1
|
Luo Q, Shen Z, Kanjana N, Guo X, Wu H, Zhang L. Molecular Identification of the Glutaredoxin 5 Gene That Plays Important Roles in Antioxidant Defense in Arma chinensis (Fallou). INSECTS 2024; 15:537. [PMID: 39057270 PMCID: PMC11277427 DOI: 10.3390/insects15070537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Glutaredoxin (Grx) is a group of redox enzymes that control reactive oxygen species (ROS), traditionally defined as redox regulators. Recent research suggested that members of the Grx family may be involved in more biological processes than previously thought. Therefore, we cloned the AcGrx5 gene and identified its role in A. chinensis diapause. Sequence analysis revealed the ORF of AcGrx5 was 432 bp, encoding 143 amino acids, which was consistent with the homologous sequence of Halyomorpha halys. RT-qPCR results showed that AcGrx5 expression was the highest in the head, and compared with non-diapause conditions, diapause conditions significantly increased the expression of AcGrx5 in the developmental stages. Further, we found that 15 °C low-temperature stress significantly induced AcGrx5 expression, and the expression of antioxidant enzyme genes AcTrx2 and AcTrx-like were significantly increased after AcGrx5 knockdown. Following AcGrx5 silencing, there was a considerable rise in the levels of VC content, CAT activity, and hydrogen peroxide content, indicating that A. chinensis was exposed to high levels of reactive oxygen species. These results suggested that the AcGrx5 gene may play a key role in antioxidant defense.
Collapse
Affiliation(s)
- Qiaozhi Luo
- School of Horticulture and Gardening, Tianjin Agricultural University, Tianjin 300392, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.S.); (X.G.)
| | - Zhongjian Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.S.); (X.G.)
| | - Nipapan Kanjana
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.S.); (X.G.)
| | - Xingkai Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.S.); (X.G.)
| | - Huihui Wu
- School of Horticulture and Gardening, Tianjin Agricultural University, Tianjin 300392, China;
| | - Lisheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.S.); (X.G.)
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
2
|
Li Z, Guo D, Wang C, Chi X, Liu Z, Wang Y, Wang H, Guo X, Wang N, Xu B, Gao Z. Toxic effects of the heavy metal Cd on Apis cerana cerana (Hymenoptera: Apidae): Oxidative stress, immune disorders and disturbance of gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169318. [PMID: 38143006 DOI: 10.1016/j.scitotenv.2023.169318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
Cadmium (Cd) is a toxic non-essential metal element that can enter the honey bee body through air, water and soil. Currently, there is a lack of sufficient research on the effects of Cd on A. cerana cerana, especially the potential risks of long-term exposure to sublethal concentrations. In order to ascertain the toxicological effects of the heavy metal Cd on bees, we performed laboratory-based toxicity experiments on worker bees and conducted analyses from three distinctive facets: antioxidative, immunological, and gut microbiota. The results showed that exposure of bees to high concentrations of Cd resulted in acute mortality, and the increase in mortality was concentration dependent. In long-term exposure to sublethal concentrations, Cd reduced the number of transcripts of antioxidant genes (AccSOD1, AccTPx3 and AccTPx4) and superoxide dismutase activity, causing an increase in malondialdehyde content. Simultaneously, the transcription of immune-related genes (AccAbaecin and AccApidaecin) and acetylcholinesterase activities was inhibited. Furthermore, Cd changes the structural characteristics of bacterial and fungal communities in the gut, disrupting the balance of microbial communities. In conclusion, the health and survival of honey bees are affected by Cd. This study provides a scientific basis for investigating the toxicological mechanisms and control strategies of the heavy metal Cd on honey bees, while facilitating a better understanding and protection of these valuable honey bees.
Collapse
Affiliation(s)
- Zhongyu Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Dezheng Guo
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Xingqi Guo
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Ningxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China.
