1
|
Moris VC, Bruneau L, Berthe J, Heuskin AC, Penninckx S, Ritter S, Weber U, Durante M, Danchin EGJ, Hespeels B, Doninck KV. Ionizing radiation responses appear incidental to desiccation responses in the bdelloid rotifer Adineta vaga. BMC Biol 2024; 22:11. [PMID: 38273318 PMCID: PMC10809525 DOI: 10.1186/s12915-023-01807-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The remarkable resistance to ionizing radiation found in anhydrobiotic organisms, such as some bacteria, tardigrades, and bdelloid rotifers has been hypothesized to be incidental to their desiccation resistance. Both stresses produce reactive oxygen species and cause damage to DNA and other macromolecules. However, this hypothesis has only been investigated in a few species. RESULTS In this study, we analyzed the transcriptomic response of the bdelloid rotifer Adineta vaga to desiccation and to low- (X-rays) and high- (Fe) LET radiation to highlight the molecular and genetic mechanisms triggered by both stresses. We identified numerous genes encoding antioxidants, but also chaperones, that are constitutively highly expressed, which may contribute to the protection of proteins against oxidative stress during desiccation and ionizing radiation. We also detected a transcriptomic response common to desiccation and ionizing radiation with the over-expression of genes mainly involved in DNA repair and protein modifications but also genes with unknown functions that were bdelloid-specific. A distinct transcriptomic response specific to rehydration was also found, with the over-expression of genes mainly encoding Late Embryogenesis Abundant proteins, specific heat shock proteins, and glucose repressive proteins. CONCLUSIONS These results suggest that the extreme resistance of bdelloid rotifers to radiation might indeed be a consequence of their capacity to resist complete desiccation. This study paves the way to functional genetic experiments on A. vaga targeting promising candidate proteins playing central roles in radiation and desiccation resistance.
Collapse
Affiliation(s)
- Victoria C Moris
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium.
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium.
| | - Lucie Bruneau
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Jérémy Berthe
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Anne-Catherine Heuskin
- Namur Research Institute for Life Sciences (NARILIS), Laboratory of Analysis By Nuclear Reactions (LARN), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet - Université Libre de Bruxelles, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Boris Hespeels
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium
| |
Collapse
|
2
|
Mikkelsen N, Mikkelsen GH, Holmstrup M, Jensen J. Recovery period of Folsomia candida influence the impact of nonylphenol and phenanthrene on the tolerance of drought and heat shock. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113105. [PMID: 31476675 DOI: 10.1016/j.envpol.2019.113105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/07/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Soil organisms are exposed to natural and anthropogenic stressors, such as xenobiotics. However, to simplify and make laboratory experiments easily reproducible, natural stressors are often excluded from ecotoxicological studies and risk assessment. This might underestimate the effect of chemicals, since synergistic interactions between chemicals and natural stressors might occur, creating a more severe impact than expected. Several studies have addressed simultaneous exposure to natural and chemical stressors, but very little is known of about the persistence of these interactions during recovery. Here, we examined if recovery after chemical stress exposure was important for the ability of springtails (Folsomia candida) to tolerate subsequent drought- and heat stress. Nonylphenol (NP) and phenanthrene (PHE) was tested and their isolated toxicity resulted in LC50 values of 206 mg NP kg-1 dry soil and 109 mg PHE kg-1 dry soil in a 7-day test. Elimination of NP and PHE was rapid and only trace amounts remained in springtail tissues after 3-7 days of recovery. Isolated studies of drought and heat shock on Folsomia candida resulted in a lethal effect for 50% of the animals (LRH50) at a relative humidity (RH) of 97.9%, and 190 min at 34 °C was shown to be lethal for 50% of the test species (LT50). The results showed, as expected, significant synergistic interactions between the effects of the chemicals and the effects of drought and heat stress. The negative effects of NP and PHE on the drought tolerance disappeared within 7 days post exposure. Springtails exposed to PHE also recovered their heat tolerance within 7 days post exposure, while NP exposed animals had not fully recovered their heat tolerance 14 days after exposure. Overall, a recovery period post chemical exposure was found to be very important for springtails in order to cope with natural stressors like heat and drought.
Collapse
Affiliation(s)
- Nanna Mikkelsen
- Aarhus University, Department of Bioscience, DK-8600, Silkeborg, Denmark
| | | | - Martin Holmstrup
- Aarhus University, Department of Bioscience, DK-8600, Silkeborg, Denmark
| | - John Jensen
- Aarhus University, Department of Bioscience, DK-8600, Silkeborg, Denmark.
