1
|
Malina J, Kostrhunova H, Novohradsky V, Scott P, Brabec V. Metallohelix vectors for efficient gene delivery via cationic DNA nanoparticles. Nucleic Acids Res 2022; 50:674-683. [PMID: 35018455 PMCID: PMC8789045 DOI: 10.1093/nar/gkab1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 01/31/2023] Open
Abstract
The design of efficient and safe gene delivery vehicles remains a major challenge for the application of gene therapy. Of the many reported gene delivery systems, metal complexes with high affinity for nucleic acids are emerging as an attractive option. We have discovered that certain metallohelices-optically pure, self-assembling triple-stranded arrays of fully encapsulated Fe-act as nonviral DNA delivery vectors capable of mediating efficient gene transfection. They induce formation of globular DNA particles which protect the DNA from degradation by various restriction endonucleases, are of suitable size and electrostatic potential for efficient membrane transport and are successfully processed by cells. The activity is highly structure-dependent-compact and shorter metallohelix enantiomers are far less efficient than less compact and longer enantiomers.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Peter Scott
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| |
Collapse
|
2
|
Lee WK, Kwon K, Choi Y, Lee JS. Dynamic metallization of spherical DNA via conformational transition into gold nanostructures with controlled sizes and shapes. J Colloid Interface Sci 2021; 594:160-172. [PMID: 33761393 DOI: 10.1016/j.jcis.2021.02.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the reversible condensation properties of DNA, DNA metallization during controlled conformational transitions has been rarely investigated. We perform dynamic metallization of spherically condensed DNA nanoparticles (DNA NPs) via a globule-to-coil transition. A positively charged new Au3+ reagent is prepared via ligand-exchange of conventional complex Au3+ ions, which was used to synthesize spherically condensed DNA NPs simply based on the fundamental electrostatic and coordinative interactions between DNA and Au3+ions. Interestingly, the size of the Au3+-condensed DNA NPs (Au3+-DNA NPs) and the type of reducing agents lead to the formation of different Au nanostructures with unprecedented morphologies (cracked NPs, bowl-shaped NPs, and small NPs), owing to the controlled conformational changes in the Au3+-DNA NPs during metallization. The condensed DNA NPs play significant roles for Au nanostructures as (1) the dynamic template for the synthesis, (2) the reservoir and supply of Au3+ for the growth, and (3) the surface stabilizer. The synthesized Au nanostructures are remarkably stable against high ionic strength and exhibit catalytic activities and excellent SERS properties. This is the first study on the morphological control and concomitant dynamic metallization of spherically condensed DNA, proposing new synthetic routes for bioinorganic nanomaterials.
Collapse
Affiliation(s)
- Won Kyu Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kihun Kwon
- Department of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yeonho Choi
- Department of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Bhat SS, Shivalingegowda N, Revankar VK, Lokanath N, Kugaji MS, Kumbar V, Bhat K. Synthesis, structural characterization and biological properties of phosphorescent iridium(III) complexes. J Inorg Biochem 2017; 177:127-137. [DOI: 10.1016/j.jinorgbio.2017.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
|
4
|
Su RC, Liu Q, Yi WJ, Zhao ZG. Zn(II)-dipicolylamine-based metallo-lipids as novel non-viral gene vectors. J Biol Inorg Chem 2017; 22:867-879. [PMID: 28508949 DOI: 10.1007/s00775-017-1465-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
In this study, a series of Zn(II)-dipicolylamine (Zn-DPA) based cationic lipids bearing different hydrophobic tails (long chains, α-tocopherol, cholesterol or diosgenin) were synthesized. Structure-activity relationship (SAR) of these lipids was studied in detail by investigating the effects of several structural aspects including the type of hydrophobic tails, the chain length and saturation degree. In addition, several assays were used to study their interactions with plasmid DNA, and results reveal that these lipids could condense DNA into nanosized particles with appropriate size and zeta-potentials. MTT-based cell viability assays showed that lipoplexes 5 had low cytotoxicity. The in vitro gene transfection studies showed the hydrophobic tails clearly affected the TE, and hexadecanol-containing lipid 5b gives the best TE, which was 2.2 times higher than bPEI 25k in the presence of 10% serum. The results not only demonstrate that these lipids might be promising non-viral gene vectors, but also afford us clues for further optimization of lipidic gene delivery materials.
