1
|
Sheng D, Guo S, Li A, Wu Q, Zhan M, Liu X, Chen H. NO-Releasing Metal-Organic Framework-Based Composite Coatings with Heparin-Mimicking Copolymers on Titanium Substrates: Impact on Vascular Cell Behavior. Biomacromolecules 2025; 26:2540-2552. [PMID: 40138522 DOI: 10.1021/acs.biomac.5c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nitric oxide (NO), known for its anticoagulant and antiproliferative effects, holds great promise in anticoagulation therapy. Copper-based metal-organic frameworks, such as CuBTTri, catalyze NO formation, but their impact on vascular cells requires further study. In this work, polydopamine, polyethylenimine, and CuBTTri were codeposited on titanium substrates. To enhance cytocompatibility, heparin-mimicking copolymers were incorporated. By adjusting CuBTTri content, NO release rates and cytotoxicity toward vascular cells were regulated. The heparin-mimicking copolymers improved the cytocompatibility with human umbilical vein endothelial cells, while NO released from CuBTTri inhibited the proliferation of human umbilical vein smooth muscle cells. By integrating NO-releasing CuBTTri with heparin-mimicking copolymers, we successfully developed a composite coating that selectively modulates vascular cell behavior.
Collapse
Affiliation(s)
- Denghai Sheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Aiqing Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qiulian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Mengying Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
2
|
Mujtaba AG, Topuz B, Karakeçili A. Hybrid poly(lactide-co-glycolide) membranes incorporated with Doxycycline-loaded copper-based metal-organic nanosheets as antibacterial platforms. Biomed Mater 2024; 20:015011. [PMID: 39514973 DOI: 10.1088/1748-605x/ad906b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The rise of antimicrobial resistance necessitates innovative strategies to combat persistent infections. Metal-organic frameworks (MOFs) have attracted significant attention as antibiotic carriers due to their high drug loading capacity and structural adaptability. In particular, 2D MOF nanosheets are emerging as a notable alternative to their traditional 3D relatives due to their remarkable advantages in enhanced surface area, flexibility and exposed active region properties. Herein, we synthesized 2D copper 1,4-benzendicarboxylate (CuBDC) nanosheets and utilized them as a carrier and controlled release system for Doxycycline (Doxy@CuBDC), for the first time. The Doxy@CuBDC nanosheets were subsequently incorporated into Poly(lactic-co-glycolic acid) (PLGA) electrospun membranes (Doxy@CuBDC/PLGA). The resultant bioactive fibrous membranes exhibited double-barrier controlled release properties, extending the Doxy release up to ∼9 d at pH 7.4 and 5.5. Significant inhibitory effects againstStaphylococcus aureusandEscherichia coliwere observed. The morphological analyses revealed the deformed bacterial cell structures on Doxy@CuBDC/PLGA membranes that indicates potent bactericidal activity. Furthermore, cytotoxicity assays demonstrated the non-toxic nature of the fabricated membranes, underscoring their potential use for biomedical applications. Overall, the hybrid antibacterial PLGA membranes present a promising strategy for combating microbial infections while maintaining biocompatibility and offer a versatile approach for biomedical material design and surface coatings (e.g. wound dressings, implants).
