1
|
Ohe Y, Hasebe M, Hamanaka Y, Goto SG, Shiga S. Photoperiodic plasticity of pigment-dispersing factor immunoreactive fibers projecting toward prothoracicotropic hormone neurons in flesh fly Sarcophaga similis larvae. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:261-276. [PMID: 39812695 DOI: 10.1007/s00359-024-01729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Larvae of the flesh fly, Sarcophaga similis exhibit photoperiodic responses to control pupal diapause. Although the external coincidence model is applicable to S. similis photoperiodism, it remains unknown how the circadian clock system integrates day-length information. To explore the mechanisms, we examined the neural circuitry involving circadian clock lateral neurons (LNs) and prothoracicotropic hormone (PTTH) neurons. We also examined the photoperiodic effects on LN-fiber patterns in third-instar S. similis larvae. Immunohistochemistry showed that the clock protein PERIOD and the neuropeptide pigment-dispersing factor (PDF) were co-localized in four cells per brain hemisphere, and we named these PDF-LNs of S. similis. Single-cell polymerase chain reaction of backfilled neurons from the ring gland showed that two pairs of pars lateralis neurons with contralateral axons (PL-c neurons) to the ring gland expressed ptth. Double labeling with immunohistochemistry and backfills revealed that PDF-immunoreactive varicose fibers projected close to fibers from PL-c neurons. short neuropeptide f (snpf) receptor and glutamate-gated chloride channel but not pdf receptor were expressed in PL-c neurons. sNPF and L-glutamate but not PDF acutely inhibited the spontaneous firing activity of PL-c neurons. The number of PDF-immunoreactive varicosities of PDF-LNs in the dorsal protocerebrum was significantly higher under short-day than that under long-day conditions in a time-dependent manner. These results suggest that sNPF and/or glutamate signaling to PTTH neurons and PDF-LNs form a potential neural circuity for the photoperiodic control of pupal diapause and that photoperiod modifies the connectivity strength between PDF-LNs and their post- or pre-neurons in the circuitry.
Collapse
Affiliation(s)
- Yutaro Ohe
- Graduate School of Science, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Masaharu Hasebe
- Graduate School of Science, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yoshitaka Hamanaka
- Graduate School of Science, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Shin G Goto
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi, Osaka, Osaka, 558-8585, Japan
| | - Sakiko Shiga
- Graduate School of Science, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
2
|
Saunders DS. Time measurement in insect photoperiodism: external and internal coincidence. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:513-525. [PMID: 37697123 PMCID: PMC11226529 DOI: 10.1007/s00359-023-01648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 09/13/2023]
Abstract
The identity and nature of the photoperiodic photoreceptors are now quite well known, as is the nature of the endocrine regulation of the resulting diapauses. The central problem of time measurement-how the photoperiodic clock differentiates long from short days-however, is still obscure, known only from whole-animal experiments and abstract models, although it is clearly a function of the insect circadian system. This review describes some of these experiments in terms of oscillator entrainment and two widely applicable photoperiodic clock models, external and internal coincidence, mainly using data from experiments on flesh flies (Sarcophaga spp) and the parasitic wasp, Nasonia vitripennis.
