1
|
Pei T, Zhang M, Nwanade CF, Meng H, Bai R, Wang Z, Wang R, Zhang T, Liu J, Yu Z. Sequential expression of small heat shock proteins contributing to the cold response of Haemaphysalis longicornis (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2024; 80:2061-2071. [PMID: 38117216 DOI: 10.1002/ps.7941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Haemaphysalis longicornis is an important livestock pest and a serious threat to public health. Cold is a common form of stress affecting its survival and distribution. However, H. longicornis exhibits different physiological responses to cold stress. In this study, we systematically explored the regulation and functions of small heat shock proteins (sHsps) in H. longicornis during cold stress. RESULTS Seven sHsp genes (HlsHsp14.9, HlsHsp19.9, HlsHsp20.3, HlsHsp21.4, HlsHsp23.7, HlsHsp24.0, and HlsHsp26.1) with open reading frame lengths ranging from 408 bp (HlsHsp14.9) to 673 bp (HlsHsp26.1) were cloned from H. longicornis, and featured the typical α-crystallin domain. Phylogenetic analysis revealed high similarity with the sHsps of arachnid species. Quantitative polymerase chain reaction analysis revealed that the regulation of sHsp genes depended on the severity and duration of cold treatment. Moreover, the relative expression of each gene was largely dependent on the treatment period (P < 0.01; 3, 6, and 9 days of treatment at 8, 4, 0, and -4 °C). Among all genes, HlsHsp14.9, HlsHsp19.9, HlsHsp20.3, and HlsHsp24.0 were most sensitive to rapid cold treatment. After RNA interference, the mortality of H. longicornis was significantly increased at -14 °C (P < 0.05), suggesting that the expression of sHsp genes is closely related to cold tolerance in H. longicornis. CONCLUSION Our results indicate that sHsps play an important role in the cold stress response of H. longicornis, which may enhance our understanding of the cold adaptation mechanisms in ticks. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tingwei Pei
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Meng Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuks F Nwanade
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hao Meng
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Ruwei Bai
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zihao Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ruotong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tianai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
2
|
Zhao S, Liu Y, Li H, Li Z, Hao D. Spatiotemporal Patterns of Five Small Heat Shock Protein Genes in Hyphantria cunea in Response to Thermal Stress. Int J Mol Sci 2023; 24:15176. [PMID: 37894858 PMCID: PMC10606853 DOI: 10.3390/ijms242015176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hyphantria cunea (Drury), a destructive polyphagous pest, has been spreading southward after invading northern China, which indicates that this insect species is facing a huge thermal challenge. Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones that protect insects from heat stress damage. In order to explore the role of sHSPs in the thermotolerance of H. cunea, five novel sHSP genes of H. cunea were cloned, including an orthologous gene (HcHSP21.4) and four species-specific sHSP genes (HcHSP18.9, HcHSP20.1, HcHSP21.5, and HcHSP29.8). Bioinformatics analysis showed that the proteins encoded by these five HcHSPs contained typical α-crystallin domains. Quantitative real-time PCR analysis revealed the ubiquitous expression of all HcHSPs across all developmental stages of H. cunea, with the highest expression levels in pupae and adults. Four species-specific HcHSPs were sensitive to high temperatures. The expression levels of HcHSPs were significantly up-regulated under heat stress and increased with increasing temperature. The expression levels of HcHSPs in eggs exhibited an initial up-regulation in response to a temperature of 40 °C. In other developmental stages, the transcription of HcHSPs was immediately up-regulated at 30 °C or 35 °C. HcHSPs transcripts were abundant in the cuticle before and after heat shock. The expression of HcHSP21.4 showed weak responses to heat stress and constitutive expression in the tissues tested. These results suggest that most of the HcHSPs are involved in high-temperature response and may also have functions in the normal development and reproduction of H. cunea.
Collapse
Affiliation(s)
- Shiyue Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yukun Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zichun Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Liang C, Li L, Zhao H, Lan M, Tang Y, Zhang M, Qin D, Wu G, Gao X. Identification and expression analysis of heat shock protein family genes of gall fly (Procecidochares utilis) under temperature stress. Cell Stress Chaperones 2023; 28:303-320. [PMID: 37071342 PMCID: PMC10167091 DOI: 10.1007/s12192-023-01338-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
Heat shock proteins (HSP) are molecular chaperones involved in many normal cellular processes and environmental stresses. At the genome-wide level, there were no reports on the diversity and phylogeny of the heat shock protein family in Procecidochares utilis. In this study, 43 HSPs were identified from the genome of P. utilis, including 12 small heat shock proteins (sHSPs), 23 heat shock protein 40 (DNAJs), 6 heat shock protein 70 (HSP70s), and 2 heat shock protein 90 (HSP90s). The characteristics of these candidates HSP genes were analyzed by BLAST, and then phylogenetic analysis was carried out. Quantitative real-time PCR (qRT-PCR) was used to analyze the spatiotemporal expression patterns of sHSPs and HSP70s in P. utilis after temperature stress. Results showed that most sHSPs could be induced under heat stress during the adult stage of P. utilis, while a few HSP70s could be induced at the larval stage. This study provides an information framework for the HSP family of P. utilis. Moreover, it lays an important foundation for a better understanding of the role of HSP in the adaptability of P. utilis to various environments.
Collapse
Affiliation(s)
- Chen Liang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Lifang Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Hang Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Mingxian Lan
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Yongyu Tang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Man Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Deqiang Qin
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Guoxing Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Xi Gao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| |
Collapse
|
4
|
Fu J, Li L, Dai C, Zhang Y, Hu Y, Hu C, Li H. Transcriptomic analysis of Mythimna separata ovaries and identification of genes involved in reproduction. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101075. [PMID: 37031498 DOI: 10.1016/j.cbd.2023.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The migratory insect Mythimna separata is a major pest of grain crops in Asia. Unfortunately, the molecular mechanisms that control and regulate reproduction in this species remain unclear. In this study, transcriptome sequencing was utilized to identify genes associated with ovary development and oogenesis. Clean sequences totaling 117.71 Gb were assembled into 178,534 unigenes with a mean length of 647.37 bp and N50 length of 837 bp. Transcriptome analysis showed that 7921 unigenes were significantly expressed in ovaries with 4403 and 3518 unigenes up- and down-regulated, respectively. Enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes database suggested that 729 differentially expressed genes were significantly enriched in the top 20 pathways (q-values <0.05). Twenty genes were associated with ovary development and oogenesis and included lipases, Nanos, small heat shock proteins (sHsps) and histones; these were further verified by qRT-PCR and may play essential roles in M. separata reproduction. Collectively, our findings reveal underlying mechanisms of M.separata reproduction and may lead to RNAi-based management strategies targeting reproductive physiology.
Collapse
|
5
|
Ledón-Rettig CC. A transcriptomic investigation of heat-induced transgenerational plasticity in beetles. Biol J Linn Soc Lond 2023. [DOI: 10.1093/biolinnean/blac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
AbstractIn response to environmental stressors, parents can shape the developmental outcomes of their offspring by contributing non-genetic but heritable factors. The transmission of such factors can potentially allow offspring, from the beginning of their lives, to express phenotypes that match their anticipated environments. In this study, I ask whether enhanced growth in larvae of Onthophagus taurus (the bull-headed dung beetle) is modified by parental exposure to heat or by exposure of the offspring to heat during early life. I find that, irrespective of the early environment of the offspring, individuals produced by parents exposed to heat grow larger. Furthermore, taking a transcriptomic approach, I find that ecdysone signalling might mediate the transgenerational effect and that increased insulin signalling or reduced production of heat shock proteins might be responsible for the enhanced growth in larvae derived from parents exposed to heat. Together, my results provide evidence for a thermally induced transgenerational effect and a foundation for functional testing of candidate mechanisms mediating the effect.
Collapse
|
6
|
Li H, Li S, Chen J, Dai L, Chen R, Ye J, Hao D. A heat shock 70kDa protein MaltHSP70-2 contributes to thermal resistance in Monochamus alternatus (Coleoptera: Cerambycidae): quantification, localization, and functional analysis. BMC Genomics 2022; 23:646. [PMID: 36088287 PMCID: PMC9464376 DOI: 10.1186/s12864-022-08858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Heat Shock Proteins 70 (HSP70s) in insects act on a diverse range of substrates to assist with overcoming extreme high temperatures. MaltHSP70-2, a member of HSP70s, has been characterized to involve in the thermotolerance of Monochamus alternatus in vitro, while quantification and localization of MaltHSP70-2 in various tissues and its functional analysis in vivo remain unclear. Results In this study, temporal expression of MaltHSP70-2 indicated a long-last inductive effect on MaltHSP70-2 expression maintained 48 hours after heat shock. MaltHSP70-2 showed a global response to heat exposure which occurring in various tissues of both males and females. Particularly in the reproductive tissues, we further performed the quantification and localization of MaltHSP70-2 protein using Western Blot and Immunohistochemistry, suggesting that enriched MaltHSP70-2 in the testis (specifically in the primary spermatocyte) must be indispensable to protect the reproductive activities (e.g., spermatogenesis) against high temperatures. Furthermore, silencing MaltHSP70-2 markedly influenced the expression of other HSP genes and thermotolerance of adults in bioassays, which implied a possible interaction of MaltHSP70-2 with other HSP genes and its role in thermal resistance of M. alternatus adults. Conclusions These findings shed new insights into thermo-resistant mechanism of M. alternatus to cope with global warming from the perspective of HSP70s functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08858-1.
Collapse
|
7
|
Yuan JW, Song HX, Chang YW, Yang F, Xie HF, Gong WR, Du YZ. Identification, expression analysis and functional verification of two genes encoding small heat shock proteins in the western flower thrips, Frankliniella occidentalis (Pergande). Int J Biol Macromol 2022; 211:74-84. [PMID: 35561856 DOI: 10.1016/j.ijbiomac.2022.05.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Small heat shock proteins (sHSPs) help prevent the irreversible aggregation of denatured proteins that occurs in response to organismal stress. In this study, we identified two intron-free genes encoding sHSPs from Frankliniella occidentalis; these were designated FoHSP11.6 and FoHSP28.0 and belonged to an atypical and typical sHSP family, respectively. Both FoHSPs were transcribed in all developmental stages of F. occidentalis with the highest expression levels in pupae and adults and greater expression in males than females. Although the FoHSPs had different temperature-induced expression profiles, they were generally induced by both low and high temperatures and reached maximal expression levels after 0.5-1 h of temperature stress. The FoHSPs expression levels in pupae were induced by drought and high humidity, and higher expression levels were correlated with lower survival rates. The thermotolerance of F. occidentalis decreased when theFoHSPs were silenced by RNA interference. Our results show that FoHSP11.6 and FoHSP28.0 are involved in the response to temperature and drought and may also function in growth and development of F. occidentalis.