Collapse
Affiliation(s)
- Ayse Gunyakti Mujtaba
- Biotechnology Institute, Ankara University, Gümüşdere 60. Yıl Yerleşkesi Keçiören, Ankara 06135, Turkey
| | - Berna Topuz
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, 06100 Tandoğan, Ankara, Turkey
| | - Ayşe Karakeçili
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, 06100 Tandoğan, Ankara, Turkey
| |
Collapse
|
3
|
Omar MN, Rahman RNZRA, Noor NDM, Latip W, Knight VF, Ali MSM. Exploring the Antarctic aminopeptidase P from Pseudomonas sp. strain AMS3 through structural analysis and molecular dynamics simulation. J Biomol Struct Dyn 2024:1-13. [PMID: 38555730 DOI: 10.1080/07391102.2024.2331093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Aminopeptidase P (APPro) is a crucial metalloaminopeptidase involved in amino acid cleavage from peptide N-termini, playing essential roles as versatile biocatalysts with applications ranging from pharmaceuticals to industrial processes. Despite acknowledging its potential for catalysis in lower temperatures, detailed molecular basis and biotechnological implications in cold environments are yet to be explored. Therefore, this research aims to investigate the molecular mechanisms underlying the cold-adapted characteristics of APPro from Pseudomonas sp. strain AMS3 (AMS3-APPro) through a detailed analysis of its structure and dynamics. In this study, structure analysis and molecular dynamics (MD) simulation of a predicted model of AMS3-APPro has been performed at different temperatures to assess structural flexibility and thermostability across a temperature range of 0-60 °C over 100 ns. The MD simulation results revealed that the structure were able to remain stable at low temperatures. Increased temperatures present a potential threat to the overall stability of AMS3-APPro by disrupting the intricate hydrogen bond networks crucial for maintaining structural integrity, thereby increasing the likelihood of protein unfolding. While the metal binding site at the catalytic core exhibits resilience at higher temperatures, highlighting its local structural integrity, the overall enzyme structure undergoes fluctuations and potential denaturation. This extensive structural instability surpasses the localized stability observed at the metal binding site. Consequently, these assessments offer in-depth understanding of the cold-adapted characteristics of AMS3-APPro, highlighting its capability to uphold its native conformation and stability in low-temperature environments. In summary, this research provides valuable insights into the cold-adapted features of AMS3-APPro, suggesting its efficient operation in low thermal conditions, particularly relevant for potential biotechnological applications in cold environments.
Collapse
Affiliation(s)
- Muhamad Nadzmi Omar
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Victor Feizal Knight
- Research Centre for Chemical Defence, National Defence University of Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Rousseau BJ, Soudackov AV, Tuttle RR, Reynolds MM, Finke RG, Hammes-Schiffer S. Computational Insights into the Mechanism of Nitric Oxide Generation from S-Nitrosoglutathione Catalyzed by a Copper Metal-Organic Framework. J Am Chem Soc 2023; 145:10285-10294. [PMID: 37126424 PMCID: PMC10344594 DOI: 10.1021/jacs.3c01569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The controlled generation of nitric oxide (NO) from endogenous sources, such as S-nitrosoglutathione (GSNO), has significant implications for biomedical implants due to the vasodilatory and other beneficial properties of NO. The water-stable metal-organic framework (MOF) Cu-1,3,5-tris[1H-1,2,3-triazol-5-yl]benzene has been shown to catalyze the production of NO and glutathione disulfide (GSSG) from GSNO in aqueous solution as well as in blood. Previous experimental work provided kinetic data for the catalysis of the 2GSNO → 2NO + GSSG reaction, leading to various proposed mechanisms. Herein, this catalytic process is examined using density functional theory. Minimal functional models of the Cu-MOF cluster and glutathione moieties are established, and three distinct catalytic mechanisms are explored. The most thermodynamically favorable mechanism studied is consistent with prior experimental findings. This mechanism involves coordination of GSNO to copper via sulfur rather than nitrogen and requires a reductive elimination that produces a Cu(I) intermediate, implicating a redox-active copper site. The experimentally observed inhibition of reactivity at high pH values is explained in terms of deprotonation of a triazole linker, which decreases the structural stability of the Cu(I) intermediate. These fundamental mechanistic insights may be generally applicable to other MOF catalysts for NO generation.
Collapse
Affiliation(s)
| | | | - Robert R. Tuttle
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richard G. Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
5
|
Qian H, Ye Z, Pi L, Ao J. Roles and current applications of S-nitrosoglutathione in anti-infective biomaterials. Mater Today Bio 2022; 16:100419. [PMID: 36105674 PMCID: PMC9465324 DOI: 10.1016/j.mtbio.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
Bacterial infections can compromise the physical and biological functionalities of humans and pose a huge economical and psychological burden on infected patients. Nitric oxide (NO) is a broad-spectrum antimicrobial agent, whose mechanism of action is not affected by bacterial resistance. S-nitrosoglutathione (GSNO), an endogenous donor and carrier of NO, has gained increasing attention because of its potent antibacterial activity and efficient biocompatibility. Significant breakthroughs have been made in the application of GSNO in biomaterials. This review is based on the existing evidence that comprehensively summarizes the progress of antimicrobial GSNO applications focusing on their anti-infective performance, underlying antibacterial mechanisms, and application in anti-infective biomaterials. We provide an accurate overview of the roles and applications of GSNO in antibacterial biomaterials and shed new light on the avenues for future studies.