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China.
| |
Collapse
|
3
|
Gul I, Abbas MN, Hussaini N, Kausar S, Wu S, Cui H. Peroxiredoxin-2 gene in Antheraea pernyi modulates immune functions and protect DNA damage. Int J Biol Macromol 2024; 256:128410. [PMID: 38029918 DOI: 10.1016/j.ijbiomac.2023.128410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Peroxiredoxins have been shown to protect insects from oxidative damage and to play a role in the immune system. In the present study, we cloned and characterized the Antheraea pernyi peroxiredoxin 2 (ApPrx-2) gene, then assessed its functional roles. The ApPrx-2 gene has a 687 bp open reading frame that encodes a protein with 288 amino acid residues. Quantitative real-time PCR analysis revealed that the mRNA levels of ApPrx-2 were highest in the hemocytes. Immune challenge assay revealed that ApPrx-2 transcription could be induced after microbial challenge. A DNA cleavage assay employing recombinant ApPrx-2 protein and a metal-catalyzed oxidation system showed that rApPrx-2 protein could protect supercoiled DNA against oxidative stress. The protein antioxidant activity of rApPrx-2 was examined, and it was found that rApPrx-2 exhibited a high level of antioxidant activity by removing H2O2. In addition, ApPrx-2 knockdown larvae had higher H2O2 levels and a lower survival rate when compared to controls. Interestingly, the antibacterial activity was significantly higher in ApPrx-2 depleted larvae compared with control. Overall, our findings indicate that ApPrx-2 may be involved in a range of physiological functions of A. pernyi, as it protects supercoiled DNA from oxidative stress and regulates antibacterial activity.
Collapse
Affiliation(s)
- Isma Gul
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| | - Najibullah Hussaini
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China
| | - Saima Kausar
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China
| | - Siyuan Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing, 401329, China..
| |
Collapse
|
4
|
Wang H, Xie Y, Wang X, Geng X, Gao L. Characterization of the RACK1 gene of Aips cerana cerana and its role in adverse environmental stresses. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110796. [PMID: 35973656 DOI: 10.1016/j.cbpb.2022.110796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
Receptors for Activated C Kinase 1 (RACK1s) are a kind of multifunction scaffold protein that plays an important role in cell signal transductions and animal development. However, the function of RACK1 in the Chinese honeybee Apis cerana cerana is little known. Here, we isolated and identified a RACK1 gene from Apis cerana cerana, named AccRACK1. By bioinformatic analysis, we revealed a high nucleic acid homology between AccRACK1 and RACK1 of Apis cerana. RT-qPCR analyses demonstrated AccRACK1 was mostly expressed in 3rd instar larvae, darked-eyed pupae and adults (one and thirty days post-emergence), suggesting it might participate in the development of A. cerana cerana. Moreover, the expression of AccRACK1 was highest in the thorax, followed by the venom gland. Compared to the blank control group, AccRACK1 was induced by 24 and 44 °C, HgCl2 and pesticides (paraquat, pyridaben and methomyl) but inhibited by 14 °C, H2O2, UV light and cyhalothrin. Additionally, 0.05, 0.1, 1, 5 and 10 mg/ml PPN (juvenile hormone analogue pyriproxyfen) could promote the expression of AccRACK1, with 1 mg/ml showing the highest upregulation, suggesting it was regulated by hormones. Further study found that after knockdown of AccRACK1 by RNAi, the expression of the eukaryotic initiation factor 6 of A. cerana cerana (AcceIF6), an initiation factor regulating the initiation of translation, was inhibited, indicating AccRACK1 might affect cellular responses by translation. These findings, taken together, suggest AccRACK1 is involved in the development and responses to abiotic stresses of A. cerana cerana, and therefore, it may be of critical importance to the survival of A. cerana cerana.
Collapse
Affiliation(s)
- Hongfei Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yucai Xie
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xiaoqing Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xiaoshan Geng
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lijun Gao
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China.