Collapse
|
3
|
Ngando FJ, Zhang X, Qu H, Zhang C, Yang F, Feng Y, Shang Y, Chen S, Ren L, Guo Y. Analysis of the Influence of Changing and Fixed Temperatures on the Growth and Pteridine Content in the Head of Adults Sarcophaga crassipalpis (Diptera: Sarcophagidae). Animals (Basel) 2023; 13:2402. [PMID: 37570212 PMCID: PMC10417853 DOI: 10.3390/ani13152402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Flesh flies (Diptera: Sarcophagidae) are regarded as significant in medical and veterinary entomology, and their development models can be utilized as considerable markers to ascertain the minimum postmortem interval (PMImin). In this research, we explored the growth cycle and larval body length of Sarcophaga crassipalpis Macquart 1839 (Diptera: Sarcophagidae) reared under variable temperatures ranging from 15.7 to 31.1 °C, with an average of 24.55 °C and relative humidity ranges from 31.4 to 82.8% and at six fixed temperatures of 15, 20, 25, 30, 32, and then 35 °C. Moreover, pteridine from the head was used to assess adult age grading. Our results allowed us to provide three development models: the isomorphen chart, the isomegalen chart, and the thermal summation models. The time taken for S. crassipalpis to complete its development from larviposition to adult emergence at constant temperatures of 15, 20, 25, 30, 32, and 35 °C was 1256.3 ± 124.2, 698.6 ± 15.1, 481.8 ± 35.7, 366.0 ± 13.5, and 295.8 ± 20.5 h, respectively, except 35 °C, where all pupae were unable to attain adulthood. They lasted 485.8 ± 5.4 h under variable temperatures. The minimum developmental limit (D0) temperature and the thermal summation constant (K) of S. crassipalpis were 9.31 ± 0.55 °C and 7290.0 ± 388.4 degree hours, respectively. The increase in pteridine content exhibited variations across different temperatures. There was quite a considerable distinction in the pteridine contents of male and female S. crassipalpis at 15 °C (p = 0.0075) and 25 °C (p = 0.0213). At 32 °C and variable temperatures, the pteridine content between female and male S. crassipalpis was not statistically divergent. However, temperature and gender remain the main factors influencing the pteridine content in the head of S. crassipalpis. We aim to provide detailed developmental data on S. crassipalpis that can be used as a valuable resource for future research and PMI estimation.
Collapse
Affiliation(s)
- Fernand Jocelin Ngando
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (F.J.N.); (X.Z.); (C.Z.); (F.Y.); (Y.F.); (Y.S.); (S.C.)
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (F.J.N.); (X.Z.); (C.Z.); (F.Y.); (Y.F.); (Y.S.); (S.C.)
| | - Hongke Qu
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (F.J.N.); (X.Z.); (C.Z.); (F.Y.); (Y.F.); (Y.S.); (S.C.)
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (F.J.N.); (X.Z.); (C.Z.); (F.Y.); (Y.F.); (Y.S.); (S.C.)
| | - Yakai Feng
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (F.J.N.); (X.Z.); (C.Z.); (F.Y.); (Y.F.); (Y.S.); (S.C.)
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (F.J.N.); (X.Z.); (C.Z.); (F.Y.); (Y.F.); (Y.S.); (S.C.)
| | - Sile Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (F.J.N.); (X.Z.); (C.Z.); (F.Y.); (Y.F.); (Y.S.); (S.C.)
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (F.J.N.); (X.Z.); (C.Z.); (F.Y.); (Y.F.); (Y.S.); (S.C.)
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (F.J.N.); (X.Z.); (C.Z.); (F.Y.); (Y.F.); (Y.S.); (S.C.)
| |
Collapse
|
4
|
Saunders DS. Dormancy, Diapause, and the Role of the Circadian System in Insect Photoperiodism. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:373-389. [PMID: 31594413 DOI: 10.1146/annurev-ento-011019-025116] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Whole-animal experiments devised to investigate possible association between photoperiodic time measurement and the circadian system (Bünning's hypothesis) are compared with more recent molecular investigations of circadian clock genes. In Sarcophaga argyrostoma and some other species, experimental cycles of light and darkness revealed a photoperiodic oscillator, set to constant phase at dusk and measuring night length repeatedly during extended periods of darkness. In some species, however, extreme dampening revealed an unrepetitive (i.e., hourglass-like) response. Rhythms of clock gene transcript abundance may also show similar phase relationships to the light cycle, and gene silencing of important clock genes indicates that they play a crucial role in photoperiodism either alone or in concert. However, the multiplicity of peripheral oscillators in the insect circadian system indicates that more complex mechanisms might also be important.
Collapse
|
5
|
Helfrich‐Förster C, Bertolini E, Menegazzi P. Flies as models for circadian clock adaptation to environmental challenges. Eur J Neurosci 2020; 51:166-181. [PMID: 30269385 PMCID: PMC7027873 DOI: 10.1111/ejn.14180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/02/2023]
Abstract
Life on earth is assumed to have developed in tropical regions that are characterized by regular 24 hr cycles in irradiance and temperature that remain the same throughout the seasons. All organisms developed circadian clocks that predict these environmental cycles and prepare the organisms in advance for them. A central question in chronobiology is how endogenous clocks changed in order to anticipate very different cyclical environmental conditions such as extremely short and long photoperiods existing close to the poles. Flies of the family Drosophilidae can be found all over the world-from the tropics to subarctic regions-making them unprecedented models for studying the evolutionary processes that underlie the adaptation of circadian clocks to different latitudes. This review summarizes our current understanding of these processes. We discuss evolutionary changes in the clock genes and in the clock network in the brain of different Drosophilids that may have caused behavioural adaptations to high latitudes.