Collapse
Key Words
- A.baumannii, Acinetobacter baumannii
- AgNPs, Silver nanoparticles
- Antibacterial property
- BMSCs, Bone marrow stem cells
- Bacterial resistance
- Biomaterials
- C.albicans, Candida albicans
- CS/GE, Chitosan/gelatin
- Cu, copper
- DMSO, Dimethyl sulfoxide
- DPA, Diethylenetriamine pentaacetic acid
- E. coli, Escherichia coli
- E.tenella, Eimeria tenella
- ECC, Extracorporeal circulation
- ECM, Experimental cerebral malaria
- GSNO, S-Nitrosoglutathione
- GSNOR, S-Nitrosoglutathione Reductase
- H.pylori, Helicobacter pylori
- HCC, Human cervical carcinoma
- HDFs, Human dermal fibroblasts
- HUVEC, Human umbilical vein endothelial cells
- ICR, Imprinted control region
- Infection
- K.Pneumonia, Klebsiella Pneumonia
- L.amazonensis, Leishmania amazonensis
- L.major, Leishmania major
- M.Tuberculosis, Mycobacterium tuberculosis
- M.smegmatis, Mycobacterium smegmatis
- MOF, Metal–organic framework
- MRPA, Multidrug-resistant Pseudomonas aeruginosa
- MRSA, Methicillin resistant Staphylococcus aureus
- N. gonorrhoeae, Neisseria gonorrhoeae
- N.meningitidis, Neisseria meningitidis
- NA, Not available
- NO-np, NO-releasing nanoparticulate platform
- NP, Nanoparticle
- P.aeruginosa, Pseudomonas aeruginosa
- P.berghei, Plasmodium berghei
- P.mirabilis, Proteus mirabilis
- PCL, Polycaprolactone
- PCVAD, Porcine circovirus-associated disease
- PDA-GSNO NPs, Polydopamine nanoparticles containing GSNO
- PDAM@Cu, polydopamine based copper coatings
- PEG, polyethylene glycol
- PHB, polyhydroxybutyrate
- PLA, polylactic acid
- PLGA, poly(lactic-co-glycolic acid)
- PTT, Photothermal therapy
- PVA, poly(vinyl alcohol)
- PVA/PEG, poly(vinyl alcohol)/poly(ethylene glycol)
- PVC, poly(vinyl chloride)
- S-nitrosoglutathione
- S. typhimurium, Salmonella typhimurium
- S.aureus, Staphylococcus aureus
- S.epidermidis, Staphylococcus epidermidis
- S.pneumoniae, Streptococcus pneumoniae
- SAKI, Septic acute kidney injury
- SCI, Spinal cord slices
- Se, Selenium
- Sp3, Specificity proteins 3
- TDC, Tunneled dialysis catheters
- TMOS, Tetramethylorthosilicate
- ZnO, Zinc oxide
- cftr, cystic fibrosis transmembrane conductance regulatory gene
- d, day
- h, hour
- min, minute
- pSiNPs, porous silicon nanoparticles
- w, week
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lanping Pi
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Zhang X, Peng F, Wang D. MOFs and MOF-Derived Materials for Antibacterial Application. J Funct Biomater 2022; 13:215. [PMID: 36412856 PMCID: PMC9680240 DOI: 10.3390/jfb13040215] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Bacterial infections pose a serious threat to people's health. Efforts are being made to develop antibacterial agents that can inhibit bacterial growth, prevent biofilm formation, and kill bacteria. In recent years, materials based on metal organic frameworks (MOFs) have attracted significant attention for various antibacterial applications due to their high specific surface area, high enzyme-like activity, and continuous release of metal ions. This paper reviews the recent progress of MOFs as antibacterial agents, focusing on preparation methods, fundamental antibacterial mechanisms, and strategies to enhance their antibacterial effects. Finally, several prospects related to MOFs for antibacterial application are proposed, aiming to provide possible research directions in this field.
