity of deoxy five- and six-coordinate globins toward nitrite.
In hemoglobin and myoglobin, there is a correlation between faster
rates and more negative potentials. However, in Ngb, reaction rates
are apparently related to the distal pocket volume, and redox potential
shows a poor relationship with the rate constants. This suggests a
relationship between the nitrite reduction rate and heme accessibility
in Ngb, particularly marked for His64(E7) mutants. In five-coordinate
globins, His(E7) facilitates nitrite reduction, likely through proton
donation. Conversely, in Ngb, the reduction mechanism does not rely
on the delivery of a proton from the histidine side chain, as His64
mutants show the fastest reduction rates. In fact, the rate observed
for H64A Ngb (1120 M–1 s–1) is
to the best of our knowledge the fastest reported for a heme nitrite
reductase. These differences may be related to a differential stabilization
of the iron–nitrite complexes in five- and six-coordinate globins.
Collapse
Affiliation(s)
- Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | | | | | |
Collapse
|
34
|
Lambrou A, Pinakoulaki E. Resonance Raman detection of the myoglobin nitrito heme Fe–O–NO/2-nitrovinyl species: implications for helix E-helix F interactions. Phys Chem Chem Phys 2015; 17:3841-9. [DOI: 10.1039/c4cp04352a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present resonance Raman evidence for the formation of myoglobin nitrito heme Fe–O–NO/2-nitrovinyl and propose that the species we have detected at acidic pH is the myoglobin nitrous heme Fe–(H)O–NO/2-nitrovinyl complex.
Collapse
|
35
|
|
36
|
Kurtikyan TS, Hayrapetyan VA, Mehrabyan MM, Ford PC. Six-coordinate nitrito and nitrato complexes of manganese porphyrin. Inorg Chem 2014; 53:11948-59. [PMID: 25369232 DOI: 10.1021/ic5014329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction of small increments of NO2 gas with sublimed amorphous layers of Mn(II)(TPP) (TPP = meso-tetra-phenylporphyrinato dianion) in a vacuum cryostat leads to formation of the 5-coordinate monodentate nitrato complex Mn(III)(TPP)(η(1)-ONO2) (II). This transformation proceeds through the two distinct steps with initial formation of the five coordinate O-nitrito complex Mn(III)(TPP)(η(1)-ONO) (I) as demonstrated by the electronic absorption spectra and by FTIR spectra using differently labeled nitrogen dioxide. A plausible mechanism for the second stage of reaction is offered based on the spectral changes observed upon subsequent interaction of (15)NO2 and NO2 with the layered Mn(TPP). Low-temperature interaction of I and II with the vapors of various ligands L (L = O-, S-, and N-donors) leads to formation of the 6-coordinate O-nitrito Mn(III)(TPP)(L)(η(1)-ONO) and monodentate nitrato Mn(III)(TPP)(L)(η(1)-ONO2) complexes, respectively. Formation of the 6-coordinate O-nitrito complex is accompanied by the shifts of the ν(N═O) band to lower frequency and of the ν(N-O) band to higher frequency. The frequency difference between these bands Δν = ν(N═O) - ν(N-O) is a function of L and is smaller for the stronger bases. Reaction of excess NH3 with I leads to formation of Mn(TPP)(NH3)(η(1)-ONO) and of the cation [Mn(TPP)(NH3)2](+) plus ionic nitrite. The nitrito complexes are relatively unstable, but several of the nitrato species can be observed in the solid state at room temperature. For example, the tetrahydrofuran complex Mn(TPP)(THF)(η(1)-ONO2) is stable in the presence of THF vapors (∼5 mm), but it loses this ligand upon high vacuum pumping at RT. When L = dimethylsulfide (DMS), the nitrato complex is stable only to ∼-30 °C. Reactions of II with the N-donor ligands NH3, pyridine, or 1-methylimidazole are more complex. With these ligands, the nitrato complexes Mn(III)(TPP)(L)(η(1)-ONO2) and the cationic complexes [Mn(TPP)(L)2](+) coexist in the layer at room temperature, the latter formed as a result of NO3(-) displacement when L is in excess.