| |
Collapse
|
3
|
Des Marteaux LE, Hůla P, Koštál V. Transcriptional analysis of insect extreme freeze tolerance. Proc Biol Sci 2019; 286:20192019. [PMID: 31640516 PMCID: PMC6834040 DOI: 10.1098/rspb.2019.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Few invertebrates can survive cryopreservation in liquid nitrogen, and the mechanisms by which some species do survive are underexplored, despite high application potential. Here, we turn to the drosophilid Chymomyza costata to strengthen our fundamental understanding of extreme freeze tolerance and gain insights about potential avenues for cryopreservation of biological materials. We first use RNAseq to generate transcriptomes of three C. costata larval phenotypic variants: those warm-acclimated in early or late diapause (weak capacity to survive cryopreservation), and those undergoing cold acclimation after diapause entry (extremely freeze tolerant, surviving cryopreservation). We identify mRNA transcripts representing genes and processes that accompany the physiological transition to extreme freeze tolerance and relate cryopreservation survival to the transcriptional profiles of select candidate genes using extended sampling of phenotypic variants. Enhanced capacity for protein folding, refolding and processing appears to be a central theme of extreme freeze tolerance and may allow cold-acclimated larvae to repair or eliminate proteins damaged by freezing (thus mitigating the toxicity of denatured proteins, endoplasmic reticulum stress and subsequent apoptosis). We also find a number of candidate genes (including both known and potentially novel, unannotated sequences) whose expression profiles tightly mirror the change in extreme freeze tolerance status among phenotypic variants.
Collapse
Affiliation(s)
- Lauren E. Des Marteaux
- Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic
| | - Petr Hůla
- Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic
| |
Collapse
|
4
|
The springtail Megaphorura arctica survives extremely high osmolality of body fluids during drought. J Comp Physiol B 2018; 188:939-945. [PMID: 30194462 DOI: 10.1007/s00360-018-1180-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 09/03/2018] [Indexed: 01/14/2023]
Abstract
The springtail Megaphorura arctica Tullberg 1876 is widespread in the arctic and subarctic regions where it can be abundant along beaches. This species survives winters using cryoprotective dehydration as a cold tolerance strategy during which it becomes drastically dehydrated. Several studies have investigated the physiological responses associated with water loss of M. arctica under exposure to freezing temperatures, but little is known of the dynamics of body water and hemolymph osmolality when subjected to gradually increasing drought stress at temperatures above the freezing point. Therefore, an experiment was conducted in which M. arctica was subjected to relative humidities (RH) decreasing from fully saturated conditions to ca. 89%RH over a period of 30 days. During the experiment water content of springtails decreased from about 3 to ca. 0.5 mg mg-1 dry weight. Alongside with water loss, trehalose concentrations increased from nearly nothing to 0.12 mg mg-1 dry weight, which contributed to an increase in hemolymph osmolality from ca. 250 mOsm to at least 7 Osm. All springtails survived water loss down to 0.7 mg mg-1 dry weight and hemolymph osmolality of ca. 4 Osm, and about 60% of the springtails survived with only 0.5 mg water mg-1 dry weight and osmolality of ca. 7 Osm. At this level of dehydration, Differential Scanning Calorimetry analysis showed that most, but not all, osmotically active water was lost. It is discussed that the extensive dehydration must be associated with high concentrations of salts potentially causing denaturation and precipitation of cellular proteins. M. arctica is remarkably tolerant of dehydration, but because it does not endure loss of the osmotically inactive water it cannot be categorized as a truly anhydrobiotic species.
Collapse
|
5
|
Pathak N, Ikeno S. In vivo expression of a short peptide designed from late embryogenesis abundant protein for enhancing abiotic stress tolerance in Escherichia coli. Biochem Biophys Res Commun 2017; 492:386-390. [DOI: 10.1016/j.bbrc.2017.08.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
|
6
|
Furuki T, Sakurai M. Group 3 LEA protein model peptides protect enzymes against desiccation stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1237-1243. [PMID: 27131872 DOI: 10.1016/j.bbapap.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/23/2016] [Accepted: 04/26/2016] [Indexed: 11/25/2022]
Abstract
We tested whether model peptides for group 3 late embryogenesis abundant (G3LEA) proteins, which we developed previously, are capable of maintaining the catalytic activities of enzymes dried in their presence. Three different peptides were compared: 1) PvLEA-22, which consists of two tandem repeats of the 11-mer motif found in G3LEA proteins from an African sleeping chironomid; 2) PvLEA-44, which is made of four tandem repeats of the same 11-mer motif; and 3) a peptide whose amino acid composition is the same as that of PvLEA-22, but whose sequence is scrambled. We selected two enzymes, lactate dehydrogenase (LDH) and β-d-galactosidase (BDG), as targets because they have different isoelectric point (pI) values, in the alkaline and acidic range, respectively. While these enzymes were almost inactivated when dried alone, their catalytic activity was preserved at ≥70% of native levels in the presence of any of the above three peptides. This degree of protection is comparable to that conferred by several full-length G3LEA proteins, as reported previously for LDH. Interestingly, the protective activity of the peptides was enhanced slightly when they were mixed with trehalose, especially when the molar content of the peptides was low. On the basis of these results, the G3LEA model peptides show promise as protectants for the dry preservation of enzymes/proteins with a wide range of pI values.