Collapse
Affiliation(s)
- Xin Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Donghui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
7
|
Tuttle RR, Finke RG, Reynolds MM. Cu II Lewis Acid, Proton-Coupled Electron Transfer Mechanism for Cu-Metal–Organic Framework-Catalyzed NO Release from S-Nitrosoglutathione. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert R. Tuttle
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richard G. Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
8
|
Lin J, Ho W, Qin X, Leung CF, Au VKM, Lee SC. Metal-Organic Frameworks for NO x Adsorption and Their Applications in Separation, Sensing, Catalysis, and Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105484. [PMID: 35032140 DOI: 10.1002/smll.202105484] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen oxide (NOx ) is a family of poisonous and highly reactive gases formed when fuel is burned at high temperatures during anthropogenic behavior. It is a strong oxidizing agent that significantly contributes to the ozone and smog in the atmosphere. Thus, NOx removal is important for the ecological environment upon which the civilization depends. In recent decades, metal-organic frameworks (MOFs) have been regarded as ideal candidates to address these issues because they form a reticular structure between proper inorganic and organic constituents with ultrahigh porosity and high internal surface area. These characteristics render them chemically adaptable for NOx adsorption, separation, sensing, and catalysis. In additional, MOFs enable potential nitric oxide (NO) delivery for the signaling of molecular NO in the human body. Herein, the different advantages of MOFs for coping with current environmental burdens and improving the habitable environment of humans on the basis of NOx adsorption are reviewed.
Collapse
Affiliation(s)
- Jinliang Lin
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Xing Qin
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Chi-Fai Leung
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Vonika Ka-Man Au
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Shun-Cheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University Hong Kong, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
9
|
Shen Q, Qi Y, Kong Y, Bao H, Wang Y, Dong A, Wu H, Xu Y. Advances in Copper-Based Biomaterials With Antibacterial and Osteogenic Properties for Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 9:795425. [PMID: 35127670 PMCID: PMC8811349 DOI: 10.3389/fbioe.2021.795425] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Treating bone defects coupled with pathogen infections poses a formidable challenge to clinical medicine. Thus, there is an urgent need to develop orthopedic implants that provide excellent antibacterial and osteogenic properties. Of the various types, copper-based biomaterials capable of both regenerating bone and fighting infections are an effective therapeutic strategy for bone tissue engineering and therefore have attracted significant research interest. This review examines the advantages of copper-based biomaterials for biological functions and introduces these materials’ antibacterial mechanisms. We summarize current knowledge about the application of copper-based biomaterials with antimicrobial and osteogenic properties in the prevention and treatment of bone infection and discuss their potential uses in the field of orthopedics. By examining both broad and in-depth research, this review functions as a practical guide to developing copper-based biomaterials and offers directions for possible future work.
Collapse
Affiliation(s)
- Qiudi Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Yansong Qi
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yangzhi Kong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Huricha Bao
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yifan Wang
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- *Correspondence: Alideertu Dong, ; Haixia Wu, ; Yongsheng Xu,
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- *Correspondence: Alideertu Dong, ; Haixia Wu, ; Yongsheng Xu,
| | - Yongsheng Xu
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
- *Correspondence: Alideertu Dong, ; Haixia Wu, ; Yongsheng Xu,
| |
Collapse
|
10
|
Garren M, Maffe P, Melvin A, Griffin L, Wilson S, Douglass M, Reynolds M, Handa H. Surface-Catalyzed Nitric Oxide Release via a Metal Organic Framework Enhances Antibacterial Surface Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56931-56943. [PMID: 34818503 PMCID: PMC9728615 DOI: 10.1021/acsami.1c17248] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It has been previously demonstrated that metal nanoparticles embedded into polymeric materials doped with nitric oxide (NO) donor compounds can accelerate the release rate of NO for therapeutic applications. Despite the advantages of elevated NO surface flux for eradicating opportunistic bacteria in the initial hours of application, metal nanoparticles can often trigger a secondary biocidal effect through leaching that can lead to unfavorable cytotoxic responses from host cells. Alternatively, copper-based metal organic frameworks (MOFs) have been shown to stabilize Cu2+/1+ via coordination while demonstrating longer-term catalytic performance compared to their salt counterparts. Herein, the practical application of MOFs in NO-releasing polymeric substrates with an embedded NO donor compound was investigated for the first time. By developing composite thermoplastic silicon polycarbonate polyurethane (TSPCU) scaffolds, the catalytic effects achievable via intrapolymeric interactions between an MOF and NO donor compound were investigated using the water-stable copper-based MOF H3[(Cu4Cl)3(BTTri)8-(H2O)12]·72H2O (CuBTTri) and the NO donor S-nitroso-N-acetyl-penicillamine (SNAP). By creating a multifunctional triple-layered composite scaffold with CuBTTri and SNAP, the surface flux of NO from catalyzed SNAP decomposition was found tunable based on the variable weight percent CuBTTri incorporation. The tunable NO surface fluxes were found to elicit different cytotoxic responses in human cell lines, enabling application-specific tailoring. Challenging the TSPCU-NO-MOF composites against 24 h bacterial growth models, the enhanced NO release was found to elicit over 99% reduction in adhered and over 95% reduction in planktonic methicillin-resistant Staphylococcus aureus, with similar results observed for Escherichia coli. These results indicate that the combination of embedded MOFs and NO donors can be used as a highly efficacious tool for the early prevention of biofilm formation on medical devices.