| |
Collapse
|
5
|
Zhao L, Cao Y, Wang DD, Chen N, Li SG, Liu S, Li MY. A thioredoxin peroxidase protects Pieris rapae from oxidative stress induced by chlorantraniliprole exposure. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21964. [PMID: 36050844 DOI: 10.1002/arch.21964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Chlorantraniliprole (CAP) is an insecticide widely used to control the small white butterfly (SWB), Pieris rapae. Exposure to CAP can cause oxidative injury in SWB; however, it is unclear if antioxidant enzymes are involved in the defense process. In this study, a thioredoxin peroxidase (PrTPX1) gene was identified from SWB by using a homology search method. The gene encoded a 195 amino-acid PrTPX1 protein. Sequence characteristics and phylogenetic analysis indicated that PrTPX1 was a typical "2-Cys" TPX, and the PrTPX1 gene consisted of four exons and three introns. Reverse transcription-quantitative polymerase chain reaction analysis indicated that the messenger RNA levels of PrTPX1 were highest in third-, fourth- and fifth-instar larval stages and in the larval midgut. Treatment with sublethal doses (LD20 and LD50 ) of CAP for 6, 12, 18, and 24 h resulted in increased H2 O2 concentration in SWB larvae, indicating insecticide-induced oxidative stress. The transcriptional levels of PrTPX1 were significantly enhanced in larvae exposed to CAP. Recombinant PrTPX1 protein was expressed in Escherichia coli. Enzymatic assay revealed that the protein displayed antioxidant activity and was able to protect against oxidative challenge. These results indicated that PrTPX1 plays an important role in oxidative stress responses and may contribute to the CAP tolerance in SWB.
Collapse
Affiliation(s)
- Le Zhao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ye Cao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
- The research group of insect resource utilization, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dong-Dong Wang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Nan Chen
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shi-Guang Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Mao-Ye Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Liu Y, Zhu F, Shen Z, Moural TW, Liu L, Li Z, Liu X, Xu H. Glutaredoxins and thioredoxin peroxidase involved in defense of emamectin benzoate induced oxidative stress in Grapholita molesta. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104881. [PMID: 34119223 DOI: 10.1016/j.pestbp.2021.104881] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/08/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Glutaredoxins (Grxs) and thioredoxin peroxidases (Tpxs) are major antioxidant enzyme families involved in regulating cellular redox homeostasis and in defense of enhanced oxidative stress through scavenging reactive oxygen species (ROS). However, the functions of these enzymes have not been reported in the oriental fruit moth, Grapholita molesta (Busck), a worldwide pest of stone and pome fruits. Here, we identified four new antioxidant genes, GmGrx, GmGrx3, GmGrx5, and GmTpx which were induced by exposure with emamectin benzoate, a commonly used biopesticide for G. molesta control. Other environmental factors (low and high temperatures, Escherichia coli and Metarhizium anisopliae) also significantly induced the expression of these genes. After GmGrx or GmTpx silenced by RNA interference (RNAi), the percentage of larval survival to emamectin benzoate were significantly decreased, demonstrating that GmGrx and GmTpx are involved in protecting G. molesta from stresses induced by emamectin benzoate. Furthermore, silenced GmGrx, GmGrx3, GmGrx5, or GmTpx significantly enhanced the enzymatic activities of superoxide dismutase (SOD) (except GmTpx) and peroxidase (POD), as well as the contents of hydrogen peroxide and metabolites ascorbate. Taken together, our results suggest that GmGrx, GmGrx3, GmGrx5, and GmTpx may play critical roles in antioxidant defense. Specially, GmGrx and GmTpx contribute to the defense of oxidative damage induced by exposure to emamectin benzoate through scavenging excessive ROS in G. molesta. Our findings provided a theoretical basis for understanding functions of insect glutaredoxin and peroxidase systems.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China; Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Lining Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huanli Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Meng J, Wang L, Wang C, Zhao G, Wang H, Xu B, Guo X. AccPDIA6 from Apis cerana cerana plays important roles in antioxidation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104830. [PMID: 33993956 DOI: 10.1016/j.pestbp.2021.104830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
PDIA6 is a member of the protein disulfide isomerase (PDI) family, shows disulfide isomerase activity and oxidoreductase activity, and can act as a molecular chaperone. Its biological functions include modulating apoptosis, regulating the proliferation and invasion of cancer cells, supporting thrombosis and modulating insulin secretion. However, the roles of PDIA6 in Apis cerana cerana are poorly understood. Herein, we obtained the PDIA6 gene from A. cerana cerana (AccPDIA6). We investigated the expression patterns of AccPDIA6 in response to oxidative stress induced by H2O2, UV, HgCl2, extreme temperatures (4 °C, 42 °C) and pesticides (thiamethoxam and hexythiazox) and found that AccPDIA6 was upregulated by these treatments. Western blot analysis indicated that AccPDIA6 was also upregulated by oxidative stress at the protein level. In addition, a survival test demonstrated that the survival rate of E. coli cells expressing AccPDIA6 increased under oxidative stress, suggesting a possible antioxidant function of AccPDIA6. In addition, we tested the transcripts of other antioxidant genes and found that some of them were downregulated in AccPDIA6 knockdown samples. It was also discovered that the antioxidant enzymatic activity of superoxide dismutase (SOD) decreased in AccPDIA6-silenced bees. Moreover, the survival rate of AccPDIA6 knockdown bees decreased under oxidative stress, implying that AccPDIA6 may function in the oxidative stress response by enhancing the viability of honeybees. Taken together, these results indicated that AccPDIA6 may play an essential role in counteracting oxidative stress.