Collapse
Affiliation(s)
- Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
7
|
Holmstrup M. Reprint of: The ins and outs of water dynamics in cold tolerant soil invertebrates. J Therm Biol 2015; 54:30-6. [DOI: 10.1016/j.jtherbio.2015.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Furuki T, Sakurai M. Group 3 LEA protein model peptides protect liposomes during desiccation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2757-66. [DOI: 10.1016/j.bbamem.2014.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/18/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
|
9
|
Toxopeus J, Warner AH, MacRae TH. Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause. Cell Stress Chaperones 2014; 19:939-48. [PMID: 24846336 PMCID: PMC4389855 DOI: 10.1007/s12192-014-0518-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 11/26/2022] Open
Abstract
Water loss either by desiccation or freezing causes multiple forms of cellular damage. The encysted embryos (cysts) of the crustacean Artemia franciscana have several molecular mechanisms to enable anhydrobiosis-life without water-during diapause. To better understand how cysts survive reduced hydration, group 1 late embryogenesis abundant (LEA) proteins, hydrophilic unstructured proteins that accumulate in the stress-tolerant cysts of A. franciscana, were knocked down using RNA interference (RNAi). Embryos lacking group 1 LEA proteins showed significantly lower survival than control embryos after desiccation and freezing, or freezing alone, demonstrating a role for group 1 LEA proteins in A. franciscana tolerance of low water conditions. In contrast, regardless of group 1 LEA protein presence, cysts responded similarly to hydrogen peroxide (H2O2) exposure, indicating little to no function for these proteins in diapause termination. This is the first in vivo study of group 1 LEA proteins in an animal and it contributes to the fundamental understanding of these proteins. Knowing how LEA proteins protect A. franciscana cysts from desiccation and freezing may have applied significance in aquaculture, where Artemia is an important feed source, and in the cryopreservation of cells for therapeutic applications.
Collapse
Affiliation(s)
- Jantina Toxopeus
- />Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2 Canada
| | - Alden H. Warner
- />Department of Biological Sciences, University of Windsor, Windsor, ON N9B 3P4 Canada
| | - Thomas H. MacRae
- />Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2 Canada
| |
Collapse
|
10
|
Holmstrup M. The ins and outs of water dynamics in cold tolerant soil invertebrates. J Therm Biol 2014; 45:117-23. [PMID: 25436960 DOI: 10.1016/j.jtherbio.2014.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/01/2014] [Accepted: 09/01/2014] [Indexed: 11/19/2022]
Abstract
Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high.
Collapse
Affiliation(s)
- Martin Holmstrup
- Department of Bioscience, Aarhus University, Vejlsøvej 25, DK-8600 Silkeborg, Denmark.
| |
Collapse
|
11
|
Thorne MAS, Kagoshima H, Clark MS, Marshall CJ, Wharton DA. Molecular analysis of the cold tolerant Antarctic nematode, Panagrolaimus davidi. PLoS One 2014; 9:e104526. [PMID: 25098249 PMCID: PMC4123951 DOI: 10.1371/journal.pone.0104526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/11/2014] [Indexed: 01/25/2023] Open
Abstract
Isolated and established in culture from the Antarctic in 1988, the nematode Panagrolaimus davidi has proven to be an ideal model for the study of adaptation to the cold. Not only is it the best-documented example of an organism surviving intracellular freezing but it is also able to undergo cryoprotective dehydration. As part of an ongoing effort to develop a molecular understanding of this remarkable organism, we have assembled both a transcriptome and a set of genomic scaffolds. We provide an overview of the transcriptome and a survey of genes involved in temperature stress. We also explore, in silico, the possibility that P. davidi will be susceptible to an environmental RNAi response, important for further functional studies.
Collapse
Affiliation(s)
- Michael A. S. Thorne
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
- * E-mail:
| | - Hiroshi Kagoshima
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo, Japan
- National Institute of Genetics, Mishima, Japan
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Craig J. Marshall
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David A. Wharton
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Everatt MJ, Convey P, Bale JS, Worland MR, Hayward SAL. Responses of invertebrates to temperature and water stress: A polar perspective. J Therm Biol 2014; 54:118-32. [PMID: 26615734 DOI: 10.1016/j.jtherbio.2014.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored.