Collapse
Affiliation(s)
- Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick Maffe
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Alyssa Melvin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lauren Griffin
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sarah Wilson
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Melissa Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
11
|
Tuttle RR, Daly RE, Rithner CD, Reynolds MM. Monitoring a MOF Catalyzed Reaction Directly in Blood Plasma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52006-52013. [PMID: 34280308 DOI: 10.1021/acsami.1c08917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we establish a method to quantitatively monitor a metal-organic framework (MOF)-catalyzed, biomedically relevant reaction directly in blood plasma, specifically, the generation of nitric oxide (NO) from the endogenous substrate S-nitrosoglutathione (GSNO) catalyzed by H3[(Cu4Cl)3-(BTTri)8] (CuBTTri). The reaction monitoring method uses UV-vis and 1H NMR spectroscopies along with a nitric oxide analyzer (NOA) to yield the reaction stoichiometry and catalytic rate for GSNO to NO conversion catalyzed by CuBTTri in blood plasma. The results show 100% loss of GSNO within 16 h and production of 1 equiv. of glutathione disulfide (GSSG) per 2 equiv. of GSNO. Only 78 ± 10% recovery of NO(g) was observed, indicating that blood plasma can scavenge the generated NO before it can escape the reaction vessel. Significantly, to best apply and understand reaction systems with biomedical importance, such as NO release catalyzed by CuBTTri, methods to study the reaction directly in biological solvents must be developed.
Collapse
|
12
|
Endogenous nitric oxide-generating surfaces via polydopamine-copper coatings for preventing biofilm dispersal and promoting microbial killing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112297. [PMID: 34474848 DOI: 10.1016/j.msec.2021.112297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Peri-implantitis is a bacterially induced inflammatory disease which affects the hard and soft tissues around a dental implant. Microbial biofilm formation is an important causative factor in peri-implantitis. The aim of this study is to develop an effective multifunctional surface coating for antimicrobial property and to counteract oral biofilm-associated infections via a single polydopamine copper coating (PDAM@Cu) on titanium implant surface to regulate endogenous nitric oxide (NO) generation. METHODS PDAM@Cu coatings were made with different concentrations of CuCl2 on titanium surfaces with a simple dip coating technique. Coatings were characterised to evaluate Cu concentrations as well as NO release rates from the coatings. Further, salivary biofilms were made on the coatings using Brain Heart Infusion (BHI) media in an anaerobic chamber. Biofilms were prepared with three different mixtures, one of which was saliva only, the second had an addition of sheep's blood, and the third was prepared with NO donors S-nitrosoglutathione (GSNO) and L-glutathione (GSH) in the mixture of saliva and blood to evaluate the effects of endogenously produced NO on biofilms. The effectiveness of coated surfaces on biofilms were assessed using four different methods, namely, crystal violet assay, scanning electron microscopy imaging, 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) metabolic assay, and live/dead staining. RESULTS NO release rates could be controlled with different Cu concentration in PDAM@Cu coatings. NO generated from the PDAM@Cu coatings effectively induced dispersal of biofilms shown by the reduction in biofilm biomass as well as reduced biofilm attachment in samples prepared with blood and NO donors. Cu ions released from the PDAM@Cu coatings resulted in killing of the dispersed bacteria, which was evidenced by the live/dead cell staining and reduced metabolic activity noted from the XTT assay. In contrast, samples prepared with saliva showed no significant reduction in biofilms, indicating the important effect of endogenously generated NO on biofilm dispersal. CONCLUSION In conclusion, PDAM@Cu coatings with NO generating surfaces have a dual anti-biofilm function, with a synergistic effect on biofilm dispersal from regulated NO generation and bactericidal effects from Cu ions from the coatings.