Collapse
Affiliation(s)
- Jia-Wen Yuan
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Xia Song
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Hong-Fang Xie
- Plant Protection and Quarantine Station of Nanjing City, Jiangsu Province, Nanjing 210029, China
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210036, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
8
|
Shen ZJ, Liu YJ, Cheng J, Li Z, Michaud JP, Liu XX. High temperature exposure reduces the susceptibility of Helicoverpa armigera to its nucleopolyhedrovirus (HearNPV) by enhancing expression of heat shock proteins. PEST MANAGEMENT SCIENCE 2022; 78:2378-2389. [PMID: 35289068 DOI: 10.1002/ps.6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND High temperatures will occur more frequently with global warming, with potential impacts on the efficacy of biological control agents. Heat shock proteins (HSPs) are induced by high temperature, but their possible roles in pest resistance to entomopathogens remain unexplored. We investigated the effects of high temperature (35 °C) on Helicoverpa armigera resistance to H. armigera nucleopolyhedrovirus (HearNPV) and the putative roles of HSPs in this process. RESULTS Even short periods (24 h) of high temperature (35 °C) reduced mortality in HearNPV-infected H. armigera larvae. Sustained 35 °C exposure significantly shortened developmental time, and increased fresh weight and locomotor activity in infected larvae. Moreover, high temperature inhibited virus replication and thickened the epidermis of H. armigera, resulting in reduced spread of infection from cadavers. Real-time polymerase chain reaction (PCR) analysis showed that expression of 11 HSP genes was altered by the 35 °C treatment, and that mostly small heat shock protein (sHSP) genes were up-regulated, the same sHSPs were induced when larvae were infected with HearNPV. Finally, RNA interference (RNAi) suppression of these sHSPs showed that only Hsp24.91 and Hsp21.8 diminished H. armigera defensive responses to HearNPV infection. CONCLUSION Even short periods of exposure to high temperature can significantly reduce susceptibility of H. armigera larvae to HearNPV by stimulating the production of sHSPs which enhance immune responses, with important implications for the use of entomopathogens as biological control agents under global warming scenarios. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan-Jun Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, USA
| | - Xiao-Xia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Miano FN, Jiang T, Zhang J, Zhang WN, Peng Y, Xiao HJ. Identification and up-regulation of three small heat shock proteins in summer and winter diapause in response to temperature stress in Pieris melete. Int J Biol Macromol 2022; 209:1144-1154. [PMID: 35461858 DOI: 10.1016/j.ijbiomac.2022.04.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/05/2022]
Abstract
Small heat shock proteins (sHSPs) are conserved proteins that play key roles in organismal adaptation to adversity stressors. However, little is known about sHSPs during summer diapause. Three sHSP genes: PmHSP19.5, PmHSP19.9, and PmHSP20.0 were identified and cloned from Pieris melete. Sequence alignment and phylogenetic analysis revealed that the three sHSPs have a typical, conserved α-crystallin domain. PmHSP19.5 and PmHSP20.0 were both upregulated in summer diapause (SD) and winter diapause (WD), compared to non-diapause (ND) pupae. All three sHSPs were upregulated and showed similar trends in response to thermal stress. The 0 °C chilling treatment slightly affected sHSP transcripts in ND pupae, whereas both PmHSP19.5 and PmHSP19.9 were upregulated and PmHSP20.0 was downregulated after chilling at 0 °C for 24-96 h in both SD and WD pupae. The transcripts of PmHSP19.5 and PmHSP19.9 were significantly induced at 31 °C for 30 d in SD and WD pupae. The PmHSP20.0 transcript gradually decreased during the SD and WD programs. This is the first time that sHSPs have been linked to both overwintering and summer diapause processes. These findings suggest that sHSPs are involved in both summer and winter diapause maintenance and play a possible key role in temperature stress.
Collapse
Affiliation(s)
- Falak Naz Miano
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Jiang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wan-Na Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Hai-Jun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China; School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Characterization and functional analysis of Cshsp19.0 encoding a small heat shock protein in Chilo suppressalis (Walker). Int J Biol Macromol 2021; 188:924-931. [PMID: 34352319 DOI: 10.1016/j.ijbiomac.2021.07.186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022]
Abstract
Small heat shock proteins (sHSPs) function as ATP-independent chaperones that preserve cellular proteostasis under stressful conditions. In this study, Cshsp19.0, which encodes a new small heat shock protein, was isolated and characterized from Chilo suppressalis (Walker) to better understand the contribution of sHSPs to insect development and stress tolerance. The full-length Cshsp19.0 cDNA was 697 bp and encoded a 19.0 kDa protein with an isoelectric point of 5.95. Phylogenetic analysis and amino acid alignments indicated that Cshsp19.0 is a member of the sHSP family. Cshsp19.0 was expressed at maximal levels in foreguts and showed the least amount of expression in fat bodies. Expression analysis in different developmental stages of C. suppressalis revealed that Cshsp19.0 was most highly expressed in 1st instar larvae. Furthermore, Cshsp19.0 was upregulated when insects were exposed to heat and cold stress for a 2-h period. There were significant differences in the male and female pupae in response to humidity; Cshsp19.0 expression increased in male pupae as RH increased, whereas the inverse pattern was observed in female pupae. Larvae exhibited a lower rate of survival when Cshsp19.0 was silenced by a nanomaterial-promoted RNAi method. The results confirm that Cshsp19.0 functions to increase environmental stress tolerance and regulates physiological activities in C. suppressalis.
Collapse
|
11
|
Yang CL, Meng JY, Zhou L, Yao MS, Zhang CY. Identification of five small heat shock protein genes in Spodoptera frugiperda and expression analysis in response to different environmental stressors. Cell Stress Chaperones 2021; 26:527-539. [PMID: 33609257 PMCID: PMC8065089 DOI: 10.1007/s12192-021-01198-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/30/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Spodoptera frugiperda (J. E. Smith) is a highly adaptable polyphagous migratory pest in tropical and subtropical regions. Small heat shock proteins (sHsps) are molecular chaperones that play important roles in the adaptation to various environment stressors. The present study aimed to clarify the response mechanisms of S. frugiperda to various environmental stressors. We obtained five S. furcifera sHsp genes (SfsHsp21.3, SfsHsp20, SfsHsp20.1, SfsHsp19.3, and SfsHsp29) via cloning. The putative proteins encoded by these genes contained a typical α-crystallin domain. The expression patterns of these genes during different developmental stages, in various tissues of male and female adults, as well as in response to extreme temperatures and UV-A stress were studied via real-time quantitative polymerase chain reaction. The results showed that the expression levels of all five SfsHsp genes differed among the developmental stages as well as among the different tissues of male and female adults. The expression levels of most SfsHsp genes under extreme temperatures and UV-A-induced stress were significantly upregulated in both male and female adults. In contrast, those of SfsHsp20.1 and SfsHsp19.3 were significantly downregulated under cold stress in male adults. Therefore, the different SfsHsp genes of S. frugiperda play unique regulatory roles during development as well as in response to various environmental stressors.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou, 550081, People's Republic of China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Meng-Shuang Yao
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
12
|
Samanta S, Barman M, Chakraborty S, Banerjee A, Tarafdar J. Involvement of small heat shock proteins (sHsps) in developmental stages of fall armyworm, Spodoptera frugiperda and its expression pattern under abiotic stress condition. Heliyon 2021; 7:e06906. [PMID: 33997419 PMCID: PMC8105634 DOI: 10.1016/j.heliyon.2021.e06906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 11/03/2022] Open
Abstract
Fall armyworm (FAW), Spodoptera frugiperda a recent invasive pest in India is reported to cause significant damage by feeding voraciously on maize and other economic crops from tropical to temperate provinces. It is becoming an arduous challenge to control the pest as it can survive in a wide range of temperature conditions and is already said to develop resistance towards certain insecticides. The small Heat shock proteins (hereafter, sHsps) are known to play an important role in adaptation of insects under such stress conditions. Our present study involved characterization of the three sHsps genes (sHsp19.74, sHsp20.7 and sHsp19.07) which encoded proteins of about 175, 176 and 165 amino acids with a conserved α-crystalline domain. Phylogenetic analysis of deduced amino acid sequences of the three genes showed strong similarity with the other lepidopteran sHsps. The effect of different growth stages on the expression profile of these stress proteins has also been studied and the Quantitative real time PCR (qRT-PCR) analysis revealed that the transcript level of sHsp19.07 and sHsp20.7 were significantly upregulated under extreme heat (44 °C) and cold (5 °C) stress. However, sHsp19.74 responded only to heat treatment but not to the cold treatment. In addition, the expression profile of all three sHsps was significantly lower in the larval stage (5th instar). Chlorantraniliprole treatment resulted in maximum expression of sHsp19.07 and sHsp20.7 after 12hr of exposure to the insecticide. Meanwhile, the same expression was observed after 8hr of exposure in case of sHsp19.74. These results proved that the sHsp genes of S. frugiperda were induced and modulated in response to abiotic stress, thus influencing the physiological function leading to survival of FAW in diversified climate in India.