Collapse
Affiliation(s)
| | - Enrico Bertolini
- Neurobiology and GeneticsTheodor‐Boveri InstituteBiocentre, University of WürzburgWürzburgGermany
| | - Pamela Menegazzi
- Neurobiology and GeneticsTheodor‐Boveri InstituteBiocentre, University of WürzburgWürzburgGermany
| |
Collapse
|
6
|
Yamamoto M, Shiga S, Goto SG. Distribution of PERIOD-immunoreactive neurons and temporal change of the immunoreactivity under long-day and short-day conditions in the larval brain of the flesh fly Sarcophaga similis. Chronobiol Int 2017; 34:819-825. [PMID: 28414547 DOI: 10.1080/07420528.2017.1310736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The flesh fly Sarcophaga similis show a clear photoperiodic response; they develop into adults under long days, whereas they arrest their development at the pupal stage under short days. Although the involvement of a circadian clock in photoperiodic time measurement is suggested in this species, the anatomical location of the clock neurons responsible for the time measurement has been unknown. We detected two PERIOD-immunoreactive cell clusters in the larval brain; one cluster was located at the dorsoanterior region and the other at the medial region. We further investigated their temporal changes in PERIOD-immunoreactivity and compared their patterns under different photoperiods.
Collapse
Affiliation(s)
- Mizuho Yamamoto
- a Graduate School of Science , Osaka City University , Osaka , Japan
| | - Sakiko Shiga
- a Graduate School of Science , Osaka City University , Osaka , Japan
| | - Shin G Goto
- a Graduate School of Science , Osaka City University , Osaka , Japan
| |
Collapse
|
7
|
Xi J, Toyoda I, Shiga S. Afferent neural pathways from the photoperiodic receptor in the bean bug, Riptortus pedestris. Cell Tissue Res 2017; 368:469-485. [PMID: 28144785 DOI: 10.1007/s00441-016-2565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022]
Abstract
Adult diapause in the bean bug, Riptortus pedestris, is controlled by the photoperiod, which is received by retinal cells in the central region of the compound eyes. To resolve the afferent neural pathways involved in the photoperiodic response, we examine fibre projections from the photoperiodic receptors to the brain and investigate the roles of the posterior optic tract (POT) in the photoperiodic response. Reduced-silver impregnation and synapsin immunolabelling revealed that the medulla was divided into nine strata: the outer layer comprises 4 strata, the inner layer comprises 4 strata and a serpentine layer separates the inner and outer layers. Biotin injection revealed that retinal fibres from the central region of the compound eye terminated in either the central part of the lamina or the central part of the medulla 3rd or 4th layer. Biotin injection into the central part of the medulla labelled 5 distinct afferent pathways: two terminated in a region of ipsilateral anterior protocerebrum, while the other three had contralateral projections. One pathway ran through the POT and connected to the bilateral medulla serpentine layers. When the POT was surgically severed, diapause incidence under short-day conditions was significantly reduced compared to that observed following a sham operation. However, an incision at a posterior part of the medulla and lobula boundary, as a control experiment, did not affect the photoperiodic response. These results suggest that photoperiodic signals from the central region of the compound eye are transferred to neurons with fibres running in the POT for photoperiodic response in R. pedestris.
Collapse
Affiliation(s)
- Jili Xi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Ikuyo Toyoda
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Sakiko Shiga
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan. .,Department of Biological Science, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan.