Collapse
Affiliation(s)
- Matthew J Everatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Pete Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK; National Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia; Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jeffrey S Bale
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - M Roger Worland
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
13
|
Boswell LC, Moore DS, Hand SC. Quantification of cellular protein expression and molecular features of group 3 LEA proteins from embryos of Artemia franciscana. Cell Stress Chaperones 2014; 19:329-41. [PMID: 24061850 PMCID: PMC3982030 DOI: 10.1007/s12192-013-0458-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 11/28/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are highly hydrophilic, low complexity proteins whose expression has been correlated with desiccation tolerance in anhydrobiotic organisms. Here, we report the identification of three new mitochondrial LEA proteins in anhydrobiotic embryos of Artemia franciscana, AfrLEA3m_47, AfrLEA3m_43, and AfrLEA3m_29. These new isoforms are recognized by antibody raised against recombinant AfrLEA3m, the original mitochondrial-targeted LEA protein previously reported from these embryos; mass spectrometry confirms all four proteins share sequence similarity. The corresponding messenger RNA (mRNA) species for the four proteins are readily amplified from total complementary DNA (cDNA) prepared from embryos. cDNA sequences of the four mRNAs are quite similar, but each has a stretch of sequence that is absent in at least one of the others, plus multiple single base pair differences. We conclude that all four mitochondrial LEA proteins are products of independent genes. Each possesses a mitochondrial targeting sequence, and indeed Western blots performed on extracts of isolated mitochondria clearly detect all four isoforms. Based on mass spectrometry and sodium dodecyl sulfate polyacrylamide gel electrophoresis migration, the cytoplasmic-localized AfrLEA2 exists primarily as a homodimer in A. franciscana. Quantification of protein expression for AfrLEA2, AfrLEA3m, AfrLEA3m_43, and AfrLEA3m_29 as a function of development shows that cellular concentrations are highest in diapause embryos and decrease during development to low levels in desiccation-intolerant nauplius larvae. When adjustment is made for mitochondria matrix volume, the effective concentrations of cytoplasmic versus mitochondrial group 3 LEA proteins are similar in vivo, and the values provide guidance for the design of in vitro functional studies with these proteins.
Collapse
Affiliation(s)
- Leaf C Boswell
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA,
| | | | | |
Collapse
|
14
|
Holmstrup M, Slotsbo S, Schmidt SN, Mayer P, Damgaard C, Sørensen JG. Physiological and molecular responses of springtails exposed to phenanthrene and drought. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:370-376. [PMID: 24095812 DOI: 10.1016/j.envpol.2013.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 06/02/2023]
Abstract
Interaction between effects of hazardous chemicals in the environment and adverse climatic conditions is a problem that receives increased attention in the light of climate change. We studied interactive effects of phenanthrene and drought using a test system in which springtails (Folsomia candida Willem) were concurrently exposed to a sublethal phenanthrene level via passive dosing from silicone (chemical activity of 0.010), and sublethal drought from aqueous NaCl solutions (water activity of 0.988). Previous studies have shown that the combined effects of high levels of phenanthrene and drought, respectively, interact synergistically when using lethality as an end-point. Here, we hypothesized that phenanthrene interferes with physiological mechanisms involved in drought tolerance, and that drought influences detoxification of phenanthrene. However, this hypothesis was not supported by data since phenanthrene had no effect on drought-protective accumulation of myo-inositol, and normal water conserving mechanisms of F. candida were functioning despite the near-lethal concentrations of the toxicant. Further, detoxifying induction of cytochrome P450 and glutathione-S-transferase was not impeded by drought. Both phenanthrene and drought induced transcription of heat shock protein (hsp70) and the combined effect of the two stressors on hsp70 transcription was additive, suggesting that the cellular stress and lethality imposed by these levels of phenanthrene and drought were also additive.
Collapse
Affiliation(s)
- Martin Holmstrup
- Department of Bioscience, Aarhus University, Vejlsøvej 25, PO Box 314, DK-8600 Silkeborg, Denmark.
| | | | | | | | | | | |
Collapse
|
15
|
Hatanaka R, Hagiwara-Komoda Y, Furuki T, Kanamori Y, Fujita M, Cornette R, Sakurai M, Okuda T, Kikawada T. An abundant LEA protein in the anhydrobiotic midge, PvLEA4, acts as a molecular shield by limiting growth of aggregating protein particles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1055-1067. [PMID: 23978448 DOI: 10.1016/j.ibmb.2013.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
LEA proteins are found in anhydrobiotes and are thought to be associated with the acquisition of desiccation tolerance. The sleeping chironomid Polypedilum vanderplanki, which can survive in an almost completely desiccated state throughout the larval stage, accumulates LEA proteins in response to desiccation and high salinity conditions. However, the biochemical functions of these proteins remain unclear. Here, we report the characterization of a novel chironomid LEA protein, PvLEA4, which is the most highly accumulated LEA protein in desiccated larvae. Cytoplasmic-soluble PvLEA4 showed many typical characteristics of group 3 LEA proteins (G3LEAs), such as desiccation-inducible accumulation, high hydrophilicity, folding into α-helices on drying, and the ability to reduce aggregation of dehydration-sensitive proteins. This last property of LEA proteins has been termed molecular shield function. To further investigate the molecular shield activity of PvLEA4, we introduced two distinct methods, turbidity measurement and dynamic light scattering (DLS). Turbidity measurements demonstrated that both PvLEA4, and BSA as a positive control, reduced aggregation in α-casein subjected to desiccation and rehydration. However, DLS experiments showed that a small amount of BSA relative to α-casein increased aggregate particle size, whereas PvLEA4 decreased particle size in a dose-dependent manner. Trehalose, which is the main heamolymph sugar in most insects but also a protectant as a chemical chaperone in the sleeping chironomid, has less effect on the limitation of aggregate formation. This analysis suggests that molecular shield proteins function by limiting the growth of protein aggregates during drying and that PvLEA4 counteracts protein aggregation in the desiccation-tolerant larvae of the sleeping chironomid.