Collapse
Affiliation(s)
- Snigdha Samanta
- Department of Agricultural Entomology, B.C.K.V, West Bengal, India
| | - Mritunjoy Barman
- Department of Agricultural Entomology, B.C.K.V, West Bengal, India
| | | | - Amitava Banerjee
- Department of Agricultural Entomology, B.C.K.V, West Bengal, India
| | - Jayanta Tarafdar
- Department of Plant Pathology, B.C.K.V, Nadia, West Bengal, India.,Directorate of Research, B.C.K.V, Kalyani, 741235, India
| |
Collapse
|
13
|
Molecular Characterization of Heat-Induced HSP11.0 and Master-Regulator HSF from Cotesia chilonis and Their Consistent Response to Heat Stress. INSECTS 2021; 12:insects12040322. [PMID: 33916570 PMCID: PMC8066536 DOI: 10.3390/insects12040322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Abstract
Simple Summary Small heat shock proteins (sHSPs) are members of the heat shock protein (HSP) family that play an important role in heat stress, and heat shock factors (HSFs) are transcriptional activators that mainly regulate the expression of HSPs. Cotesia chilonis, the major endoparasitoid of Chilo suppressalis, widely distributes in China and other Asian regions. Previous studies have shown that C. chilonis has a certain thermal tolerance. Here, heat-induced HSP11.0 and master-regulator HSF were cloned and characterized from C. chilonis. The transcription patterns of them in response to different temperatures and time course after temperature treatment were analyzed. This study is the first report on the analysis on hsf gene of C. chilonis. The results of expression patterns will provide new insights into thermoregulation of C. chilonis in response to climate change. Abstract Small heat shock proteins (sHSPs) are members of the heat shock protein (HSP) family that play an important role in temperature stress, and heat shock factors (HSFs) are transcriptional activators that regulate HSP expression. Cotesia chilonis, the major endoparasitoid of Chilo suppressalis, modulates the C. suppressalis population in the field. In this study, we cloned and characterized two genes from C.chilonis: the heat-induced HSP11.0 gene (Cchsp11.0) that consisted of a 306-bp ORF, and the master regulator HSF (Cchsf) containing an 1875-bp ORF. CcHSP11.0 contained a chaperonin cpn10 signature motif that is conserved in other hymenopteran insects. CcHSF is a typical HSF and contains a DNA-binding domain, two hydrophobic heptad repeat domains, and a C-terminal trans-activation domain. Neither Cchsp11.0 or Cchsf contain introns. Real-time quantitative PCR revealed that Cchsp11.0 and Cchsf were highly induced at 36 °C and 6 °C after a 2-h exposure. Overall, the induction of Cchsf was lower than Cchsp11.0 at low temperatures, whereas the opposite was true at high temperatures. In conclusion, both Cchsp11.0 and Cchsf are sensitive to high and low temperature stress, and the expression pattern of the two genes were positively correlated during temperature stress.
Collapse
|
14
|
Li H, Qiao H, Liu Y, Li S, Tan J, Hao D. Characterization, expression profiling, and thermal tolerance analysis of heat shock protein 70 in pine sawyer beetle, Monochamus alternatus hope (Coleoptera: Cerambycidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:217-228. [PMID: 32935660 DOI: 10.1017/s0007485320000541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monochamus alternatus Hope (Coleoptera: Cerambycidae) warrants attention as a dominant transmission vector of the pinewood nematode, and it exhibits tolerance to high temperature. Heat shock protein 70 (HSP70) family members, including inducible HSP70 and heat shock cognate protein 70 (HSC70), are major contributors to the molecular chaperone networks of insects under heat stress. In this regard, we specifically cloned and characterized three MaltHSP70s and three MaltHSC70s. Bioinformatics analysis on the deduced amino acid sequences showed these genes, having close genetic relationships with HSP70s of Coleopteran species, collectively shared conserved signature structures and ATPase domains. Subcellular localization prediction revealed the HSP70s of M. alternatus were located not only in the cytoplasm and endoplasmic reticulum but also in the nucleus and mitochondria. The transcript levels of MaltHSP70s and MaltHSC70s in each state were significantly upregulated by exposure to 35-50°C for early 3 h, while MaltHSP70s reached a peak after exposure to 45°C for 2-3 h in contrast to less-upregulated MaltHSC70s. In terms of MaltHSP70s, the expression threshold in females was lower than that in males. Also, both fat bodies and Malpighian tubules were the tissues most sensitive to heat stress in M. alternatus larvae. Lastly, the ATPase activity of recombinant MaltHSP70-2 in vitro remained stable at 25-40°C, and this recombinant availably enhanced the thermotolerance of Escherichia coli. Overall, our findings unraveled HSP70s might be the intrinsic mediators of the strong heat tolerance of M. alternatus due to their stabilized structure and bioactivity.
Collapse
Affiliation(s)
- Hui Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Heng Qiao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yujie Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shouyin Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jiajin Tan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
15
|
Guz N, Dageri A, Altincicek B, Aksoy S. Molecular characterization and expression patterns of heat shock proteins in Spodoptera littoralis, heat shock or immune response? Cell Stress Chaperones 2021; 26:29-40. [PMID: 32803739 PMCID: PMC7736435 DOI: 10.1007/s12192-020-01149-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
The Egyptian cotton leaf worm, Spodoptera littoralis (Boisd.), is a major agricultural lepidopterous pest causing extensive damage in a variety of crops including vegetable, cotton, fodder, and fiber crops. Heat shock protein (HSP) family members play important roles in protecting insects against environmental stressors. In this study, we characterized three putative heat shock proteins (SpliHsp70, SpliHsp90, and SpliHSF) from S. littoralis and analyzed their expression levels in response to heat, cold, ultraviolet irradiation, Bacillus thuringiensis, and Spodoptera littoralis nucleopolyhedrovirus treatments. Significant upregulation of SpliHsp70 was observed in female pupae, while the highest expression levels of SpliHsp90 and SpliHSF were found in female adults. Heat shock triggered increases in SpliHsp levels compared to cold treatment. SpliHsp90 exhibited the highest expression levels during the first 30 min of UV treatment. Both bacterial and viral pathogenic agents effected the regulation of Hsps in S. littoralis. These findings suggest that SpliHsp genes might play significant roles in the response to biotic and abiotic stress, as well as in the regulation of developmental stages.
Collapse
Affiliation(s)
- Nurper Guz
- Department of Plant Protection, Molecular Entomology Laboratory, Faculty of Agriculture, Ankara University, Diskapi, Ankara, Turkey.
| | - Asli Dageri
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Boran Altincicek
- Institute of Crop Science and Resource Conservation (INRES-Phytomedicine), Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
16
|
Deng Y, Hu Z, Shang L, Chai Z, Tang YZ. Transcriptional Responses of the Heat Shock Protein 20 (Hsp20) and 40 (Hsp40) Genes to Temperature Stress and Alteration of Life Cycle Stages in the Harmful Alga Scrippsiella trochoidea (Dinophyceae). BIOLOGY 2020; 9:biology9110408. [PMID: 33233461 PMCID: PMC7700488 DOI: 10.3390/biology9110408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
Simple Summary As the greatest contributors to harmful algal blooms, dinoflagellates account for roughly 75% of bloom events, which become an escalating threat to coastal ecosystems and cause substantial economic loss worldwide. Resting cyst production and broad temperature tolerance are well proven as adaptive strategies for blooming dinoflagellates; however, to date, the underlying molecular information is scarce. In the present study, we characterized two heat shock protein genes from the representative dinoflagellate Scrippsiella trochoidea, with the aim to primarily determine their possible roles in response to temperature stress and alteration of the life cycle. The yielded results enhance our knowledge about the functions of cross-talk of different Hsp members in temperature adaptation of dinoflagellates and facilitate further exploration in their potential physiological relevance during different life-stage alternation in this ecological important lineage. Abstract The small heat shock protein (sHsp) and Hsp40 are Hsp members that have not been intensively investigated but are functionally important in most organisms. In this study, the potential roles of a Hsp20 (StHsp20) and a Hsp40 (StHsp40) in dinoflagellates during adaptation to temperature fluctuation and alteration of different life stages were explored using the representative harmful algal blooms (HABs)-causative dinoflagellate species, Scrippsiella trochoidea. We isolated the full-length cDNAs of the two genes via rapid amplification of cDNA ends (RACE) and tracked their differential transcriptions via real-time qPCR. The results revealed StHsp20 and StHsp40 exhibited mRNA accumulation patterns that were highly similar in response to heat stress but completely different toward cold stress, which implies that the mechanisms underlying thermal and cold acclimation in dinoflagellates are regulated by different sets of genes. The StHsp20 was probably related to the heat tolerance of the species, and StHsp40 was closely involved in the adaptation to both higher and lower temperature fluctuations. Furthermore, significantly higher mRNA abundance of StHsp40 was detected in newly formed resting cysts, which might be a response to intrinsic stress stemmed from encystment. This finding also implied StHsp40 might be engaged in resting cyst formation of S. trochoidea. Our findings enriched the knowledge about possible cross-talk of different Hsp members in dinoflagellates and provided clues to further explore the molecular underpinnings underlying resting cyst production and broad temperature tolerance of this group of HABs contributors.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: ; Tel./Fax: +86-532-8289-6098
| |
Collapse
|
17
|
Dai LS, Kausar S, Gul I, Zhou HL, Abbas MN, Deng MJ. Molecular characterization of a heat shock protein 21 (Hsp21) from red swamp crayfish, Procambarus clarkii in response to immune stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103755. [PMID: 32526290 DOI: 10.1016/j.dci.2020.103755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Small heat shock proteins are a molecular chaperone and implicated in various physiological and stress processes in animals. However, the immunological functions of Hsp genes remain to elucidate in the crustaceans, particularly in red swamp crayfish, Procambarus clarkii. Here we report the cloning of heat shock protein 21 from the P. clarkii (hereafter Pc-Hsp21). The open reading frame of Pc-Hsp21 was 555 base pairs, encoding a protein of 184 amino acid residues with an alpha-crystallin family domain. Quantitative real-time PCR (qRT-PCR) analysis revealed a constitutive transcript expression of Pc-Hsp21 in the tested tissue, with the highest in hepatopancreas. The transcript abundance for this gene enhanced in hepatopancreas following immune challenge with the lipopolysaccharide, peptidoglycan, and poly I:C compared to the control group. The depletion of Pc-Hsp21 by double-stranded RNA altered transcript expression profiles of several genes in hepatopancreas, genes involved in the crucial immunological pathways of P. clarkii. These results suggest that Pc-Hsp21 plays an essential biological role in the microbial stress response by modulating the expression of immune-related genes in P. clarkii.
Collapse
Affiliation(s)
- Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hai-Ling Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Ming-Jie Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
18
|
Li HB, Dai CG, Hu Y. Characterization and expression analysis of genes encoding three small heat shock proteins in the oriental armyworm, Mythimna separata (Walker). PLoS One 2020; 15:e0235912. [PMID: 32776931 PMCID: PMC7417081 DOI: 10.1371/journal.pone.0235912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/24/2020] [Indexed: 11/18/2022] Open
Abstract
Small heat shock proteins (sHsps) function in the response of insects to abiotic
stress; however, their role in response to biotic stress has been
under-investigated. Mythimna separata, the oriental armyworm,
is polyphenetic and exhibits gregarious and solitary phases in response to high
and low population density, respectively. In this study, three genes were
identified encoding sHsps, namely
MsHsp19.7,
MsHsp19.8 and
MsHsp21.4, and expression levels in
solitary and gregarious M. separata were
compared. The deduced protein sequences of the three MsHsps had
molecular weights of 19.7, 19.8 and 21.4 kDa, respectively, and contained a
conserved α-crystalline domain. Real-time PCR analyses revealed that the three
sHsps were transcribed in all developmental stages and were
dramatically up-regulated at the 6th larval stage in gregarious
individuals. Expression of the three MsHsps was variable in
different tissues of 6th instar larvae, but exhibited consistent up-
and down-regulation in the hindgut and Malpighian tubules of gregarious
individuals, respectively. In addition,
MsHsp19.7 and
MsHsp19.8 were significantly induced when
solitary forms were subjected to crowding for 36 h, but all three
MsHsps were down-regulated when gregarious forms were
isolated. Our findings suggest that population density functions as a stress
factor and impacts MsHsps expression in M.
separata.