| |
Collapse
|
8
|
Short CA, Meuti ME, Zhang Q, Denlinger DL. Entrainment of eclosion and preliminary ontogeny of circadian clock gene expression in the flesh fly, Sarcophaga crassipalpis. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:28-35. [PMID: 27530303 DOI: 10.1016/j.jinsphys.2016.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Timing of circadian activities is controlled by rhythmic expression of clock genes in pacemaker neurons in the insect brain. Circadian behavior and clock gene expression can entrain to both thermoperiod and photoperiod but the availability of such cues, the organization of the brain, and the need for circadian behavior change dramatically during the course of insect metamorphosis. We asked whether photoperiod or thermoperiod entrains the clock during pupal and pharate adult stages by exposing flies to different combinations of thermoperiod and photoperiod and observing the effect on the timing of adult eclosion. This study used qRT-PCR to examine how entrainment and expression of circadian clock genes change during the course of development in the flesh fly, Sarcophaga crassipalpis. Thermoperiod entrains expression of period and controls the timing of adult eclosion, suggesting that the clock gene period may be upstream of the eclosion pathway. Rhythmic clock gene expression is evident in larvae, appears to cease during the early pharate adult stage, and resumes again by the time of adult eclosion. Our results indicate that both patterns of clock gene expression and the cues to which the clock entrains are dynamic and respond to different environmental signals at different developmental stages in S. crassipalpis.
Collapse
Affiliation(s)
- Clancy A Short
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA.
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA.
| | - Qirui Zhang
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA.
| | - David L Denlinger
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Kauranen H, Ala-Honkola O, Kankare M, Hoikkala A. Circadian clock of Drosophila montana is adapted to high variation in summer day lengths and temperatures prevailing at high latitudes. JOURNAL OF INSECT PHYSIOLOGY 2016; 89:9-18. [PMID: 26993661 DOI: 10.1016/j.jinsphys.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Photoperiodic regulation of the circadian rhythms in insect locomotor activity has been studied in several species, but seasonal entrainment of these rhythms is still poorly understood. We have traced the entrainment of activity rhythm of northern Drosophila montana flies in a climate chamber mimicking the photoperiods and day and night temperatures that the flies encounter in northern Finland during the summer. The experiment was started by transferring freshly emerged females into the chamber in early and late summer conditions to obtain both non-diapausing and diapausing females for the studies. The locomotor activity of the females and daily changes in the expression levels of two core circadian clock genes, timeless and period, in their heads were measured at different times of summer. The study revealed several features in fly rhythmicity that are likely to help the flies to cope with high variation in the day length and temperature typical to northern summers. First, both the non-diapausing and the diapausing females showed evening activity, which decreased towards the short day length as observed in the autumn in nature. Second, timeless and period genes showed concordant daily oscillations and seasonal shifts in their expression level in both types of females. Contrary to Drosophila melanogaster, oscillation profiles of these genes were similar to each other in all conditions, including the extremely long days in early summer and the cool temperatures in late summer, and their peak expression levels were not locked to lights-off transition in any photoperiod. Third, the diapausing females were less active than the non-diapausing ones, in spite of their younger age. Overall, the study showed that D. montana clock functions well under long day conditions, and that both the photoperiod and the daily temperature cycles are important zeitgebers for seasonal changes in the circadian rhythm of this species.
Collapse
Affiliation(s)
- Hannele Kauranen
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, Jyväskylä, Finland.
| | - Outi Ala-Honkola
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, Jyväskylä, Finland
| | - Maaria Kankare
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, Jyväskylä, Finland
| | - Anneli Hoikkala
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, Jyväskylä, Finland
| |
Collapse
|
10
|
Huang X, Poelchau MF, Armbruster PA. Global transcriptional dynamics of diapause induction in non-blood-fed and blood-fed Aedes albopictus. PLoS Negl Trop Dis 2015; 9:e0003724. [PMID: 25897664 PMCID: PMC4405372 DOI: 10.1371/journal.pntd.0003724] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Aedes albopictus is a vector of increasing public health concern due to its rapid global range expansion and ability to transmit Dengue virus, Chikungunya virus and a wide range of additional arboviruses. Traditional vector control strategies have been largely ineffective against Ae. albopictus and novel approaches are urgently needed. Photoperiodic diapause is a crucial ecological adaptation in a wide range of temperate insects. Therefore, targeting the molecular regulation of photoperiodic diapause or diapause-associated physiological processes could provide the basis of novel approaches to vector control. METHODOLOGY/PRINCIPAL FINDINGS We investigated the global transcriptional profiles of diapause induction in Ae. albopictus by performing paired-end RNA-Seq of biologically replicated libraries. We sequenced RNA from whole bodies of adult females reared under diapause-inducing and non-diapause-inducing photoperiods either with or without a blood meal. We constructed a comprehensive transcriptome assembly that incorporated previous assemblies and represents over 14,000 annotated dipteran gene models. Mapping of sequence reads to the transcriptome identified differential expression of 2,251 genes in response to diapause-inducing short-day photoperiods. In non-blood-fed females, potential regulatory elements of diapause induction were transcriptionally up-regulated, including two of the canonical circadian clock genes, timeless and cryptochrome 1. In blood-fed females, genes in metabolic pathways related to energy production and offspring provisioning were differentially expressed under diapause-inducing conditions, including the oxidative phosphorylation pathway and lipid metabolism genes. CONCLUSIONS/SIGNIFICANCE This study is the first to utilize powerful RNA-Seq technologies to elucidate the transcriptional basis of diapause induction in any insect. We identified candidate genes and pathways regulating diapause induction, including a conserved set of genes that are differentially expressed as part of the diapause program in a diverse group of insects. These genes provide candidates whose diapause-associated function can be further interrogated using functional genomics approaches in Ae. albopictus and other insects.