Collapse
Affiliation(s)
- Rong-Chuan Su
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Qiang Liu
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China.
| | - Wen-Jing Yi
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Zhi-Gang Zhao
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Bhat SS, Revankar VK, Pinjari RV, S N, Bogar C, Bhat K, Kawade VA. Efficient DNA condensation by ruthenium(ii) polypyridyl complexes containing triptycenyl functionalized 1,10-phenanthroline. NEW J CHEM 2017. [DOI: 10.1039/c7nj00738h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of luminescent ruthenium(ii) polypyridyl complexes containing an extended aromatic moiety derived from triptycene and 1,10-phenanthroline were synthesized and their photophysical, theoretical, and biological properties were investigated.
Collapse
Affiliation(s)
- Satish S. Bhat
- Department of Chemistry
- Karnatak University
- Dharwad-580003
- India
| | | | - Rahul V. Pinjari
- School of Chemical Science
- Swami Raman and Teerth Marathwada University
- Nanded-431606
- India
| | - Naveen S
- Institution of Excellence
- Vijnana Bhavana
- University of Mysore
- Mysuru 570006
- India
| | - Chetana Bogar
- Department of Microbiology
- Marathamandal Dental College and Research Centre
- Belgaum
- India
| | - Kishor Bhat
- Department of Microbiology
- Marathamandal Dental College and Research Centre
- Belgaum
- India
| | | |
Collapse
|
6
|
Bhanjadeo MM, Nayak AK, Subudhi U. Cerium chloride stimulated controlled conversion of B-to-Z DNA in self-assembled nanostructures. Biochem Biophys Res Commun 2017; 482:916-921. [DOI: 10.1016/j.bbrc.2016.11.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 01/01/2023]
|
7
|
Rane LB, Kate AN, Ramteke SN, Shravage BV, Kulkarni PP, Kumbhar AA. Fluorescent zinc(ii) complexes for gene delivery and simultaneous monitoring of protein expression. Dalton Trans 2016; 45:16984-16996. [PMID: 27711702 DOI: 10.1039/c6dt02871c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two new zinc(ii) complexes, [Zn(l-His)(NIP)]+(1) and [Zn(acac)2(NIP)](2) (where NIP is 2-(naphthalen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, acac = acetyl acetone), have been synthesized and characterized by elemental analysis, UV-vis, fluorescence, IR, 1H NMR and electron spray ionization mass spectroscopies. Gel retardation assay, atomic force microscopy and dynamic light scattering studies show that 1 and 2 can induce the condensation of circular plasmid pBR322 DNA into nanometer size particles under ambient conditions. Treatment of 2 with 5 mM EDTA restored 30% of the supercoiled form of DNA, revealing partial reversibility of DNA condensation. The in vitro transfection experiment demonstrates that the complexes can be used to deliver pCMV-tdTomato-N1 plasmid which expresses red fluorescent protein. The confocal studies show that the fluorescent nature of complexes is advantageous for visualizing the intracellular delivery of metal complexes as well as transfection efficiency using two distinct emission windows.
Collapse
Affiliation(s)
- Lalita B Rane
- Department of Chemistry, Savitribai Phule Pune University, Pune - 411007, India.
| | | | | | | | | | | |
Collapse
|
8
|
Zhao C, Sun Y, Ren J, Qu X. Recent progress in lanthanide complexes for DNA sensing and targeting specific DNA structures. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure. Sci Rep 2016; 6:26855. [PMID: 27241949 PMCID: PMC4886512 DOI: 10.1038/srep26855] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/05/2016] [Indexed: 11/30/2022] Open
Abstract
Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA.
Collapse
|
10
|
|