Collapse
Affiliation(s)
- Rie Hatanaka
- Insect Mimetics Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Effects of Group 3 LEA protein model peptides on desiccation-induced protein aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:891-7. [DOI: 10.1016/j.bbapap.2012.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/04/2012] [Accepted: 04/30/2012] [Indexed: 11/21/2022]
|
17
|
Waagner D, Bayley M, Mariën J, Holmstrup M, Ellers J, Roelofs D. Ecological and molecular consequences of prolonged drought and subsequent rehydration in Folsomia candida (Collembola). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:130-137. [PMID: 22079296 DOI: 10.1016/j.jinsphys.2011.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
Drought tolerance in water-permeable, soil-living Collembola (e.g. Folsomia candida) is achieved due to a unique water vapour absorption mechanism, where accumulation of sugars and polyols is essential. However, the molecular mechanisms underlying such adaptation as well as the maintenance of this survival strategy and the responses to rehydration after prolonged drought in these soil-living Collembola are unclear. In the present study, the functional relationships between ecological drought responses and expression of related target genes were investigated in F. candida exposed to mild and severe drought for up to 5 weeks by relating survival, moulting and reproduction rate with mRNA-level expression of 7 target genes during drought, dehydration and rehydration. Prolonged drought and subsequent rehydration induced significant changes in gene expression which could be related to the fitness traits studied. In F. candida the ecological and molecular responses to mild drought differed from those of severe drought. From the changes in gene expression, where significantly increased expression of Glucose-6-phosphate-isomerase (gpi) and Heat shock protein 70 (hsp70) was dominating, it is proposed that protection of cellular structure and function during prolonged mild drought (98.2% RH) is partly achieved from a continuous accumulation of compatible osmolytes in F. candida. To achieve protection during and after prolonged severe drought (96.1% RH), components related to cell division and development such as inositol monophosphatase and one of the small heat shock proteins (sHsps), Heat shock protein23 (hsp23), seem to play an important role in F. candida.
Collapse
Affiliation(s)
- Dorthe Waagner
- Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
18
|
Su L, Zhao CZ, Bi YP, Wan SB, Xia H, Wang XJ. Isolation and expression analysis of LEA genes in peanut (Arachis hypogaea L.). J Biosci 2011; 36:223-8. [PMID: 21654076 DOI: 10.1007/s12038-011-9058-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Late embryogenesis abundant (LEA) protein family is a large protein family that includes proteins accumulated at late stages of seed development or in vegetative tissues in response to drought, salinity, cold stress and exogenous application of abscisic acid. In order to isolate peanut genes, an expressed sequence tag (EST) sequencing project was carried out using a peanut seed cDNA library. From 6258 ESTs, 19 LEA-encoding genes were identified and could be classified into eight distinct groups. Expression of these genes in seeds at different developmental stages and in various peanut tissues was analysed by semi-quantitative RT-PCR. The results showed that expression levels of LEA genes were generally high in seeds. Some LEA protein genes were expressed at a high level in non-seed tissues such as root, stem, leaf, flower and gynophore. These results provided valuable information for the functional and regulatory studies on peanut LEA genes.
Collapse
Affiliation(s)
- Lei Su
- College of Life Science, Shandong Normal University, Jinan 250014, The People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Furuki T, Shimizu T, Kikawada T, Okuda T, Sakurai M. Salt Effects on the Structural and Thermodynamic Properties of a Group 3 LEA Protein Model Peptide. Biochemistry 2011; 50:7093-103. [DOI: 10.1021/bi200719s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho,
Midori-ku, Yokohama, 226-8501, Japan
| | - Tempei Shimizu
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho,
Midori-ku, Yokohama, 226-8501, Japan
| | - Takahiro Kikawada
- National Institute of Agrobiological Sciences (NIAS), 1-2, Ohwashi, Tsukuba, 305-8634, Japan
| | - Takashi Okuda
- National Institute of Agrobiological Sciences (NIAS), 1-2, Ohwashi, Tsukuba, 305-8634, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho,
Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
20
|
Hand SC, Menze MA, Toner M, Boswell L, Moore D. LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 2011; 73:115-34. [PMID: 21034219 DOI: 10.1146/annurev-physiol-012110-142203] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are extremely hydrophilic proteins that were first identified in land plants. Intracellular accumulation is tightly correlated with acquisition of desiccation tolerance, and data support their capacity to stabilize other proteins and membranes during drying, especially in the presence of sugars like trehalose. Exciting reports now show that LEA proteins are not restricted to plants; multiple forms are expressed in desiccation-tolerant animals from at least four phyla. We evaluate here the expression, subcellular localization, biochemical properties, and potential functions of LEA proteins in animal species during water stress. LEA proteins are intrinsically unstructured in aqueous solution, but surprisingly, many assume their native conformation during drying. They are targeted to multiple cellular locations, including mitochondria, and evidence supports that LEA proteins stabilize vitrified sugar glasses thought to be important in the dried state. More in vivo experimentation will be necessary to fully unravel the multiple functional properties of these macromolecules during water stress.