Collapse
|
13
|
Vornholt SM, Duncan MJ, Warrender SJ, Semino R, Ramsahye NA, Maurin G, Smith MW, Tan JC, Miller DN, Morris RE. Multifaceted Study of the Interactions between CPO-27-Ni and Polyurethane and Their Impact on Nitric Oxide Release Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58263-58276. [PMID: 33325239 DOI: 10.1021/acsami.0c17937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A multifaceted study involving focused ion beam scanning electron microscopy techniques, mechanical analysis, water adsorption measurements, and molecular simulations is employed to rationalize the nitric oxide release performance of polyurethane films containing 5, 10, 20, and 40 wt % of the metal-organic framework (MOF) CPO-27-Ni. The polymer and the MOF are first demonstrated to exhibit excellent compatibility. This is reflected in the even distribution and encapsulation of large wt % MOF loadings throughout the full thickness of the films and by the rather minimal influence of the MOF on the mechanical properties of the polymer at low wt %. The NO release efficiency of the MOF is attenuated by the polymer and found to depend on wt % of MOF loading. The formation of a fully connected network of MOF agglomerates within the films at higher wt % is proposed to contribute to a more complex guest transport in these formulations, resulting in a reduction of NO release efficiency and film ductility. An optimum MOF loading of 10 wt % is identified for maximizing NO release without adversely impacting the polymer properties. Bactericidal efficacy of released NO from the films is demonstrated against Pseudomonas aeruginosa, with a >8 log10 reduction in cell density observed after a contact period of 24 h.
Collapse
Affiliation(s)
- Simon M Vornholt
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Morven J Duncan
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Stewart J Warrender
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Rocio Semino
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 75005, France
| | - Naseem A Ramsahye
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 75005, France
| | - Guillaume Maurin
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 75005, France
| | - Martin W Smith
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| | - Jin-Chong Tan
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - David N Miller
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Russell E Morris
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
14
|
Tuttle RR, Folkman SJ, Rubin HN, Finke RG, Reynolds MM. Copper Metal-Organic Framework Surface Catalysis: Catalyst Poisoning, IR Spectroscopic, and Kinetic Evidence Addressing the Nature and Number of the Catalytically Active Sites En Route to Improved Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39043-39055. [PMID: 32805891 DOI: 10.1021/acsami.0c08961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The metal-organic framework (MOF) H3[(Cu4Cl)3-(BTTri)8, H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene] (CuBTTri) is a precatalyst for biomedically relevant nitric oxide (NO) release from S-nitrosoglutathione (GSNO). The questions of the number and nature of the catalytically most active, kinetically dominant sites are addressed. Also addressed is whether or not the well-defined structural geometry of MOFs (as solid-state analogues of molecular compounds) can be used to generate specific, testable hypotheses about, for example, if intrapore vs exterior surface metal sites are more catalytically active. Studies of the initial catalytic rate vs CuBTTri particle external surface area to interior volume ratio show that intrapore copper sites are inactive within the experimental error (≤1.7 × 10-5% of the observed catalytic activity)-restated, the traditional MOF intrapore metal site catalysis hypothesis is disproven for the current system. All observed catalysis occurs at exterior surface Cu sites, within the experimental error. Fourier transform infrared (FT-IR) analysis of CN--poisoned CuBTTri reveals just two detectable Cu sites at a ca. ≥0.5% detection limit, those that bind three or one CN- ("Cu(CN)3" and "CuCN"), corresponding to the CN- binding expected for exterior surface, 3-coordinate (Cusurface) and intrapore, 5-coordinate (Cupore) sites predicted by the idealized, metal-terminated crystal structure. Two-coordinate Cu defect sites are ruled out at the ≥0.5% FT-IR detection limit as such defect sites would have been detectable by the FT-IR studies of the CN--poisoned catalyst. Size-selective poisoning studies of CuBTTri exterior surface sites reveal that 1.3 (±0.4)% of total copper in 0.6 ± 0.4 μm particles is active. That counting of active sites yields a normalized turnover frequency (TOF), TOFnorm = (4.9 ± 1.2) × 10-2 mol NO (mol Cusurface)-1 s-1 (in water, at 20 min, 25 °C, 1 mM GSNO, 30% loss of GSNO, and 1.3 ± 0.4 mol % Cusurface)-a value ∼100× higher than the TOF calculated without active site counting. Overall, Ockham's razor interpretation of the data is that exterior surface, Cusurface sites are the catalytically most active sites present at a 1.3 (±0.4)% level of total Cu.