Collapse
Affiliation(s)
- Xin Huang
- Department of Biology, Georgetown University, Washington, D.C., United States of America
| | - Monica F. Poelchau
- Department of Biology, Georgetown University, Washington, D.C., United States of America
| | - Peter A. Armbruster
- Department of Biology, Georgetown University, Washington, D.C., United States of America
| |
Collapse
|
11
|
Lehmann P, Piiroinen S, Kankare M, Lyytinen A, Paljakka M, Lindström L. Photoperiodic effects on diapause-associated gene expression trajectories in European Leptinotarsa decemlineata populations. INSECT MOLECULAR BIOLOGY 2014; 23:566-578. [PMID: 24924142 DOI: 10.1111/imb.12104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Behavioural and physiological changes during diapause, an important strategy of insects for surviving harsh seasonal conditions, have been intensively studied. The genetic and molecular mechanisms underpinning diapause development are less well known. We took a candidate gene approach to study prediapause gene expression patterns in the Colorado potato beetle (Leptinotarsa decemlineata), an invasive insect that has rapidly spread northwards to high seasonality environments. Newly eclosed beetles originating from southern (Italy) and northern (Russia) Europe were reared under short- [12 h light (L):12 h dark (D)] and long-day (18L:6D) photoperiods for 10 days. This time period includes the sensitive period for the photoperiodic induction and initiation of diapause. Gene expression trajectories of 12 diapause-related genes (regulatory, metabolic and stress-resistance) were analysed from 0-, 5- and 10-day-old beetles. Gene expression differences increased with age, deviating significantly between populations and photoperiods in 10-day-old beetles. The gene expression profiles, particularly those related to energy metabolism and stress-resistance, indicate that beetles originating from Russia also prepare for diapause under the long-day photoperiod and show qualitative differences in the diapausing phenotype. Our study shows that population-dependent differences seen in behavioural and physiological traits connected with diapause in L. decemlineata are also evident in the expression trajectories of diapause-related genes.
Collapse
Affiliation(s)
- P Lehmann
- Centre of Excellence in Biological Interactions Research, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | | | |
Collapse
|
12
|
Bertossa RC, van de Zande L, Beukeboom LW, Beersma DGM. Phylogeny and oscillating expression of period and cryptochrome in short and long photoperiods suggest a conserved function in Nasonia vitripennis. Chronobiol Int 2014; 31:749-60. [PMID: 24758403 PMCID: PMC4059186 DOI: 10.3109/07420528.2014.880451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photoperiodism, the ability to respond to seasonal varying day length with suitable life history changes, is a common trait in organisms that live in temperate regions. In most studied organisms, the circadian system appears to be the basis for photoperiodic time measurement. In insects this is still controversial: while some data indicate that the circadian system is causally involved in photoperiodism, others suggest that it may have a marginal or indirect role. Resonance experiments in the parasitic wasp Nasonia vitripennis have revealed a circadian component in photoperiodic time measurement compatible with a mechanism of internal coincidence where a two components oscillator system obtains information from dawn and dusk, respectively. The identity of this oscillator (or oscillators) is still unclear but possible candidates are the oscillating molecules of the auto-regulatory feedback loops in the heart of the circadian system. Here, we show for the first time the circadian oscillation of period and cryptochrome mRNAs in the heads of Nasonia females kept under short and long photoperiods. Period and cryptochrome mRNA levels display a synchronous oscillation in all conditions tested and persist, albeit with reduced amplitude, during the first day in constant light as well as constant darkness. More importantly, the signal for the period and cryptochrome oscillations is set by the light-on signal. These results, together with phylogenetic analyses, indicate that Nasonia’s period and cryptochrome display characteristics of homologous genes in other hymenopteran species.