Collapse
Affiliation(s)
- Steven C Hand
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, 70803, USA.
| | | | | | | | | |
Collapse
|
21
|
Reuner A, Hengherr S, Mali B, Förster F, Arndt D, Reinhardt R, Dandekar T, Frohme M, Brümmer F, Schill RO. Stress response in tardigrades: differential gene expression of molecular chaperones. Cell Stress Chaperones 2010; 15:423-30. [PMID: 19943197 PMCID: PMC3082643 DOI: 10.1007/s12192-009-0158-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022] Open
Abstract
Semi-terrestrial tardigrades exhibit a remarkable tolerance to desiccation by entering a state called anhydrobiosis. In this state, they show a strong resistance against several kinds of physical extremes. Because of the probable importance of stress proteins during the phases of dehydration and rehydration, the relative abundance of transcripts coding for two alpha-crystallin heat-shock proteins (Mt-sHsp17.2 and Mt-sHsp19.5), as well for the heat-shock proteins Mt-sHsp10, Mt-Hsp60, Mt-Hsp70 and Mt-Hsp90, were analysed in active and anhydrobiotic tardigrades of the species Milnesium tardigradum. They were also analysed in the transitional stage (I) of dehydration, the transitional stage (II) of rehydration and in heat-shocked specimens. A variable pattern of expression was detected, with most candidates being downregulated. Gene transcripts of one Mt-hsp70 isoform in the transitional stage I and Mt-hsp90 in the anhydrobiotic stage were significantly upregulated. A high gene expression (778.6-fold) was found for the small alpha-crystallin heat-shock protein gene Mt-sHsp17.2 after heat shock. We discuss the limited role of the stress-gene expression in the transitional stages between the active and anhydrobiotic tardigrades and other mechanisms which allow tardigrades to survive desiccation.
Collapse
Affiliation(s)
- Andy Reuner
- Zoology, Biological Institute, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Steffen Hengherr
- Zoology, Biological Institute, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Brahim Mali
- Molecular Biology and Functional Genomics, University of Applied Sciences Wildau, Bahnhofstraße 1, Gebäude 15, 15745 Wildau, Germany
| | - Frank Förster
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
| | - Detlev Arndt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69012 Heidelberg, Germany
| | - Richard Reinhardt
- MPI for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin-Dahlem, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
| | - Marcus Frohme
- Molecular Biology and Functional Genomics, University of Applied Sciences Wildau, Bahnhofstraße 1, Gebäude 15, 15745 Wildau, Germany
| | - Franz Brümmer
- Zoology, Biological Institute, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Ralph O. Schill
- Zoology, Biological Institute, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
22
|
|
23
|
Hunault G, Jaspard E. LEAPdb: a database for the late embryogenesis abundant proteins. BMC Genomics 2010; 11:221. [PMID: 20359361 PMCID: PMC2858754 DOI: 10.1186/1471-2164-11-221] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 04/01/2010] [Indexed: 11/10/2022] Open
Abstract
Background Late Embryogenesis Abundant Proteins database (LEAPdb) contains resource regarding LEAP from plants and other organisms. Although LEAP are grouped into several families, there is no general consensus on their definition and on their classification. They are associated with abiotic stress tolerance, but their actual function at the molecular level is still enigmatic. The scarcity of 3-D structures for LEAP remains a handicap for their structure-function relationships analysis. Finally, the growing body of published data about LEAP represents a great amount of information that needs to be compiled, organized and classified. Results LEAPdb gathers data about 8 LEAP sub-families defined by the PFAM, the Conserved Domain and the InterPro databases. Among its functionalities, LEAPdb provides a browse interface for retrieving information on the whole database. A search interface using various criteria such as sophisticated text expression, amino acids motifs and other useful parameters allows the retrieving of refined subset of entries. LEAPdb also offers sequence similarity search. Information is displayed in re-ordering tables facilitating the analysis of data. LEAP sequences can be downloaded in three formats. Finally, the user can submit his sequence(s). LEAPdb has been conceived as a user-friendly web-based database with multiple functions to search and describe the different LEAP families. It will likely be helpful for computational analyses of their structure - function relationships. Conclusions LEAPdb contains 769 non-redundant and curated entries, from 196 organisms. All LEAP sequences are full-length. LEAPdb is publicly available at http://forge.info.univ-angers.fr/~gh/Leadb/index.php.
Collapse
Affiliation(s)
- Gilles Hunault
- Université d'Angers, Laboratoire d'Hémodynamique, Interaction Fibrose et Invasivité tumorale hépatique, UPRES 3859, IFR 132, Université d'Angers, F- 49045 Angers, France
| | | |
Collapse
|
24
|
Mali B, Grohme MA, Förster F, Dandekar T, Schnölzer M, Reuter D, Wełnicz W, Schill RO, Frohme M. Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer. BMC Genomics 2010; 11:168. [PMID: 20226016 PMCID: PMC2848246 DOI: 10.1186/1471-2164-11-168] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 03/12/2010] [Indexed: 12/17/2022] Open
Abstract
Background The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms. Results We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof ~50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two. Conclusions This study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response.