Collapse
Affiliation(s)
- Hong-Bo Li
- Institute of Plant Protection, Guizhou Academy of
Agricultural Sciences, Guiyang, China
- * E-mail:
| | - Chang-Geng Dai
- Institute of Plant Protection, Guizhou Academy of
Agricultural Sciences, Guiyang, China
| | - Yang Hu
- Institute of Plant Protection, Guizhou Academy of
Agricultural Sciences, Guiyang, China
| |
Collapse
|
19
|
Chu J, Jiang DL, Yan MW, Li YJ, Wang J, Wu FA, Sheng S. Identifications, Characteristics, and Expression Patterns of Small Heat Shock Protein Genes in a Major Mulberry Pest, Glyphodes pyloalis (Lepidoptera: Pyralidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5828987. [PMID: 32365175 PMCID: PMC7197948 DOI: 10.1093/jisesa/ieaa029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 06/11/2023]
Abstract
Six candidate sHSP genes were identified from the Glyphodes pyloalis transcriptome. All sHSP genes included full-length open reading frames and shared high similarity with the sequences of other lepidopteran species. These sHSP genes encoded 175-191 amino acid residues, and the predicted proteins had a molecular weight from 19.5 to 21.8 kDa. All GpsHSPs were expressed at lower levels at larval stages. All GpsHSPs were expressed at higher levels at diapaused, prepupal, or pupal stages, suggesting that sHSPs may be involved in metamorphosis in G. pyloalis. In addition to the developmental stage, extreme temperatures can induce variations in the expression of sHSPs genes. All GpsHSPs were significantly upregulated in larvae following exposure to heat shock, except GpHSP21.4 which downregulated at 4 h following exposure to the cold shock treatment. Furthermore, Starvation influenced the expression patterns of GpsHSPs as a function of the duration of food deprivation. Four GpsHSPs increased their expression with time of starvation until reaching to the peak level at 6 d of starvation. Finally, parasitism by the endoparasitoid Aulacocentrum confusum He et van Achterberg (Hymenoptera: Braconidae)-induced fluctuations in the expression of all GpsHSPs, and the expression varied with time after parasitization. Our results from this study strongly suggest functional differentiation within the sHSPs subfamily in G. pyloalis. The present study would provide further insight into the roles of sHSPs in G. pyloalis and novel avenues for promoting integrated management of this pest.
Collapse
Affiliation(s)
- Jie Chu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - De-lei Jiang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - Meng-wen Yan
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - Yi- jiangcheng Li
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
| | - Fu-an Wu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
| |
Collapse
|
20
|
Chang YW, Zhang XX, Lu MX, Du YZ, Zhu-Salzman K. Molecular Cloning and Characterization of Small Heat Shock Protein Genes in the Invasive Leaf Miner Fly, Liriomyza trifolii. Genes (Basel) 2019; 10:genes10100775. [PMID: 31623413 PMCID: PMC6826454 DOI: 10.3390/genes10100775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/26/2022] Open
Abstract
Small heat shock proteins (sHSPs) comprise numerous proteins with diverse structure and function. As molecular chaperones, they play essential roles in various biological processes, especially under thermal stresses. In this study, we identified three sHSP-encoding genes, LtHSP19.5, LtHSP20.8 and LtHSP21.7b from Liriomyza trifolii, an important insect pest of ornamental and vegetable crops worldwide. Putative proteins encoded by these genes all contain a conserved α-crystallin domain that is typical of the sHSP family. Their expression patterns during temperature stresses and at different insect development stages were studied by reverse-transcription quantitative PCR (RT-qPCR). In addition, the expression patterns were compared with those of LtHSP21.3 and LtHSP21.7, two previously published sHSPs. When pupae were exposed to temperatures ranging from −20 to 45 °C for 1 h, all LtsHSPs were strongly induced by either heat or cold stresses, but the magnitude was lower under the low temperature range than high temperatures. Developmentally regulated differential expression was also detected, with pupae and prepupae featuring the highest expression of sHSPs. Results suggest that LtsHSPs play a role in the development of the invasive leaf miner fly and may facilitate insect adaptation to climate change.
Collapse
Affiliation(s)
- Ya-Wen Chang
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
21
|
Bai J, Liu XN, Lu MX, Du YZ. Characterization of genes encoding small heat shock proteins from Bemisia tabaci and expression under thermal stress. PeerJ 2019; 7:e6992. [PMID: 31205823 PMCID: PMC6556103 DOI: 10.7717/peerj.6992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 01/13/2023] Open
Abstract
Small heat shock proteins (sHSPs) are probably the most diverse in structure and function among the various super-families of stress proteins, and they play essential roles in various biological processes. The sweet potato whitefly, Bemisia tabaci (Gennadius), feeds in the phloem, transmits several plant viruses, and is an important pest on cotton, vegetables and ornamentals. In this research, we isolated and characterized three α-crystallin/sHSP family genes (Bthsp19.5, Bthsp19.2, and Bthsp21.3) from Bemisia tabaci. The three cDNAs encoded proteins of 171, 169, and 189 amino acids with calculated molecular weights of 19.5, 19.2, and 21.3 kDa and isoelectric points of 6.1, 6.2, and 6.0, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in Hemiptera and Thysanoptera insects species. All three sHSPs genes from Bemisia tabaci lacked introns. Quantitative real-time PCR analyses revealed that the three BtsHSPs genes were significantly up-regulated in Bemisia tabaci adults and pupae during high temperature stress (39, 41, 43, and 45 °C) but not in response to cold temperature stress (-6, -8, -10, and -12 °C). The expression levels of Bthsp19.2 and Bthsp21.3 in pupae was higher than adults in response to heat stress, while the expression level of Bthsp19.5 in adults was higher than pupae. In conclusion, this research results show that the sHSP genes of Bemisia tabaci had shown differential expression changes under thermal stress.
Collapse
Affiliation(s)
- Jing Bai
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Xiao-Na Liu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
22
|
Identification and Expression Analysis of Four Small Heat Shock Protein Genes in Cigarette Beetle, Lasioderma serricorne (Fabricius). INSECTS 2019; 10:insects10050139. [PMID: 31096618 PMCID: PMC6572347 DOI: 10.3390/insects10050139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 11/17/2022]
Abstract
Small heat shock proteins (sHsps) are molecular chaperones that play crucial roles in the stress adaption of insects. In this study, we identified and characterized four sHsp genes (LsHsp19.4, 20.2, 20.3, and 22.2) from the cigarette beetle, Lasioderma serricorne (Fabricius). The four cDNAs encoded proteins of 169, 180, 181, and 194 amino acids with molecular weights of 19.4, 20.2, 20.3, and 22.2 kDa, respectively. The four LsHsp sequences possessed a typical sHsp domain structure. Quantitative real-time PCR analyses revealed that LsHsp19.4 and 20.3 transcripts were most abundant in pupae, whereas the transcript levels of LsHsp20.2 and 22.2 were highest in adults. Transcripts of three LsHsp genes were highly expressed in the larval fat body, whereas LsHsp20.2 displayed an extremely high expression level in the gut. Expression of the four LsHsp genes was dramatically upregulated in larvae exposed to 20-hydroxyecdysone. The majority of the LsHsp genes were significantly upregulated in response to heat and cold treatments, while LsHsp19.4 was insensitive to cold stress. The four genes were upregulated when challenged by immune triggers (peptidoglycan isolated from Staphylococcus aureus and from Escherichia coli 0111:B4). Exposure to CO2 increased LsHsp20.2 and 20.3 transcript levels, but the LsHsp19.4 transcript level declined. The results suggest that different LsHsp genes play important and distinct regulatory roles in L. serricorne development and in response to diverse stresses.
Collapse
|
23
|
Liu D, Dang X, Song W, Xi L, Wang Q, Zhang S, Miao Y, Li G, Jiang J. Molecular characterization and expression patterns of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) heat shock protein genes and their response to host stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21536. [PMID: 30659637 DOI: 10.1002/arch.21536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
As a polyphagous insect, little is known at the molecular level about the effects of different host plants on physiological changes in Phenacoccus solenopsis. In this study, four heat shock protein (Hsp) genes (PsHsp60, PsHsp70, PsHsp90, and PsHsp20.7) were identified from the transcriptome of P. solenopsis. Analysis of Hsp expression levels revealed significant differences in Hsp gene expression levels in P. solenopsis fed on different host plants. In host conversion tests, the expression levels of PsHsp90 and PsHsp60 were upregulated after transfer of second instar nymphs from tomato to cotton. The expression levels of PsHsp70 and PsHsp20.7 were, respectively, significantly upregulated at 9 and 48 hr after transfer from tomato to Hibiscus. The results of this study aid molecular characterization and understanding of the expression patterns of Hsp genes during different developmental stages and host transfer of P. solenopsis.
Collapse
Affiliation(s)
- Dan Liu
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiangli Dang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei Song
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Lingyu Xi
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Qi Wang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Shaobing Zhang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Yong Miao
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Guiting Li
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Junqi Jiang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
24
|
Cui J, Zhu SY, Gao Y, Bi R, Xu Z, Shi SS. Comparative Transcriptome Analysis of Megacopta cribraria (Hemiptera: Plataspidae) in Response to High-Temperature Stress. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:407-415. [PMID: 30351361 DOI: 10.1093/jee/toy330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Kudzu bug, Megacopta cribraria (Fabricius), is mainly distributed in southern China and has been considered an invasive species in the southeastern United States. Megacopta cribraria is a soybean pest with high-temperature resistance, but the molecular mechanisms underlying its thermal adaptation are largely unknown. Here, we performed comparative transcriptome analysis to unravel the molecular response of M. cribraria toward high-temperature stress. Following RNA-seq, we identified 93,959 assembled unigenes, 14,073 of which were annotated in M. cribraria transcriptome libraries. In addition, 127 differentially expressed unigenes (DEGs) were detected, 88 of them were significantly upregulated, whereas the remaining 39 genes were significantly downregulated. Functional classification revealed that the pathways of metabolic process, cellular processes, and single-organism processes were considered to be significantly enriched. In the COG classification, DEGs were mainly localized into O: post-translational modification, protein turnover, chaperone. Moreover, protein processing in endoplasmic reticulum and linoleic acid metabolism were significantly enriched among the 38 KEGG pathways. Further gene annotation analysis indicated that nine heat shock protein-related genes were significantly upregulated. Finally, five HSP DEGs were selected for real-time quantitative polymerase chain reaction validation and demonstrated a similar upregulation trend with RNA-seq expression profiles. Taken altogether, these findings provide new insights into the molecular mechanisms of thermal adaptation in M. cribraria.