Collapse
Affiliation(s)
- Jie Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
8
|
Zhao G, Zhao W, Cui X, Xu B, Liu Q, Li H, Guo X. Identification of an MGST2 gene and analysis of its function in antioxidant processes in Apis cerana cerana. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21770. [PMID: 33660279 DOI: 10.1002/arch.21770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
MGST2 is a member of the MAPEG superfamily, which participates in LTC4 synthesis and plays important roles in the regulation of the oxidative stress pathway and some diseases. Here, we isolated a previously uncharacterized gene in Apis cerana cerana named AccMGST2 by reverse transcription-polymerase chain reaction. The biological characteristics of AccMGST2 were analyzed by bioinformatics. The amino acid sequence similarity between AccMGST2 and AmMGST2 of Apis mellifera reached 96.08%. The expression characteristics of AccMGST2 were explored in several tissues. The quantitative real-time polymerase chain reaction results showed that the AccMGST2 gene was highly expressed in the head and muscle and that AccMGST2 expression responded to oxidative stress caused by different abiotic stresses. AccMGST2 was silenced using RNA interference, which decreased the expression levels of some MAPK and antioxidant genes. Therefore, we conclude that AccMGST2 is involved in the regulation of oxidative stress in A. cerana cerana.
Collapse
Affiliation(s)
- Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Wenchun Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
9
|
Zhao W, Chao Y, Wang Y, Wang L, Wang X, Li H, Xu B. Role of AccMGST1 in oxidative stress resistance in Apis cerana cerana. Cell Stress Chaperones 2019; 24:793-805. [PMID: 31175533 PMCID: PMC6629756 DOI: 10.1007/s12192-019-01007-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
As detoxification enzymes, proteins in the glutathione S-transferase (GST) superfamily are reported to participate in oxidative stress resistance. Nevertheless, microsomal GSTs (MGSTs), a unique subclass of the GST superfamily associated with membranes, are rarely studied in insects. Here, we isolated an MGST gene in Apis cerana cerana (AccMGST1) and verified its role in oxidative stress response. We found higher expression of AccMGST1 in protective or defensive tissue, that is, the epidermis, which indicated its role in stress resistance. Real-time quantitative PCR (qRT-PCR) analysis indicated that AccMGST1 was upregulated by oxidative stresses at the transcriptional level. In contrast, AccMGST1 expression was inhibited when the antioxidant vitamin C (VC) was fed to experimental bees. Through western blotting, we found that the protein level of AccMGST1 under oxidative stress corresponded to the transcript level. Disc diffusion and mixed-function oxidation (MFO) assays suggested that AccMGST1 can protect not only cells but also DNA against oxidative damage. Furthermore, we discovered that the expression patterns of known antioxidant genes were changed in A. cerana cerana after AccMGST1 was silenced by RNA interference (RNAi). Thus, we concluded that the gene AccMGST1 exerts a significant role in the antioxidant mechanism.