Collapse
Affiliation(s)
- Robert R Tuttle
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Scott J Folkman
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Heather N Rubin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richard G Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
15
|
Pelegrino MT, Paganotti A, Seabra AB, Weller RB. Photochemistry of nitric oxide and S-nitrosothiols in human skin. Histochem Cell Biol 2020; 153:431-441. [PMID: 32162135 PMCID: PMC7300104 DOI: 10.1007/s00418-020-01858-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is related to a wide range of physiological processes such as vasodilation, macrophages cytotoxicity and wound healing. The human skin contains NO precursors (NOx). Those are mainly composed of nitrite (NO2-), nitrate (NO3-), and S-nitrosothiols (RSNOs) which forms a large NO store. These NOx stores in human skin can mobilize NO to blood stream upon ultraviolet (UV) light exposure. The main purpose of this study was to evaluate the most effective UV light wavelength to generate NO and compare it to each NO precursor in aqueous solution. In addition, the UV light might change the RSNO content on human skin. First, we irradiated pure aqueous solutions of NO2- and NO3- and mixtures of NO2- and glutathione and NO3- and S-nitrosoglutathione (GSNO) to identify the NO release profile from those species alone. In sequence, we evaluated the NO generation profile on human skin slices. Human skin was acquired from redundant plastic surgical samples and the NO and RSNO measurements were performed using a selective NO electrochemical sensor. The data showed that UV light could trigger the NO generation in skin with a peak at 280-285 nm (UVB range). We also observed a significant RSNO formation in irradiated human skin, with a peak at 320 nm (UV region) and at 700 nm (visible region). Pre-treatment of the human skin slice using NO2- and thiol (RSHs) scavengers confirmed the important role of these molecules in RSNO formation. These findings have important implications for clinical trials with potential for new therapies.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - André Paganotti
- Laboratory of Materials and Mechanical Manufacture, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - Richard B Weller
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
16
|
Jones WM, Tapia JB, Tuttle RR, Reynolds MM. Thermogravimetric Analysis and Mass Spectrometry Allow for Determination of Chemisorbed Reaction Products on Metal Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3903-3911. [PMID: 32126770 DOI: 10.1021/acs.langmuir.0c00158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermogravimetric analysis (TGA) is a technique which can probe chemisorption of substrates onto metal organic frameworks. A TGA method was developed to examine the catalytic oxidation of S-nitrosoglutathione (GSNO) by the MOF H3[(Cu4Cl)3(BTTri)8] (abbr. Cu-BTTri; H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), yielding glutathione disulfide (GSSG) and nitric oxide (NO). Thermal analysis of reduced glutathione (GSH), GSSG, GSNO, and Cu-BTTri revealed thermal resolution of all four analytes through different thermal onset temperatures and weight percent changes. Two reaction systems were probed: an aerobic column flow reaction and an anaerobic solution batch reaction with gas agitation. In both systems, Cu-BTTri was reacted with a 1 mM GSH, GSSG, or GSNO solution, copiously rinsed with distilled-deionized water (dd-H2O), dried (25 °C, < 1 Torr), and assessed by TGA. Additionally, stock, effluent or supernatant, and rinse solutions for each glutathione derivative within each reaction system were assessed by mass spectrometry (MS) to inform on chemical transformations promoted by Cu-BTTri as well as relative analyte concentrations. Both reaction systems exhibited chemisorption of glutathione derivatives to the MOF by TGA. Mass spectrometry analyses revealed that in both systems, GSH was oxidized to GSSG, which chemisorbed to the MOF whereas GSSG remained unchanged during chemisorption. For GSNO, chemisorption to the MOF without reaction was observed in the aerobic column setup, whereas conversion to GSSG and subsequent chemisorption was observed in the anaerobic batch setup. These findings suggest that within this reaction system, GSSG is the primary adsorbent of concern with regards to strong binding to Cu-BTTri. Development of similar thermal methods could allow for the probing of MOF reactivity for a wide range of systems, informing on important considerations such as reduced catalytic efficiency from poisoning, recyclability, and loading capacities of contaminants or toxins with MOFs.
Collapse
|
17
|
Noorian SA, Hemmatinejad N, Navarro JA. BioMOF@cellulose fabric composites for bioactive molecule delivery. J Inorg Biochem 2019; 201:110818. [DOI: 10.1016/j.jinorgbio.2019.110818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 12/13/2022]
|