Collapse
Affiliation(s)
- Juan Cui
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| | - Shi-Yu Zhu
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| | - Yu Gao
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| | - Rui Bi
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| | - Zhe Xu
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| | - Shu-Sen Shi
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
25
|
Wang L, Zhang Y, Pan L, Wang Q, Han Y, Niu H, Shan D, Hoffmann A, Fang J. Induced expression of small heat shock proteins is associated with thermotolerance in female Laodelphax striatellus planthoppers. Cell Stress Chaperones 2019; 24:115-123. [PMID: 30443878 PMCID: PMC6363632 DOI: 10.1007/s12192-018-0947-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 11/28/2022] Open
Abstract
Insects are often exposed to high temperature stress in natural environments, but the mechanisms involved in thermotolerance in many insect groups like Hemiptera are not well known. To explore possible mechanisms of thermotolerance in the hemipteran pest Laodelphax striatellus, which damages rice through direct feeding and viral transmission, small heat shock proteins (sHsps) implicated in thermotolerance in other insect groups were identified. The seven sHsps identified have a conserved alpha crystallin domain, a variable N-terminal region, and shared relative low identities to each other. Three of the sHsp genes (LsHsp20.5, LsHsp21.5, and LsHsp21.6) exhibited higher basal expression than the other four genes but showed weak or no heat-induced expression. The other four genes (LsHsp20.1, LsHsp21.2, LsHsp21.4, and LsHsp22.0) were induced up to 3306-fold by heat. Injection of dsRNA indicated that expression of these sHsps was associated with thermotolerance, and Escherichia coli transformed with LsHsp21.2 and LsHsp20.1 showed relatively higher thermotolerance. These results point to an important functional role of these sHsps for thermotolerance in L. striatellus.
Collapse
Affiliation(s)
- Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, 210014, China.
| | - Yueliang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Lei Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Qin Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, 215155, China
| | - Yangchun Han
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Dan Shan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Ary Hoffmann
- Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, 210014, China.
| |
Collapse
|
26
|
Yi J, Wu H, Liu J, Lai X, Guo J, Li D, Zhang G. Molecular characterization and expression of six heat shock protein genes in relation to development and temperature in Trichogramma chilonis. PLoS One 2018; 13:e0203904. [PMID: 30226893 PMCID: PMC6143235 DOI: 10.1371/journal.pone.0203904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/29/2018] [Indexed: 11/26/2022] Open
Abstract
Trichogramma is a kind of egg parasitoid wasp that is widely used to control lepidopterous pests. Temperature is one of the main factors that determines the various life activities of this species, including development, reproduction and parasitism efficiency. Heat shock proteins (HSPs) are highly conserved and ubiquitous proteins that are best known for their responsiveness to temperature and other stresses. To explore the potential role of HSPs in Trichogramma species, we obtained the full-length cDNAs of six HSP genes (Tchsp10, Tchsp21.6, Tchsp60, Tchsp70, Tchsc70-3, and Tchsp90) from T. chilonis and analyzed their expression patterns during development and exposure to temperature stress. The deduced amino acid sequences of these HSP genes contained the typical signatures of their corresponding protein family and showed high homology to their counterparts in other species. The expression levels of Tchsp10, Tchsp21.6 and Tchsp60 decreased during development. However, the expression of Tchsc70-3 increased from the pupal stage to the adult stage. Tchsp70 and Tchsp90 exhibited the highest expression levels in the adult stage. The expression of six Tchsps was dramatically upregulated after 1 h of exposure to 32 and 40°C but did not significantly change after 1 h of exposure to 10 and 17°C. This result indicated that heat stress, rather than cold stress, induced the expression of HSP genes. Furthermore, the expression of these genes was time dependent, and the expression of each gene reached its peak after 1 h of heat exposure (40°C). Tchsp10 and Tchsp70 exhibited a low-intensity cold response after 4 and 8 h of exposure to 10°C, respectively, but the other genes did not respond to cold at any time points. These results suggested that HSPs may play different roles in the development of this organism and in its response to temperature stress.
Collapse
Affiliation(s)
- Jiequn Yi
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Han Wu
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianbai Liu
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xueshuang Lai
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jixing Guo
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dunsong Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- * E-mail: (DL); (GZ)
| | - Guren Zhang
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (DL); (GZ)
| |
Collapse
|
27
|
Liu QN, Liu Y, Xin ZZ, Zhu XY, Ge BM, Li CF, Wang D, Bian XG, Yang L, Chen L, Tian JW, Zhou CL, Tang BP. A small heat shock protein 21 (sHSP21) mediates immune responses in Chinese oak silkworm Antheraea pernyi. Int J Biol Macromol 2018; 111:1027-1031. [DOI: 10.1016/j.ijbiomac.2018.01.147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
|
28
|
Tian L, Wang X, Wang X, Lei C, Zhu F. Starvation-, thermal- and heavy metal- associated expression of four small heat shock protein genes in Musca domestica. Gene 2018; 642:268-276. [DOI: 10.1016/j.gene.2017.11.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022]
|
29
|
Quan G, Duan J, Ladd T, Krell PJ. Identification and expression analysis of multiple small heat shock protein genes in spruce budworm, Choristoneura fumiferana (L.). Cell Stress Chaperones 2018; 23:141-154. [PMID: 28755305 PMCID: PMC5741589 DOI: 10.1007/s12192-017-0832-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/13/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022] Open
Abstract
Fifteen small heat shock protein (sHSP) genes were identified from spruce budworm, Choristoneura fumiferana (L.), an important native forest pest in North America. The transcript levels of each CfHSP were measured under non-stress conditions in all life stages from egg to adult and in five different larval tissues. CfHSP transcript levels showed variation during development, with highest levels in adults and lowest in eggs. Most CfHSP transcripts are highly expressed in larval fat body and Malpighian tubules; two CfHSPs display extremely high expression in the head and epidermis. Upon heat stress, nine CfHSP genes are significantly upregulated, increasing by 50- to 2500-fold depending on developmental stage and tissue type. Upon starvation, eight CfHSPs are upregulated or downregulated, whereas six others retain constant expression. These results suggest that CfHSPs have important and multiple roles in spruce budworm development and in response to heat stress and starvation.
Collapse
Affiliation(s)
- Guoxing Quan
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, P6A2E5, Sault Ste. Marie, ON, Canada.
| | - Jun Duan
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, P6A2E5, Sault Ste. Marie, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, N1G2W1, Guelph, ON, Canada
| | - Tim Ladd
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, P6A2E5, Sault Ste. Marie, ON, Canada
| | - Peter J Krell
- Department of Molecular and Cellular Biology, University of Guelph, N1G2W1, Guelph, ON, Canada
| |
Collapse
|
30
|
Pan DD, Lu MX, Li QY, Du YZ. Characteristics and expression of genes encoding two small heat shock protein genes lacking introns from Chilo suppressalis. Cell Stress Chaperones 2018; 23:55-64. [PMID: 28687981 PMCID: PMC5741581 DOI: 10.1007/s12192-017-0823-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/07/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022] Open
Abstract
Small heat shock proteins (sHSPs) constitute a large, diverse, and functionally uncharacterized family of heat shock proteins. To gain insight regarding the function of sHSPs in insects, we identified genes encoding two sHSPs, Cshsp22.9b and Cshsp24.3, from the rice pest Chilo suppressalis. The cDNAs of Cshsp22.9b and Cshsp24.3 encoded proteins of 206 and 216 amino acids with isoelectric points of 5.79 and 9.28, respectively. Further characterization indicated that both Cshsp22.9b and Cshsp24.3 lacked introns. Real-time quantitative PCR indicated that Cshsp22.9b and Cshsp24.3 were expressed at higher levels within the fat body as compared to other tissues (head, epidermis, foregut, midgut, hindgut, Malpighian tubules, and hemocytes). Expression of Cshsp22.9b and Cshsp24.3 was lowest in the hindgut and Malpighian tubules, respectively. Cshsp22.9b and Cshsp24.3 showed identical patterns in response to thermal stress from -11 to 43 °C, and both genes were up-regulated by hot and cold temperatures. The mRNA (messenger ribonucleic acid) expression levels of Cshsp22.9b (KY701308) and Cshsp24.3 (KY701309) were highest after a 2-h exposure at 39 °C and started to decline at 42 °C. In response to cold temperatures, both Cshsp22.9b and Cshsp24.3 showed maximal expression after a 2-h exposure to -3 °C. The two Cshsps were more responsive to hot than cold temperature stress and were not induced by mildly cold or warm temperatures. In conclusion, Cshsp22.9b and Cshsp24.3 could play a very important role in the regulation of physiological activities in C. suppressalis that are impacted by environmental stimuli.