Collapse
Affiliation(s)
- Brahim Mali
- Molecular Biology and Functional Genomics, University of Applied Sciences Wildau, Bahnhofstrasse 1, 15745 Wildau, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sørensen JG, Heckmann LH, Holmstrup M. Temporal gene expression profiles in a palaearctic springtail as induced by desiccation, cold exposure and during recovery. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01687.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Reardon W, Chakrabortee S, Pereira TC, Tyson T, Banton MC, Dolan KM, Culleton BA, Wise MJ, Burnell AM, Tunnacliffe A. Expression profiling and cross-species RNA interference (RNAi) of desiccation-induced transcripts in the anhydrobiotic nematode Aphelenchus avenae. BMC Mol Biol 2010; 11:6. [PMID: 20085654 PMCID: PMC2825203 DOI: 10.1186/1471-2199-11-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 01/19/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH) prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. RESULTS To identify such genes, a panel of expressed sequence tags (ESTs) enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA) protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi) to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. CONCLUSIONS This study has identified and characterised the expression profiles of members of the anhydrobiotic gene set in A. avenae. It also demonstrates the potential of RNAi for the analysis of anhydrobiosis and provides the first genetic data to underline the importance of effective antioxidant systems in metazoan desiccation tolerance.
Collapse
Affiliation(s)
- Wesley Reardon
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Sohini Chakrabortee
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Tiago Campos Pereira
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
- Department of Biology, FFCLRP, University of Sao Paulo, 14040-901, Brazil
| | - Trevor Tyson
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Matthew C Banton
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Katharine M Dolan
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
- Applied Biosystems, Lingley House, 120 Birchwood Boulevard, Warrington, Cheshire, WA3 7QH, UK
| | - Bridget A Culleton
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Michael J Wise
- School of Biomedical and Chemical Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Ann M Burnell
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Alan Tunnacliffe
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| |
Collapse
|
27
|
Denekamp NY, Reinhardt R, Kube M, Lubzens E. Late embryogenesis abundant (LEA) proteins in nondesiccated, encysted, and diapausing embryos of rotifers. Biol Reprod 2009; 82:714-24. [PMID: 20018906 DOI: 10.1095/biolreprod.109.081091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Two genes encoding for late embryogenesis abundant proteins (LEAs) are expressed in encysted diapausing embryos (or resting eggs) of rotifers (Brachionus plicatilis O.F. Müller) and females forming them. The two genes (bpa-leaa and bpa-leab) share approximately 50% of their nucleotides sequence, and bpa-leaa is more than twofold longer than bpa-leab. The deduced amino acid sequences show high abundance of alanine, glycine, lysine, and glutamic acid; a hydropathy index of lower than one; and a relatively high (81-82%) predicted probability of forming alpha-helices in their secondary structure, all of which are characteristic features of LEAs. The predicted molecular masses of bpa-LEAA ( approximately 67 kDa) and bpa-LEAB ( approximately 27 kDa) are similar to the molecular mass determined by Western-blot analyses, suggesting a low probability of posttranslational modifications. In silico analysis reveals that the two LEAs resemble group 3 LEAs based on the repeats for 11mer motifs, although they also display several putative amino acids typical of the 20mer motif of group 1 LEAs. The rotifer LEAs do not contain a predicted target sequence and are more likely localized in the cytosol. LEAs were expressed in resting eggs and females producing them, but not in other female forms or males. LEA transcripts and proteins are degraded during hatching, suggesting that LEAs are developmentally programmed during resting egg formation and hatching. LEAs probably equip the resting eggs to withstand desiccation if that occurs during dormancy. The present study expands our knowledge about the biological pathways associated with formation of rotifer resting eggs and also demonstrates the occurrence of LEAs in dormant, nondesiccated, encysted animal embryos.
Collapse
Affiliation(s)
- Nadav Y Denekamp
- Department of Marine Biology, Israel Oceanographic and Limnological Research, Haifa, Israel
| | | | | | | |
Collapse
|
28
|
Benoit JB, Lopez-Martinez G, Teets NM, Phillips SA, Denlinger DL. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins. MEDICAL AND VETERINARY ENTOMOLOGY 2009; 23:418-425. [PMID: 19941608 DOI: 10.1111/j.1365-2915.2009.00832.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study of the bed bug, Cimex lectularius, examines tolerance of adult females to extremes in temperature and loss of body water. Although the supercooling point (SCP) of the bed bugs was approximately -20 degrees C, all were killed by a direct 1 h exposure to -16 degrees C. Thus, this species cannot tolerate freezing and is killed at temperatures well above its SCP. Neither cold acclimation at 4 degrees C for 2 weeks nor dehydration (15% loss of water content) enhanced cold tolerance. However, bed bugs have the capacity for rapid cold hardening, i.e. a 1-h exposure to 0 degrees C improved their subsequent tolerance of -14 and -16 degrees C. In response to heat stress, fewer than 20% of the bugs survived a 1-h exposure to 46 degrees C, and nearly all were killed at 48 degrees C. Dehydration, heat acclimation at 30 degrees C for 2 weeks and rapid heat hardening at 37 degrees C for 1 h all failed to improve heat tolerance. Expression of the mRNAs encoding two heat shock proteins (Hsps), Hsp70 and Hsp90, was elevated in response to heat stress, cold stress and during dehydration and rehydration. The response of Hsp90 was more pronounced than that of Hsp70 during dehydration and rehydration. Our results define the tolerance limits for bed bugs to these commonly encountered stresses of temperature and low humidity and indicate a role for Hsps in responding to these stresses.