Collapse
Affiliation(s)
- Rinaldo C Bertossa
- Department of Molecular Neurobiology, Centre for Behaviour and Neurosciences, University of Groningen , Groningen , The Netherlands
| | | | | | | |
Collapse
|
13
|
van Swinderen B, Kottler B. Explaining general anesthesia: a two-step hypothesis linking sleep circuits and the synaptic release machinery. Bioessays 2014; 36:372-81. [PMID: 24449137 DOI: 10.1002/bies.201300154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several general anesthetics produce their sedative effect by activating endogenous sleep pathways. We propose that general anesthesia is a two-step process targeting sleep circuits at low doses, and synaptic release mechanisms across the entire brain at the higher doses required for surgery. Our hypothesis synthesizes data from a variety of model systems, some which require sleep (e.g. rodents and adult flies) and others that probably do not sleep (e.g. adult nematodes and cultured cell lines). Non-sleeping systems can be made insensitive (or hypersensitive) to some anesthetics by modifying a single pre-synaptic protein, syntaxin1A. This suggests that the synaptic release machinery, centered on the highly conserved SNARE complex, is an important target of general anesthetics in all animals. A careful consideration of SNARE architecture uncovers a potential mechanism for general anesthesia, which may be the primary target in animals that do not sleep, but a secondary target in animals that sleep.
Collapse
Affiliation(s)
- Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
14
|
Guo Y, Zha L, Yan W, Li P, Cai J, Wu L. Identification of forensically important sarcophagid flies (Diptera: Sarcophagidae) in China based on COI and period gene. Int J Legal Med 2013; 128:221-8. [DOI: 10.1007/s00414-013-0923-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
15
|
Kim NN, Shin HS, Lee J, Choi CY. Diurnal gene expression ofPeriod2,Cryptochrome1, and arylalkylamineN-acetyltransferase-2 in olive flounder,Paralichthys olivaceus. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2011.611536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
16
|
Eban-Rothschild A, Bloch G. Social influences on circadian rhythms and sleep in insects. ADVANCES IN GENETICS 2012; 77:1-32. [PMID: 22902124 DOI: 10.1016/b978-0-12-387687-4.00001-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diverse social lifestyle and the small and accessible nervous system of insects make them valuable for research on the adaptive value and the organization principles of circadian rhythms and sleep. We focus on two complementary model insects, the fruit fly Drosophila melanogaster, which is amenable to extensive transgenic manipulations, and the honey bee Apis mellifera, which has rich and well-studied social behaviors. Social entrainment of activity rhythms (social synchronization) has been studied in many animals. Social time givers appear to be specifically important in dark cavity-dwelling social animals, but here there are no other clear relationships between the degree of sociality and the effectiveness of social entrainment. The olfactory system is important for social entrainment in insects. Little is known, however, about the molecular and neuronal pathways linking olfactory neurons to the central clock. In the honey bee, the expression, phase, and development of circadian rhythms are socially regulated, apparently by different signals. Peripheral clocks regulating pheromone synthesis and the olfactory system have been implicated in social influences on circadian rhythms in the fruit fly. An enriched social environment increases the total amount of sleep in both fruit flies and honey bees. In fruit flies, these changes have been linked to molecular and neuronal processes involved in learning, memory, and synaptic plasticity. The studies on insects suggest that social influences on the clock are richer than previously appreciated and have led to important breakthroughs in our understanding of the mechanisms underlying social influences on sleep and circadian rhythms.