Collapse
Affiliation(s)
- Dan-Dan Pan
- School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Ming-Xing Lu
- School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Qiu-Yu Li
- School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
31
|
Dou W, Tian Y, Liu H, Shi Y, Smagghe G, Wang JJ. Characteristics of six small heat shock protein genes from Bactrocera dorsalis: Diverse expression under conditions of thermal stress and normal growth. Comp Biochem Physiol B Biochem Mol Biol 2017; 213:8-16. [PMID: 28735974 DOI: 10.1016/j.cbpb.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 11/29/2022]
Abstract
To explore the functions of small heat shock proteins (sHsps) in relation to thermal stress and development in Bactrocera dorsalis (Hendel), one of the most economically important pest species attacking a wide range of fruits and vegetables, six full-length cDNAs of sHsp genes (BdHsp17.7, 18.4, 20.4, 20.6, 21.6 and 23.8) were cloned, and the expression patterns in different developmental stages and tissues, as well as in response to both thermal and 20-hydroxyecdysone (20E) exposures, were examined using real time quantitative PCR. The open reading frames (ORFs) of six sHsps are 453, 489, 537, 543, 567 and 630bp in length, encoding proteins with molecular weights of 17.7, 18.4, 20.4, 20.6, 21.6 and 23.8kDa, respectively. BdHsp18.4 and BdHsp20.4 maintained lower expression levels in both eggs and larvae, whereas remarkably up-regulated after the larval-pupal transformation, suggesting that these two sHsps may be involved in metamorphosis. Significant tissue specificity exists among sHsps: the highest expression of BdHsp20.6 and BdHsp23.8 in the Malpighian tubules and ovary, respectively, versus a peak in the fat body for others. BdHsp20.4 and BdHsp20.6 were significantly up-regulated by thermal stress. In contrast, BdHsp18.4 and BdHsp23.8 reacted only to heat stress. BdHsp17.7 and BdHsp21.6 were insensitive to both heat and cold stresses. The degree of sHsps response depends on intensity of 20E treatment, i.e., dose and time. These results strongly suggest functional differentiation within the sHsp subfamily in B. dorsalis. The physiological function of sHsp members under thermal stress and normal growth remains the subjects of further investigation.
Collapse
Affiliation(s)
- Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Yi Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Hong Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Yan Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
32
|
Martín-Folgar R, Martínez-Guitarte JL. Cadmium alters the expression of small heat shock protein genes in the aquatic midge Chironomus riparius. CHEMOSPHERE 2017; 169:485-492. [PMID: 27889514 DOI: 10.1016/j.chemosphere.2016.11.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/28/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
Cadmium (Cd) is a widespread and highly toxic heavy metal of particular ecotoxicological relevance for aquatic ecosystems. It occurs naturally in the environment but is also an industrial pollutant with extensively researched carcinogenic potentials. Heat shock proteins (HSPs) are chaperones that play an important role in maintaining protein homeostasis under stress conditions. Small heat shock proteins (sHSPs) comprise the most diverse group of the HSPs family. They are expressed both constitutively and by stress-induction. The midge Chironomus riparius is widely used as a test species in aquatic toxicology. In the present study, Reverse Transcription Polymerase Chain Reaction (RT-PCR) was used to evaluate the effects of acute Cd exposure to the expression profile of seven shsp genes (hsp17, hsp21, hsp22, hsp23, hsp24, hsp27, and hsp34) in C. riparius larvae. Results show a specific pattern of response with a rapid response by hsp27, which was downregulated at 2-6 h, while the rest of the shsp genes remained unaltered except for hsp17 at 2 h, which was upregulated. However, at 24 h of exposure are observed high levels of hsp23, hsp24, hsp27, and hsp34 transcription while hsp22 mRNA levels were downregulated and hsp17 and hsp21 remained unaltered. These changes in gene expression suggest a functional diversity between the sHSPs in the cellular response to heavy metal stress. The differential pattern in comparison with heat shock supports a specific profile depending on the stress supporting the use of shsp genes as suitable biomarkers for ecotoxicological studies on aquatic systems.
Collapse
Affiliation(s)
- Raquel Martín-Folgar
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
33
|
RNA sequencing reveals differential thermal regulation mechanisms between sexes of Glanville fritillary butterfly in the Tianshan Mountains, China. Mol Biol Rep 2016; 43:1423-1433. [PMID: 27649991 DOI: 10.1007/s11033-016-4076-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
The Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae) has been extensively studied as a model species in metapopulation ecology. We investigated in the earlier studies that female butterflies exhibit higher thermal tolerance than males in the Tianshan Mountains of China. We aim to understand the molecular mechanism of differences of thermal responses between sexes. We used RNA-seq approach and performed de novo assembly of transcriptome to compare the gene expression patterns between two sexes after heat stress. All the reads were assembled into 84,376 transcripts and 72,701 unigenes. The number of differential expressed genes (DEGs) between control and heat shock samples was 175 and 268 for males and females, respectively. Heat shock proteins genes (hsps) were up-regulated in response to heat stress in both males and females. Most of the up-regulated hsps showed higher fold changes in males than in females. Females expressed more ribosomal subunit protein genes, transcriptional elongation factor genes, and methionine-rich storage protein genes, participating in protein synthesis. It indicated that protein synthesis is needed for females to replace the damaged proteins due to heat shock. In addition, aspartate decarboxylase might contribute to thermal tolerance in females. These differences in gene expression may at least partly explain the response to high temperature stress, and the fact that females exhibit higher thermal tolerance.
Collapse
|
34
|
Transcriptional Analysis of The Adaptive Digestive System of The Migratory Locust in Response to Plant Defensive Protease Inhibitors. Sci Rep 2016; 6:32460. [PMID: 27581362 PMCID: PMC5007527 DOI: 10.1038/srep32460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/05/2016] [Indexed: 11/28/2022] Open
Abstract
Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects.
Collapse
|
35
|
Yu SH, Yang P, Sun T, Qi Q, Wang XQ, Chen XM, Feng Y, Liu BW. Transcriptomic and proteomic analyses on the supercooling ability and mining of antifreeze proteins of the Chinese white wax scale insect. INSECT SCIENCE 2016; 23:430-437. [PMID: 26799455 DOI: 10.1111/1744-7917.12320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
The Chinese white wax scale insect, Ericerus pela, can survive at extremely low temperatures, and some overwintering individuals exhibit supercooling at temperatures below -30°C. To investigate the deep supercooling ability of E. pela, transcriptomic and proteomic analyses were performed to delineate the major gene and protein families responsible for the deep supercooling ability of overwintering females. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that genes involved in the mitogen-activated protein kinase, calcium, and PI3K-Akt signaling pathways and pathways associated with the biosynthesis of soluble sugars, sugar alcohols and free amino acids were dominant. Proteins responsible for low-temperature stress, such as cold acclimation proteins, glycerol biosynthesis-related enzymes and heat shock proteins (HSPs) were identified. However, no antifreeze proteins (AFPs) were identified through sequence similarity search methods. A random forest approach identified 388 putative AFPs in the proteome. The AFP gene ep-afp was expressed in Escherichia coli, and the expressed protein exhibited a thermal hysteresis activity of 0.97°C, suggesting its potential role in the deep supercooling ability of E. pela.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
| | - Qian Qi
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
| | - Xue-Qing Wang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
| | - Xiao-Ming Chen
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
| | - Ying Feng
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
| | - Bo-Wen Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
| |
Collapse
|
36
|
Hu D, Luo W, Fan LF, Liu FL, Gu J, Deng HM, Zhang C, Huang LH, Feng QL. Dynamics and regulation of glycolysis-tricarboxylic acid metabolism in the midgut of Spodoptera litura during metamorphosis. INSECT MOLECULAR BIOLOGY 2016; 25:153-162. [PMID: 26683413 DOI: 10.1111/imb.12208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Significant changes usually take place in the internal metabolism of insects during metamorphosis. The glycolysis-tricarboxylic acid (glycolysis-TCA) pathway is important for energy metabolism. To elucidate its dynamics, the mRNA levels of genes involved in this pathway were examined in the midgut of Spodoptera litura during metamorphosis, and the pyruvate content was quantified. The expression patterns of these genes in response to starvation were examined, and the interaction between protein phosphatase 1 (PP1) and phosphofructokinase (PFK) was studied. The results revealed that the expression or activities of most glycolytic enzymes was down-regulated in prepupae and then recovered in some degree in pupae, and all TCA-related genes were remarkably suppressed in both the prepupae and pupae. Pyruvate was enriched in the pupal midgut. Taken together, these results suggest that insects decrease both glycolysis and TCA in prepupae to save energy and then up-regulate glycolysis but down-regulate TCA in pupae to increase the supply of intermediates for construction of new organs. The expression of all these genes were down-regulated by starvation, indicating that non-feeding during metamorphosis may be a regulator of glycolysis-TCA pathway in the midgut. Importantly, interaction between PP1 and PFK was identified and is suggested to be involved in the regulation of glycolysis.
Collapse
Affiliation(s)
- D Hu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - W Luo
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - L F Fan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - F L Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - J Gu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - H M Deng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - C Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - L H Huang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Q L Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
37
|
Kou LH, Wu HH, Liu YM, Zhang YP, Zhang JZ, Guo YP, Ma EB. Molecular Characterization of Six Small Heat Shock Proteins and Their Responses Under Cadmium Stress in Oxya chinensis (Orthoptera: Acridoidea). ENVIRONMENTAL ENTOMOLOGY 2016; 45:258-267. [PMID: 26363174 DOI: 10.1093/ee/nvv146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
Small heat shock proteins (sHSPs) have been implicated in many physiological processes and play important roles in the response to various stresses. In this study, the full-length sequences of six sHSPs: OcHSP19.1, 19.8, 20.4, 20.7, 21.1, and 23.8 were obtained from the rice grasshopper Oxya chinensis transcriptome database. The deduced amino acid sequences of the six OcsHSPs contain a typical α-crystallin domain, which consists of approximately 100 amino acid residues and five β-strands. The phylogenetic analysis suggested that OcHSP23.8 was orthologous to the sHSPs of other species and that OcHSP19.1, 20.4, 20.7, and 21.1 were species specific, whereas OcHSP19.8 did not cluster closely to Orthoptera but was placed on the basal end of the cluster. Developmental stage-dependent and tissue-specific expression patterns were evaluated using quantitative real-time polymerase chain reaction. The six genes were expressed in all developmental stages and showed clear tissue specificity. The cadmium acute experiment indicates that Cd(2+) can induce the six genes. However, various response patterns were observed among these genes under Cd(2+) stress conditions. OcHSP19.1, 19.8, 20.4, and 20.7 were highly induced by 2.61 mM Cd(2+) at 24 h. OcHSP23.8 was significantly upregulated by 2.61 mM Cd(2+) at 6 h. For OcHSP21.1, the highest expression levels were found after treatment with 0.87 mM Cd(2+) for 24 h, 1.74 mM Cd(2+) for 36 h, and 2.61 mM Cd(2+) for 12 h. These differential characteristics will facilitate future investigations into the physiological functions of sHSPs.