Collapse
Affiliation(s)
- J B Benoit
- Department of Entomology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | |
Collapse
|
29
|
Nakahara Y, Imanishi S, Mitsumasu K, Kanamori Y, Iwata KI, Watanabe M, Kikawada T, Okuda T. Cells from an anhydrobiotic chironomid survive almost complete desiccation. Cryobiology 2009; 60:138-46. [PMID: 19850023 DOI: 10.1016/j.cryobiol.2009.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/09/2009] [Accepted: 10/13/2009] [Indexed: 01/03/2023]
Abstract
Dry-preservation of nucleated cells from multicellular animals represents a significant challenge in life science. As anhydrobionts can tolerate a desiccated state, their cells and organs are expected to show high desiccation tolerance in vitro. In the present study, we established cell lines derived from embryonic tissues of an anhydrobiotic chironomid, Polypedilum vanderplanki, designated as Pv11 and Pv210. Salinity stress induced the expression of a set of anhydrobiosis-related genes in both Pv11 and Pv210 cells, suggesting that at least a part of cells can autonomously control the physiological changes for the entry into anhydrobiosis. When desiccated with medium supplemented with 300 mM trehalose or sucrose and stored for 4 weeks in dry air (approximately 5% relative humidity), a small percentage of the cells was found to be viable upon rehydration, although surviving cells seemed not to be able to multiply. We also attempted dry-preservation of organs isolated from P. vanderplanki larvae, and found that a proportion of cells in some organs, including fat body, testis, nerve and dorsal vessel, tolerated in vitro desiccation.
Collapse
Affiliation(s)
- Yuichi Nakahara
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg). BMC Genomics 2009; 10:328. [PMID: 19622137 PMCID: PMC2726227 DOI: 10.1186/1471-2164-10-328] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 07/21/2009] [Indexed: 01/24/2023] Open
Abstract
Background Insects provide tractable models for enhancing our understanding of the physiological and cellular processes that enable survival at extreme low temperatures. They possess three main strategies to survive the cold: freeze tolerance, freeze avoidance or cryoprotective dehydration, of which the latter method is exploited by our model species, the Arctic springtail Megaphorura arctica, formerly Onychiurus arcticus (Tullberg 1876). The physiological mechanisms underlying cryoprotective dehydration have been well characterised in M. arctica and to date this process has been described in only a few other species: the Antarctic nematode Panagrolaimus davidi, an enchytraied worm, the larvae of the Antarctic midge Belgica antarctica and the cocoons of the earthworm Dendrobaena octaedra. There are no in-depth molecular studies on the underlying cold survival mechanisms in any species. Results A cDNA microarray was generated using 6,912 M. arctica clones printed in duplicate. Analysis of clones up-regulated during dehydration procedures (using both cold- and salt-induced dehydration) has identified a number of significant cellular processes, namely the production and mobilisation of trehalose, protection of cellular systems via small heat shock proteins and tissue/cellular remodelling during the dehydration process. Energy production, initiation of protein translation and cell division, plus potential tissue repair processes dominate genes identified during recovery. Heat map analysis identified a duplication of the trehalose-6-phosphate synthase (TPS) gene in M. arctica and also 53 clones co-regulated with TPS, including a number of membrane associated and cell signalling proteins. Q-PCR on selected candidate genes has also contributed to our understanding with glutathione-S-transferase identified as the major antioxdidant enzyme protecting the cells during these stressful procedures, and a number of protein kinase signalling molecules involved in recovery. Conclusion Microarray analysis has proved to be a powerful technique for understanding the processes and genes involved in cryoprotective dehydration, beyond the few candidate genes identified in the current literature. Dehydration is associated with the mobilisation of trehalose, cell protection and tissue remodelling. Energy production, leading to protein production, and cell division characterise the recovery process. Novel membrane proteins, along with aquaporins and desaturases, have been identified as promising candidates for future functional analyses to better understand membrane remodelling during cellular dehydration.
Collapse
|
31
|
Li A, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL. Distinct contractile and cytoskeletal protein patterns in the Antarctic midge are elicited by desiccation and rehydration. Proteomics 2009; 9:2788-98. [DOI: 10.1002/pmic.200800850] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|