Collapse
Affiliation(s)
- Wenchun Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Yuzhen Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xinxin Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Franke K, Karl I, Centeno TP, Feldmeyer B, Lassek C, Oostra V, Riedel K, Stanke M, Wheat CW, Fischer K. Effects of adult temperature on gene expression in a butterfly: identifying pathways associated with thermal acclimation. BMC Evol Biol 2019; 19:32. [PMID: 30674272 PMCID: PMC6345059 DOI: 10.1186/s12862-019-1362-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Phenotypic plasticity is a pervasive property of all organisms and considered to be of key importance for dealing with environmental variation. Plastic responses to temperature, which is one of the most important ecological factors, have received much attention over recent decades. A recurrent pattern of temperature-induced adaptive plasticity includes increased heat tolerance after exposure to warmer temperatures and increased cold tolerance after exposure to cooler temperatures. However, the mechanisms underlying these plastic responses are hitherto not well understood. Therefore, we here investigate effects of adult acclimation on gene expression in the tropical butterfly Bicyclus anynana, using an RNAseq approach. RESULTS We show that several antioxidant markers (e.g. peroxidase, cytochrome P450) were up-regulated at a higher temperature compared with a lower adult temperature, which might play an important role in the acclamatory responses subsequently providing increased heat tolerance. Furthermore, several metabolic pathways were up-regulated at the higher temperature, likely reflecting increased metabolic rates. In contrast, we found no evidence for a decisive role of the heat shock response. CONCLUSIONS Although the important role of antioxidant defence mechanisms in alleviating detrimental effects of oxidative stress is firmly established, we speculate that its potentially important role in mediating heat tolerance and survival under stress has been underestimated thus far and thus deserves more attention.
Collapse
Affiliation(s)
- Kristin Franke
- Zoological Institute and Museum, University of Greifswald, D-17489, Greifswald, Germany
| | - Isabell Karl
- Zoological Institute and Museum, University of Greifswald, D-17489, Greifswald, Germany
| | - Tonatiuh Pena Centeno
- Institute for Mathematics and Computer Science, University of Greifswald, D-17487, Greifswald, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Molecular Ecology Group, D-60325, Frankfurt am Main, Germany
| | - Christian Lassek
- Institute for Microbiology, University of Greifswald, D-17489, Greifswald, Germany
| | - Vicencio Oostra
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, London, UK
| | - Katharina Riedel
- Institute for Microbiology, University of Greifswald, D-17489, Greifswald, Germany
| | - Mario Stanke
- Institute for Mathematics and Computer Science, University of Greifswald, D-17487, Greifswald, Germany
| | | | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, D-17489, Greifswald, Germany. .,Present address: Institute for Integrated Natural Sciences, University Koblenz-Landau, Universitätsstraße 1, D-56070, Koblenz, Germany.
| |
Collapse
|
11
|
Li G, Wang L, Wang Y, Li H, Liu Z, Wang H, Xu B, Guo X. Developmental characterization and environmental stress responses of Y-box binding protein 1 gene (AccYB-1) from Apis cerana cerana. Gene 2018; 674:37-48. [DOI: 10.1016/j.gene.2018.06.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
|
12
|
Cao Y, Yang Q, Tu XH, Li SG, Liu S. Molecular characterization of a typical 2-Cys thioredoxin peroxidase from the Asiatic rice borer Chilo suppressalis and its role in oxidative stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21476. [PMID: 29873106 DOI: 10.1002/arch.21476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In insects, thioredoxin peroxidase (TPX) plays an important role in protecting against oxidative damage. However, studies on the molecular characteristics of TPXs in the Asiatic rice borer, Chilo suppressalis, are limited. In this work, a cDNA sequence (CsTpx3) encoding a TPX was identified from C. suppressalis. The deduced CsTPX3 protein shares high sequence identity and two positionally conserved cysteines with orthologs from other insect species, and was classified as a typical 2-Cys TPX. CsTpx3 was expressed most highly during the fifth-instar larval stage, and transcripts were most abundant in the midgut. Recombinant CsTPX3 protein expressed in Escherichia coli displayed the expected peroxidase activity by removing H2 O2 . Furthermore, CsTPX3 protected DNA from oxidative damage, and E. coli cells overexpressing CsTPX3 exhibited long-term resistance to oxidative stress. Exposure to various oxidative stressors, such as cold (8°C), heat (35°C), bacteria (E. coli), and two insecticides (chlorpyrifos and lambda-cyhalothrin), significantly upregulated transcription of CsTpx3. However, exposure to abamectin had no such effect. Our results provide valuable information for future studies on the antioxidant mechanism in this insect species.