Collapse
Affiliation(s)
- T S Kurtikyan
- Molecule Structure Research Centre (MSRC) of the Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS , 375014, Yerevan, Armenia
| | | | | | | |
Collapse
|
37
|
Lima FA, Penfold TJ, van der Veen RM, Reinhard M, Abela R, Tavernelli I, Rothlisberger U, Benfatto M, Milne CJ, Chergui M. Probing the electronic and geometric structure of ferric and ferrous myoglobins in physiological solutions by Fe K-edge absorption spectroscopy. Phys Chem Chem Phys 2014; 16:1617-31. [PMID: 24317683 DOI: 10.1039/c3cp53683a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an iron K-edge X-ray absorption study of carboxymyoglobin (MbCO), nitrosylmyoglobin (MbNO), oxymyoglobin (MbO2), cyanomyoglobin (MbCN), aquomet myoglobin (metMb) and unligated myoglobin (deoxyMb) in physiological media. The analysis of the XANES region is performed using the full-multiple scattering formalism, implemented within the MXAN package. This reveals trends within the heme structure, absent from previous crystallographic and X-ray absorption analysis. In particular, the iron-nitrogen bond lengths in the porphyrin ring converge to a common value of about 2 Å, except for deoxyMb whose bigger value is due to the doming of the heme. The trends of the Fe-Nε (His93) bond length is found to be consistent with the effect of ligand binding to the iron, with the exception of MbNO, which is explained in terms of the repulsive trans effect. We derive a high resolution description of the relative geometry of the ligands with respect to the heme and quantify the magnitude of the heme doming in the deoxyMb form. Finally, time-dependent density functional theory is used to simulate the pre-edge spectra and is found to be in good agreement with the experiment. The XAS spectra typically exhibit one pre-edge feature which arises from transitions into the unoccupied dσ and dπ - πligand* orbitals. 1s → dπ transitions contribute weakly for MbO2, metMb and deoxyMb. However, despite this strong Fe d contribution these transitions are found to be dominated by the dipole (1s → 4p) moment due to the low symmetry of the heme environment.
Collapse
Affiliation(s)
- Frederico A Lima
- École Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, CH, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Silaghi-Dumitrescu R, Svistunenko DA, Cioloboc D, Bischin C, Scurtu F, Cooper CE. Nitrite binding to globins: linkage isomerism, EPR silence and reductive chemistry. Nitric Oxide 2014; 42:32-9. [PMID: 25172022 PMCID: PMC4256065 DOI: 10.1016/j.niox.2014.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/29/2014] [Accepted: 08/18/2014] [Indexed: 12/28/2022]
Abstract
A DFT-derived barrier for nitrite linkage isomerism on heme center is reported. EPR spectra of nitrite adducts show evidence for linkage isomerism. The electronic structure of Fe(III)-nitrite heme is conformation-dependent. Certain conformations are inducive to EPR silence. Fe(II)-nitrite is undetectable on stopped-flow time scales.
The nitrite adducts of globins can potentially bind via O- or N- linkage to the heme iron. We have used EPR (electron paramagnetic resonance) and DFT (density functional theory) to explore these binding modes to myoglobin and hemoglobin. We demonstrate that the nitrite adducts of both globins have detectable EPR signals; we provide an explanation for the difficulty in detecting these EPR features, based on uniaxial state considerations. The EPR and DFT data show that both nitrite linkage isomers can be present at the same time and that the two isomers are readily interconvertible in solution. The millisecond-scale process of nitrite reduction by Hb is investigated in search of the elusive Fe(II)-nitrite adduct.
Collapse
Affiliation(s)
- Radu Silaghi-Dumitrescu
- "Babeş-Bolyai" University, 1 Mihail Kogalniceanu str., RO-400084 Cluj-Napoca, Romania; Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | - Dimitri A Svistunenko
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Daniela Cioloboc
- "Babeş-Bolyai" University, 1 Mihail Kogalniceanu str., RO-400084 Cluj-Napoca, Romania
| | - Cristina Bischin
- "Babeş-Bolyai" University, 1 Mihail Kogalniceanu str., RO-400084 Cluj-Napoca, Romania
| | - Florina Scurtu
- "Babeş-Bolyai" University, 1 Mihail Kogalniceanu str., RO-400084 Cluj-Napoca, Romania
| | - Chris E Cooper
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
39
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
40
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
41
|
Vonderach M, Winghart MO, MacAleese L, Chirot F, Antoine R, Dugourd P, Weis P, Hampe O, Kappes MM. Conformer-selective photoelectron spectroscopy of α-lactalbumin derived multianions in the gas phase. Phys Chem Chem Phys 2014; 16:3007-13. [DOI: 10.1039/c3cp54596b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Domínguez SE, Alborés P, Fagalde F. Photoinduced linkage isomerization in new rhenium(I) tricarbonyl complexes coordinated to N-nitrite and O-nitrite. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Krishnan S, Walgama C. Electrocatalytic Features of a Heme Protein Attached to Polymer-Functionalized Magnetic Nanoparticles. Anal Chem 2013; 85:11420-6. [DOI: 10.1021/ac402421z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sadagopan Krishnan
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Charuksha Walgama
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
44
|
Galinato MGI, Fogle RS, Galan JF. Binding interaction of hypocrellin B to myoglobin: a spectroscopic and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:337-344. [PMID: 23851176 DOI: 10.1016/j.saa.2013.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
Hypocrellin B (Hyp B), a perylenequinone naturally present in Hypocrella bambusae, is commonly used to treat a variety of diseases. Its versatile role in different biomedical applications necessitates a thorough investigation of its interaction with different biomolecules, particularly enzymes. To address this need, the binding mode of Hyp B to myoglobin (Mb) was studied using UV-visible absorption, emission, and synchronous fluorescence spectroscopies, as well as flexible docking simulations. Analyses of the absorbance and fluorescence data establish that Hyp B quenches tyrosine (Tyr) and tryptophan (Trp) fluorescence via the formation of two unique ground-state complexes on the surface of Mb, with one site being more energetically preferred than the other (the fraction of fluorophores accessible by Hyp B is 0.32). Molecular modeling simulations demonstrate preferential Hyp B binding at the Tyr103 site first, followed by the Trp7 site. In both cases, a ground-state complex is generated through H-bonding interaction between Hyp B and the respective residues, with the Tyr103 complex being more stable than that of the Trp7 complex. Synchronous fluorescence measurements indicate that the microenvironment surrounding Trp7 becomes more hydrophilic upon Hyp B interaction. This is evidenced by a red-shift of the band associated with this residue, while that of Tyr103 remains the same. Electrostatic potential surfaces reveal a more pronounced shift in electron density of Trp7 upon Hyp B binding compared to Tyr103. The binding constant of Hyp B to Mb is 1.21×10(5)M(-1), suggesting a relatively strong interaction between the ligand and enzyme.