Collapse
Affiliation(s)
- L H Kou
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China (; ; ; ; )
| | - H H Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China (; ; ; ; )
| | - Y M Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China (; ; ; ; )
| | - Y P Zhang
- Biology Department of Taiyuan Normal University, Taiyuan 030031, China , and
| | - J Z Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China (; ; ; ; )
| | - Y P Guo
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - E B Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China (; ; ; ; ),
| |
Collapse
|
38
|
Martín-Folgar R, de la Fuente M, Morcillo G, Martínez-Guitarte JL. Characterization of six small HSP genes from Chironomus riparius (Diptera, Chironomidae): Differential expression under conditions of normal growth and heat-induced stress. Comp Biochem Physiol A Mol Integr Physiol 2015; 188:76-86. [DOI: 10.1016/j.cbpa.2015.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/17/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
39
|
Zhang B, Zheng J, Peng Y, Liu X, Hoffmann AA, Ma CS. Stress Responses of Small Heat Shock Protein Genes in Lepidoptera Point to Limited Conservation of Function across Phylogeny. PLoS One 2015. [PMID: 26196395 PMCID: PMC4511463 DOI: 10.1371/journal.pone.0132700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The small heat shock protein (sHsp) family is thought to play an important role in protein refolding and signal transduction, and thereby protect organisms from stress. However little is known about sHsp function and conservation across phylogenies. In the current study, we provide a comprehensive assessment of small Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta. Fourteen small heat shock proteins of OFM clustered with related Hsps in other Lepidoptera despite a high level of variability among them, and in contrast to the highly conserved Hsp11.1. The only known lepidopteran sHsp ortholog (Hsp21.3) was consistently unaffected under thermal stress in Lepidoptera where it has been characterized. However the phylogenetic position of the sHsps within the Lepidoptera was not associated with conservation of induction patterns under thermal extremes or diapause. These findings suggest that the sHsps have evolved rapidly to develop new functions within the Lepidoptera.
Collapse
Affiliation(s)
- Bo Zhang
- Group of Climate Change Biology, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jincheng Zheng
- Group of Climate Change Biology, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Peng
- Group of Climate Change Biology, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing, China
| | - Ary A. Hoffmann
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chun-Sen Ma
- Group of Climate Change Biology, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
40
|
Two general-odorant binding proteins in Spodoptera litura are differentially tuned to sex pheromones and plant odorants. Comp Biochem Physiol A Mol Integr Physiol 2015; 180:23-31. [DOI: 10.1016/j.cbpa.2014.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/27/2014] [Accepted: 11/03/2014] [Indexed: 12/26/2022]
|
41
|
Huang LX, Gong YJ, Gu J, Zeng BJ, Huang LH, Feng QL. Expression, subcellular localization and protein-protein interaction of four isoforms of EcR/USP in the common cutworm. INSECT SCIENCE 2015; 22:95-105. [PMID: 24395766 DOI: 10.1111/1744-7917.12101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Ecdysone receptor (EcR) and ultraspiracle (USP) form heterodimers to mediate ecdysteroid signaling during molting and metamorphosis. Various EcR/USP heterodimers have been reported. However, it is unclear what kind of EcR/USP combination is adopted by lepidopteran insects during the larval-pupal metamorphosis and whether the EcR/USP heterodimer varies among different tissues. To address these questions, two isoforms of each EcR and USP were cloned from the common cutworm, their messenger RNA expression patterns were examined by real-time quantitative polymerase chain reaction in different tissues during the larval-pupal metamorphosis and in the midgut in response to hormonal induction. Furthermore, their subcellular localization and protein-protein interaction were explored by transient expression and far-western blotting, respectively. All the four genes were significantly up-regulated in prepuae and/or pupae. The expression profiles of EcRB1 and USP1 were nearly identical to each other in the epidermis, fat body and midgut, and a similar situation also applied to EcRA and USP2. The three genes responded to 20-hydroxyecdysone (20E) induction except for USP2, and USP1 could be up-regulated by both 20E and juvenile hormone. The four proteins mainly localized in the nucleus and the nuclear localization was promoted by 20E. The protein-protein interaction between each EcR and USP was found in vitro. These results suggest that two types of EcR/USP heterodimer (EcRA/USP2 and EcRB1/USP1) may exist simultaneously in the common cutworm, and the latter should play more important roles during the larval-pupal metamorphosis. In addition, the types of EcR/USP heterodimer do not vary in the tissues which undergo histolysis and regeneration during metamorphosis.
Collapse
Affiliation(s)
- Li-Xia Huang
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
42
|
Chen X, Zhang Y. Identification of multiple small heat-shock protein genes in Plutella xylostella (L.) and their expression profiles in response to abiotic stresses. Cell Stress Chaperones 2015; 20:23-35. [PMID: 24947609 PMCID: PMC4255244 DOI: 10.1007/s12192-014-0522-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022] Open
Abstract
We identify and characterize 14 small heat-shock protein (sHSP) genes from the diamondback moth (DBM), Plutella xylostella (L.), a destructive pest. Phylogenetic analyses indicate that, except for sHSP18.8 and sHSP19.22, the other 12 DBM sHSPs belong to five known insect sHSP groups. Developmental expression analysis revealed that most sHSPs peaked in the pupal and adult stages. The transcripts of sHSPs display tissue specificity with two exhibiting constitutive expression in four tested tissues. Expression of sHSP18.8 in fourth instar larvae is not induced by the tested abiotic stressors, and unless sHSP21.8 is not sensitive to thermal stress, 12 sHSPs are significantly up-regulated. The messenger RNA (mRNA) levels of all sHSPs are reduced under oxidative stress. Food deprivation leads to significant down-regulation of three sHSPs. The majority of sHSPs show expression variation to various heavy metals, whereas mRNA abundances of sHSP22.1 and sHSP 28.9 are reduced by four heavy metals. The responses of sHSPs to indoxacarb and cantharidin are varied. Beta-cypermethrin and chlorfenapyr exposure results in an increase of 13 sHSP transcripts and a reduction of 12 sHSP transcripts, respectively. These results show that different sHSPs might play distinct roles in the development and regulation of physiological activities, as well as in response to various abiotic stresses of DBM.
Collapse
Affiliation(s)
- Xi’en Chen
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi China
| |
Collapse
|
43
|
Sun M, Lu MX, Tang XT, Du YZ. Characterization and expression of genes encoding three small heat shock proteins in Sesamia inferens (Lepidoptera: Noctuidae). Int J Mol Sci 2014; 15:23196-211. [PMID: 25514417 PMCID: PMC4284760 DOI: 10.3390/ijms151223196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/23/2014] [Accepted: 12/04/2014] [Indexed: 11/16/2022] Open
Abstract
The pink stem borer, Sesamia inferens (Walker), is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs) encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino acids with calculated molecular weights of 21.4, 20.6 and 19.6 kDa, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in other lepidopteran insects. Sihsp21.4 contained an intron, but Sihsp20.6 and Sihsp19.6 lacked introns. Real-time quantitative PCR analyses revealed that Sihsp21.4 was most strongly expressed in S. inferens heads; Whereas expression of Sihsp20.6 and Sihsp19.6 was highest in eggs. The three S. inferens sHSP genes were up-regulated during low temperature stress. In summary, our results show that S. inferens sHSP genes have distinct regulatory roles in the physiology of S. inferens.
Collapse
Affiliation(s)
- Meng Sun
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Ming-Xing Lu
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Xiao-Tian Tang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
44
|
Zheng YT, Li HB, Lu MX, Du YZ. Evaluation and validation of reference genes for qRT-PCR normalization in Frankliniella occidentalis (Thysanoptera: Thripidae). PLoS One 2014; 9:e111369. [PMID: 25356721 PMCID: PMC4214748 DOI: 10.1371/journal.pone.0111369] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
Quantitative real time PCR (qRT-PCR) has emerged as a reliable and reproducible technique for studying gene expression analysis. For accurate results, the normalization of data with reference genes is particularly essential. Once the transcriptome sequencing of Frankliniella occidentalis was completed, numerous unigenes were identified and annotated. Unfortunately, there are no studies on the stability of reference genes used in F. occidentalis. In this work, seven candidate reference genes, including actin, 18S rRNA, H3, tubulin, GAPDH, EF-1 and RPL32, were evaluated for their suitability as normalization genes under different experimental conditions using the statistical software programs BestKeeper, geNorm, Normfinder and the comparative ΔCt method. Because the rankings of the reference genes provided by each of the four programs were different, we chose a user-friendly web-based comprehensive tool RefFinder to get the final ranking. The result demonstrated that EF-1 and RPL32 displayed the most stable expression in different developmental stages; RPL32 and GAPDH showed the most stable expression at high temperatures, while 18S and EF-1 exhibited the most stable expression at low temperatures. In this study, we validated the suitable reference genes in F. occidentalis for gene expression profiling under different experimental conditions. The choice of internal standard is very important in the normalization of the target gene expression levels, thus validating and selecting the best genes will help improve the quality of gene expression data of F. occidentalis. What is more, these validated reference genes could serve as the basis for the selection of candidate reference genes in other insects.
Collapse
Affiliation(s)
- Yu-Tao Zheng
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Hong-Bo Li
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
- Guizhou Institute of Plant Protection, Guiyang, China
| | - Ming-Xing Lu
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| |
Collapse
|
45
|
Liu WW, Yang P, Chen XM, Xu DL, Hu YH. Cloning and expression analysis of four heat shock protein genes in Ericerus pela (Homoptera: Coccidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:ieu032. [PMID: 25826465 PMCID: PMC5443611 DOI: 10.1093/jisesa/ieu032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/17/2013] [Indexed: 06/04/2023]
Abstract
To explore the function of small heat shock protein genes (shsps) and hsp70 in Ericerus pela, we cloned the full-length cDNA sequences of hsp21.5, hsp21.7, hsp70, and hsc70 and the genomic sequence of hsc70. Open reading frames of the four hsps were 570, 564, 1,908, and 1,962 base pairs (bp), respectively, which encode proteins with calculated molecular mass of 21.5, 21.7, 69.8, and 71.6 kDa. Amino acid sequence analysis revealed the presence of the conserved Hsp motifs in all four proteins. The genomic DNA of hsc70 had four introns. ep-hsp21.5 was orthologous and ep-hsp21.7 was species specific. Expression of all four transcripts during heat or cold stress and development was examined by quantitative real-time polymerase chain reaction. All four hsps were upregulated during heat or cold stress in female adults, indicating a correlation between the four hsps and heat or cold-stress tolerance in female adults. ep-hsp21.7 and ep-hsp70 were upregulated during heat stress in male larvae, implying a correlation between the two hsps and heat-stress tolerance in male larvae. The four ep-hsps were also upregulated during the developmental process in males, and ep-hsp21.5, ep-hsp70, and ep-hsc70 were upregulated in females, which indicates their possible role in the developmental regulation of E. pela.