Collapse
Affiliation(s)
- Ye Cao
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Qing Yang
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiao-Hui Tu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Shi-Guang Li
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Su Liu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
13
|
Wang L, Wang C, Li H, Yang X, Wang Y, Guo X, Xu B. Isolation of
AccGalectin1
from
Apis cerana cerana
and its functions in development and adverse stress response. J Cell Biochem 2018; 120:671-684. [DOI: 10.1002/jcb.27424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Taian Shandong China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Taian Shandong China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Taian Shandong China
| | - Xinxin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Taian Shandong China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University Taian Shandong China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Taian Shandong China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University Taian Shandong China
| |
Collapse
|
14
|
Li G, Zhang Y, Ni Y, Wang Y, Xu B, Guo X. Identification of a melatonin receptor type 1A gene (AccMTNR1A) in Apis cerana cerana and its possible involvement in the response to low temperature stress. Naturwissenschaften 2018; 105:24. [DOI: 10.1007/s00114-018-1546-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
|
15
|
Ma M, Jia H, Cui X, Zhai N, Wang H, Guo X, Xu B. Isolation of carboxylesterase (esterase FE4) from Apis cerana cerana and its role in oxidative resistance during adverse environmental stress. Biochimie 2018; 144:85-97. [DOI: 10.1016/j.biochi.2017.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/25/2017] [Indexed: 01/13/2023]
|
16
|
Gao L, Wang H, Liu Z, Liu S, Zhao G, Xu B, Guo X. The initial analysis of a serine proteinase gene (AccSp10) from Apis cerana cerana: possible involvement in pupal development, innate immunity and abiotic stress responses. Cell Stress Chaperones 2017; 22:867-877. [PMID: 28695333 PMCID: PMC5655375 DOI: 10.1007/s12192-017-0818-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/15/2022] Open
Abstract
Serine proteinases play important roles in innate immunity and insect development. We isolated a serine proteinase gene, designated AccSp10, from the Chinese honeybees (Apis cerana cerana). RT-qPCR and a Western blot analysis at different pupal development stages indicated that AccSp10 might be involved in melanin formation in pupae and promote pupal development. In adult workers, the expression of AccSp10 was upregulated by treatments mimicking harmful environments such as the presence of Bacillus bombysepticus, different temperatures (4, 24 and 42 °C), HgCl2, H2O2 and paraquat; the exception was treatment with VC (vitamin C), which did not upregulate AccSp10 expression. Western blot confirmed the results. A disc diffusion assay indicated that recombinant AccSp10 accelerated E. coli cell death during stimulation with harmful substances (HgCl2, paraquat and cumene hydroperoxide). These findings suggest that AccSp10 may be involved in the pupal development of Chinese honeybees and protection against microorganisms and abiotic harms.
Collapse
Affiliation(s)
- Lijun Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
- College of Life Sciences, Taishan Medical University, Taian, Shandong, 271016, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Shuchang Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
17
|
Teixeira ADD, Games PD, Katz BB, Tomich JM, Zanuncio JC, Serrão JE. Proteomic analysis in the Dufour's gland of Africanized Apis mellifera workers (Hymenoptera: Apidae). PLoS One 2017; 12:e0177415. [PMID: 28542566 PMCID: PMC5443511 DOI: 10.1371/journal.pone.0177415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/26/2017] [Indexed: 11/19/2022] Open
Abstract
The colony of eusocial bee Apis mellifera has a reproductive queen and sterile workers performing tasks such as brood care and foraging. Chemical communication plays a crucial role in the maintenance of sociability in bees with many compounds released by the exocrine glands. The Dufour’s gland is a non-paired gland associated with the sting apparatus with important functions in the communication between members of the colony, releasing volatile chemicals that influence workers roles and tasks. However, the protein content in this gland is not well studied. This study identified differentially expressed proteins in the Dufour’s glands of nurse and forager workers of A. mellifera through 2D-gel electrophoresis and mass spectrometry. A total of 131 spots showed different expression between nurse and forager bees, and 28 proteins were identified. The identified proteins were categorized into different functions groups including protein, carbohydrate, energy and lipid metabolisms, cytoskeleton-associated proteins, detoxification, homeostasis, cell communication, constitutive and allergen. This study provides new insights of the protein content in the Dufour’s gland contributing to a more complete understanding of the biological functions of this gland in honeybees.