Collapse
|
45
|
Small ligand-globin interactions: reviewing lessons derived from computer simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1722-38. [PMID: 23470499 DOI: 10.1016/j.bbapap.2013.02.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
In this work we review the application of classical and quantum-mechanical atomistic computer simulation tools to the investigation of small ligand interaction with globins. In the first part, studies of ligand migration, with its connection to kinetic association rate constants (kon), are presented. In the second part, we review studies for a variety of ligands such as O2, NO, CO, HS(-), F(-), and NO2(-) showing how the heme structure, proximal effects, and the interactions with the distal amino acids can modulate protein ligand binding. The review presents mainly results derived from our previous works on the subject, in the context of other theoretical and experimental studies performed by others. The variety and extent of the presented data yield a clear example of how computer simulation tools have, in the last decade, contributed to our deeper understanding of small ligand interactions with globins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
46
|
Spiro TG, Soldatova AV, Balakrishnan G. CO, NO and O 2 as Vibrational Probes of Heme Protein Interactions. Coord Chem Rev 2013; 257:511-527. [PMID: 23471138 PMCID: PMC3587108 DOI: 10.1016/j.ccr.2012.05.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The gaseous XO molecules (X = C, N or O) bind to the heme prosthetic group of heme proteins, and thereby activate or inhibit key biological processes. These events depend on interactions of the surrounding protein with the FeXO adduct, interactions that can be monitored via the frequencies of the Fe-X and X-O bond stretching modes, νFeX and νXO. The frequencies can be determined by vibrational spectroscopy, especially resonance Raman spectroscopy. Backbonding, the donation of Fe dπ electrons to the XO π* orbitals, is a major bonding feature in all the FeXO adducts. Variations in backbonding produce negative νFeX/νXO correlations, which can be used to gauge electrostatic and H-bonding effects in the protein binding pocket. Backbonding correlations have been established for all the FeXO adducts, using porphyrins with electron donating and withdrawing substituents. However the adducts differ in their response to variations in the nature of the axial ligand, and to specific distal interactions. These variations provide differing vantages for evaluating the nature of protein-heme interactions. We review experimental studies that explore these variations, and DFT computational studies that illuminate the underlying physical mechanisms.
Collapse
Affiliation(s)
- Thomas G. Spiro
- Department of Chemistry, University of Washington Box 351700, Seattle, Washington 98195
| | | | - Gurusamy Balakrishnan
- Department of Chemistry, University of Washington Box 351700, Seattle, Washington 98195
| |
Collapse
|
47
|
|
48
|
Mechanisms of Nitric Oxide Reactions Mediated by Biologically Relevant Metal Centers. NITROSYL COMPLEXES IN INORGANIC CHEMISTRY, BIOCHEMISTRY AND MEDICINE II 2013. [DOI: 10.1007/430_2013_117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Sanders BC, Rhine MA, Harrop TC. Properties of {FeNO}8 and {CoNO}9 Metal Nitrosyls in Relation to Nitroxyl Coordination Chemistry. MOLECULAR DESIGN IN INORGANIC BIOCHEMISTRY 2013. [DOI: 10.1007/430_2012_87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
50
|
Lehnert N, Scheidt WR, Wolf MW. Structure and Bonding in Heme–Nitrosyl Complexes and Implications for Biology. NITROSYL COMPLEXES IN INORGANIC CHEMISTRY, BIOCHEMISTRY AND MEDICINE II 2013. [DOI: 10.1007/430_2013_92] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|