Collapse
Affiliation(s)
- Ada Eban-Rothschild
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
17
|
Zhang Z, Peng ZY, Yi K, Cheng Y, Xia Y. Identification of representative genes of the central nervous system of the locust, Locusta migratoria manilensis by deep sequencing. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:86. [PMID: 23421689 PMCID: PMC3612920 DOI: 10.1673/031.012.8601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 12/22/2011] [Indexed: 06/01/2023]
Abstract
The shortage of available genomic and transcriptomic data hampers the molecular study on the migratory locust, Locusta migratoria manilensis (L.) (Orthoptera: Acrididae) central nervous system (CNS). In this study, locust CNS RNA was sequenced by deep sequencing. 41,179 unigenes were obtained with an average length of 570 bp, and 5,519 unigenes were longer than 1,000 bp. Compared with an EST database of another locust species Schistocerca gregaria Forsskåi, 9,069 unigenes were found conserved, while 32,110 unigenes were differentially expressed. A total of 15,895 unigenes were identified, including 644 nervous system relevant unigenes. Among the 25,284 unknown unigenes, 9,482 were found to be specific to the CNS by filtering out the previous ESTs acquired from locust organs without CNS's. The locust CNS showed the most matches (18%) with Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) sequences. Comprehensive assessment reveals that the database generated in this study is broadly representative of the CNS of adult locust, providing comprehensive gene information at the transcriptional level that could facilitate research of the locust CNS, including various physiological aspects and pesticide target finding.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Genetic Engineering Research Center, School of Bioengineering, Chongqing Engineering Research Center for Fungal Insecticide, The Key Laboratory of Gene Function and Expression Regulation, Chongqing University Chongqing 400030, China
| | - Zhi-Yu Peng
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Kang Yi
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Yanbing Cheng
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Bioengineering, Chongqing Engineering Research Center for Fungal Insecticide, The Key Laboratory of Gene Function and Expression Regulation, Chongqing University Chongqing 400030, China
| |
Collapse
|
18
|
Koštál V. Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity? JOURNAL OF INSECT PHYSIOLOGY 2011; 57:538-556. [PMID: 21029738 DOI: 10.1016/j.jinsphys.2010.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
The photoperiodic calendar is a seasonal time measurement system which allows insects to cope with annual cycles of environmental conditions. Seasonal timing of entry into diapause is the most often studied photoperiodic response of insects. Research on insect photoperiodism has an approximately 80-year-old tradition. Despite that long history, the physiological mechanisms underlying functionality of the photoperiodic calendar remain poorly understood. Thus far, a consensus has not been reached on the role of another time measurement system, the biological circadian clock, in the photoperiodic calendar. Are the two systems physically separated and functionally independent, or do they cooperate, or is it a single system with dual output? The relationship between calendar and clock functions are the focus of this review, with particular emphasis on the potential roles of circadian clock genes, and the circadian clock system as a whole, in the transduction pathway for photoperiodic token stimulus to the overt expression of facultative diapause.
Collapse
Affiliation(s)
- Vladimír Koštál
- Institute of Entomology, Academy of Sciences of the Czech Republic, Department of Ecophysiology, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
19
|
Saunders DS, Bertossa RC. Deciphering time measurement: the role of circadian 'clock' genes and formal experimentation in insect photoperiodism. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:557-566. [PMID: 21295039 DOI: 10.1016/j.jinsphys.2011.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 05/30/2023]
Abstract
This review examines possible role(s) of circadian 'clock' genes in insect photoperiodism against a background of many decades of formal experimentation and model building. Since ovarian diapause in the genetic model organism Drosophila melanogaster has proved to be weak and variable, recent attention has been directed to species with more robust photoperiodic responses. However, no obvious consensus on the problem of time measurement in insect photoperiodism has yet to emerge and a variety of mechanisms are indicated. In some species, expression patterns of clock genes and formal experiments based on the canonical properties of the circadian system have suggested that a damped oscillator version of Pittendrigh's external coincidence model is appropriate to explain the measurement of seasonal changes in night length. In other species extreme dampening of constituent oscillators may give rise to apparently hourglass-like photoperiodic responses, and in still others there is evidence for dual oscillator (dawn and dusk) photoperiodic mechanisms of the internal coincidence type. Although the exact role of circadian rhythmicity and of clock genes in photoperiodism is yet to be settled, Bünning's general hypothesis (Bünning, 1936) remains the most persuasive unifying principle. Observed differences between photoperiodic clocks may be reflections of underlying differences in the clock genes in their circadian feedback loops.
Collapse
|