Collapse
Affiliation(s)
- Wei-Wei Liu
- *These authors contributed equally to this work
| | - Pu Yang
- *These authors contributed equally to this work
| | - Xiao-Ming Chen
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming 650224, China*These authors contributed equally to this work
| | - Dong-Li Xu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming 650224, China*These authors contributed equally to this work
| | - Yan-Hong Hu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming 650224, China*These authors contributed equally to this work
| |
Collapse
|
46
|
Zhang Y, Liu Y, Guo X, Li Y, Gao H, Guo X, Xu B. sHsp22.6, an intronless small heat shock protein gene, is involved in stress defence and development in Apis cerana cerana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 53:1-12. [PMID: 25008786 DOI: 10.1016/j.ibmb.2014.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/19/2014] [Accepted: 06/21/2014] [Indexed: 05/24/2023]
Abstract
Small heat shock proteins (sHSPs) play an important role in protecting against stress-induced cell damage and fundamental physiological processes. In this study, we identified an intronless sHsp gene from Apis cerana cerana (AccsHsp22.6). The open reading frame of AccsHsp22.6 was 585 bp and encoded a 194 amino acid protein. Furthermore, a 2064 bp 5'-flanking region was isolated, and potential transcription factor binding sites associated with development and stress response were identified. Quantitative PCR and western blot analyses demonstrated that AccsHsp22.6 was detected at higher levels in the midgut than in other tissues tested, and it is highly expressed during the shift to different development stages. Moreover, AccsHsp22.6 was significantly up-regulated by abiotic and biotic stresses, such as 4 °C, 16 °C, 42 °C, cyhalothrin, pyridaben, H2O2, UV, CdCl2, 20-hydroxyecdysone and Ascosphaera apis treatments. However, AccsHsp22.6 was slightly repressed by other stresses, including 25 °C, phoxim, paraquat and HgCl2 treatments. The recombinant AccsHSP22.6 also exhibited significant temperature tolerance, antioxidation and molecular chaperone activity. In addition, we found that knockdown of AccsHsp22.6 by RNA interference remarkably reduced temperature tolerance in A. cerana cerana. Taken together, these results suggest that AccsHsp22.6 plays an essential role in the development stages and defence against cellular stress.
Collapse
Affiliation(s)
- Yuanying Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China; School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, PR China
| | - Yaling Liu
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, PR China
| | - Xulei Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yalu Li
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, PR China
| | - Hongru Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
47
|
Chen WJ, Huang LX, Hu D, Liu LY, Gu J, Huang LH, Feng QL. Cloning, expression and chitin-binding activity of two peritrophin-like protein genes in the common cutworm, Spodoptera litura. INSECT SCIENCE 2014; 21:449-458. [PMID: 23955994 DOI: 10.1111/1744-7917.12055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
Insect midgut secretes a semi-permeable peritrophic membrane (PM), which plays important roles in protecting the midgut and helping with food digestion. The lepidopteran larvae produce type 1 PM, which is degraded when insects develop into the metamorphic stages. However, the underlying mechanism is unclear. In the present study, two peritrophin-like proteins (peritrophin-57 and 37) were identified from the midgut expression sequence tag library and transcriptome of the common cutworm, Spodoptera litura. The temporal and spatial expression patterns and responses to the induction of 20-hydroxyecdysone (20E) and starvation were examined by real-time quantitative polymerase chain reaction according to their common sequence region. The chitin-binding activity was also studied using a competitor, calcofluor. The open reading frames are 1 554 and 1 020 bp, respectively. They shared four highly conserved peritrophin-A domains and were expressed only in the midgut rather than in the other tissues, including fat body, epidermis, Malpighian tube and hemolymph. Their transcriptional expression could only be detected at the larval stages rather than in eggs, prepupae, pupae and adults. The purified protein of peritrophin-37 bound to chitin in a dose-dependent manner. These results indicate that the two proteins are peritrophins, the structural components of PM. In addition, the messenger RNA levels of the two peritrophins were significantly down-regulated by 20E injection, whereas feeding/starvation had no effect on the expression. These findings suggest that the increase of 20E titer may be an important factor which controls the degradation of PM during metamorphosis.
Collapse
Affiliation(s)
- Wei-Jun Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Shen Y, Gong YJ, Gu J, Huang LH, Feng QL. Physiological effect of mild thermal stress and its induction of gene expression in the common cutworm, Spodoptera litura. JOURNAL OF INSECT PHYSIOLOGY 2014; 61:34-41. [PMID: 24406661 DOI: 10.1016/j.jinsphys.2013.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 12/25/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
Heat shock protein (Hsp) and its cognate protein (Hsc) play important roles in helping insects survive extreme temperatures. However, high level of Hsp expression usually brings negative physiological effects on organisms. The mechanism of this trade-off is unclear. In this study, a lepidopteran insect, the common cutworm Spodoptera litura, was stressed at different temperatures, and the impact on both thermotolerance and fecundity was examined. The mRNA levels of four Hsp/Hscs (Hsp90, Hsc90, Hsp70 and Hsc70) and two ecdysone receptors (EcRs, EcRA and EcRB1) in different stresses and during the larval-pupal metamorphosis were determined. The results revealed that the pre-acclamation at mild stress increased the thermotolerance but decreased the egg production in adults. During the stress process, the mRNA levels of all the Hsp/Hsc and ecdysone receptor genes were significantly up-regulated. The two Hsp/Hsc70s and EcRs revealed consistent expression profiles with each other during the larval-pupal metamorphosis. Co-immunoprecipitation and Western blotting analysis indicated that Hsp/Hsc70 interacted with EcRs. RNAi of Hsc70 decreased the mRNA levels of two 20E-induced genes such as E74B and E75. Hsp70 transferred from the cytoplasm to nucleus in response to cold stress. These data together suggest that Hsp/Hsc70 might be involved in the regulation of 20E signaling, and the protein-protein interaction between Hsp/Hsc70 and EcRs probably act as a bridge mediating the trade-off between high thermotolerance and physiological defects.
Collapse
Affiliation(s)
- Ying Shen
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yan-Jun Gong
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Gu
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li-Hua Huang
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Qi-Li Feng
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
49
|
Lu MX, Hua J, Cui YD, Du YZ. Five small heat shock protein genes from Chilo suppressalis: characteristics of gene, genomic organization, structural analysis, and transcription profiles. Cell Stress Chaperones 2014; 19:91-104. [PMID: 23702967 PMCID: PMC3857428 DOI: 10.1007/s12192-013-0437-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022] Open
Abstract
Small heat shock proteins (sHSPs) are the most diverse but also the most poorly known family of molecular chaperones, and they play essential roles in various biological processes. The striped stem borer, Chilo suppressalis (Insecta: Lepidoptera: Pyralidae), is one of the most serious pests of rice, causing extensive damage and yield loss. In this study, we isolated and characterized five members of the sHSPs family-Cshsp19.8, Cshsp21.4, Cshsp21.5, Cshsp21.7a, and Cshsp21.7b-from C. suppressalis. The cDNAs of these genes encoded proteins of 177, 187, 191, 191, and 191 amino acids with isoelectric points of 7.0, 5.6, 6.1, 6.3, and 6.3, respectively. While Cshsp19.8, Cshsp21.5, and Cshsp21.7b had no introns, Cshsp21.4 and Cshsp21.7a contained one and two introns, respectively. Structural analysis indicated that all five Cshsps possessed conserved arginine and a V/IXI/V motif, which is related to hydrophobic characteristics of sHSPs. The five heat shock proteins can be classified into two main groups: an orthologous type (Cshsp21.4 and Cshsp21.7a) and a species-specific type (Cshsp19.8, Cshsp21.5, and Cshsp21.7b). Real-time quantitative PCR analyses revealed that Cshsp19.8, Cshsp21.5, Cshsp21.7a, and Cshsp21.7b all exhibited their highest expression levels within Malpighian tubules or the hindgut, while such levels were found in the head for Cshsp21.4. The expression of Csshsps at different developmental stages revealed that the mRNA levels of Cshsp19.8, Cshsp21.4, Cshsp21.5, and Cshsp21.7b peaked in adults, whereas the highest level of Cshsp21.7a was observed in first instar larvae. Cshsp19.8 and Cshsp21.7b were both upregulated dramatically by heat and cold, and Cshsp21.5 could be induced by cold stress. Neither Cshsp21.4 nor Cshsp21.7a responded to heat or cold. These results demonstrated that different Csshsps play distinctive roles in the regulation of the physiological activities in C. suppressalis.
Collapse
Affiliation(s)
- Ming-Xing Lu
- />College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009 China
| | - Jin Hua
- />College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009 China
| | - Ya-Dong Cui
- />Department of Life Science, Fuyang Normal College, Fuyang, 236032 China
| | - Yu-Zhou Du
- />College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
50
|
Gao P, Chen AL, Zhao QL, Shen XJ, Qiu ZY, Xia DG, Tang SM, Zhang GZ. Differentially expressed genes in the ovary of the sixth day of pupal "Ming" lethal egg mutant of silkworm, Bombyx mori. Gene 2013; 527:161-6. [PMID: 23769927 DOI: 10.1016/j.gene.2013.05.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/10/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
The "Ming" lethal egg mutant (l-em) is a vitelline membrane mutant in silkworm, Bombyx mori. The eggs laid by the l-em mutant lose water, ultimately causing death within an hour. Previous studies have shown that the deletion of BmEP80 is responsible for the l-em mutation in silkworm, B. mori. In the current study, digital gene expression (DGE) was performed to investigate the difference of gene expression in ovaries between wild type and l-em mutant on the sixth day of the pupal stage to obtain a global view of gene expression profiles using the ovaries of three l-em mutants and three wild types. The results showed a total of 3,463,495 and 3,607,936 clean tags in the wild type and the l-em mutant libraries, respectively. Compared with those of wild type, 239 differentially expressed genes were detected in the l-em mutant, wherein 181 genes are up-regulated and 58 genes are down-regulated in the mutant strain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that no pathway was significantly enriched and three pathways are tightly related to protein synthesis among the five leading pathways. Moreover, the expression profiles of eight important differentially expressed genes related to oogenesis changed. These results provide a comprehensive gene expression analysis of oogenesis and vitellogenesis in B. mori which facilitates understanding of both the specific molecular mechanism of the 1-em mutant and Lepidopteran oogenesis in general.
Collapse
Affiliation(s)
- Peng Gao
- Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | | | | | | | | | | | | | | |
Collapse
|