Collapse
Affiliation(s)
| | - Patricia D. Games
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Benjamin B. Katz
- Biotechnology Core Facility and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - John M. Tomich
- Biotechnology Core Facility and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - José C. Zanuncio
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
18
|
Biochemical properties and vaccine effect of recombinant TPx-3 from Schistosoma japonicum. Parasitol Res 2017; 116:1361-1372. [PMID: 28285327 DOI: 10.1007/s00436-017-5415-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022]
Abstract
Thioredoxin peroxidases (TPxs) play an important role in maintaining redox homeostasis and in protecting organisms from the accumulation of toxic reactive oxygen species (ROS). In this study, we isolated the thioredoxin peroxidase-3 gene of Schistosoma japonicum, SjTPx-3. The open reading frame (ORF) of SjTPx-3 was 663 bp encoding 220 amino acids with a molecular weight of 24.99 kDa and an isoelectric point of 6.20. Quantitative real-time reverse transcription-polymerase chain reaction indicated that SjTPx-3 was expressed in all different stages of the parasites, with highest expression in 35-day-old worms. The ORF of SjTPx-3 was subcloned into pET-32a (+) vectors and expressed in Escherichia coli. Recombinant SjTPx-3 (rSjTPx-3) was expressed as a soluble protein with good antigenicity, as demonstrated by western blotting. Immunohistochemical analysis revealed that SjTPx-3 was mainly localized on the tegument of the parasites. Mice vaccinated with rSjTPx-3 had a 37.02% (P < 0.05) reduction in worm burden and 56.52% (P < 0.05) reduction in liver egg production compared with control, unvaccinated mice. Enzyme-linked immunosorbent assay analysis demonstrated that rSjTPx-3 could induce high levels of anti-rSjTPx-3-specific IgG, IgG1, and IgG2a antibodies. Characteristic Th1 and Th2 immune response cytokines were detected by flow cytometry and were increased by rSjTPx-3. Taken together, these results suggest that SjTPx-3 is an antioxidant enzyme responsible for protecting S. japonicum from oxidative stress. rSjTPx-3 may represent a potential vaccine candidate and/or new drug target for patients with schistosomiasis.
Collapse
|
19
|
Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses. Gene 2016; 584:120-8. [DOI: 10.1016/j.gene.2016.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 01/18/2023]
|
20
|
A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana. Naturwissenschaften 2016; 103:43. [DOI: 10.1007/s00114-016-1362-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 01/06/2023]
|
21
|
Zhang S, Shen Z, Li Z, Wu F, Zhang B, Liu Y, Zhang Q, Liu X. Identification of a thioredoxin peroxidase gene involved in resistance to nucleopolyhedrovirus infection in Helicoverpa armigera with RNA interference. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:17-27. [PMID: 26238928 DOI: 10.1016/j.jinsphys.2015.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/25/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
Thioredoxin peroxidases (Tpxs) play a crucial role in protection against oxidative damage in several insect species. However, studies on the characteristics and functions of Tpxs in Helicoverpa armigera are lacking. In this study, a novel 2-Cys Tpx gene from H. armigera (HaTpx) was identified. Sequence analysis revealed that HaTpx is highly conserved and shares two catalysis regions (VCP) with other insect species. HaTpx mRNA was found to be expressed in an age-dependent manner and was ubiquitous in all tissues examined. Hormone treatment showed that the expression of HaTpx is clearly induced by 20-hydroxyecdysone but repressed by Juvenile hormone. Additionally, extreme temperature, ultraviolet light, mechanical injury, Escherichia coli, Metarhizium anisopliae, nucleopolyhedrovirus (NPV) infection, and H2O2 treatment markedly induced HaTpx gene expression. Reactive oxygen species (ROS) levels in hemocytes and MDA concentrations in the hemolymph after NPV infection were evaluated, and the results indicated that NPV infection causes excessive ROS generation. After knockdown of HaTpx by RNA interference, the expression of three antioxidant genes (Cu/ZnSOD, Trx, and TrxR) was increased, whereas two antioxidant genes (CAT and GPX) showed decreased expression. Moreover, the susceptibility of H. armigera to NPV infection increased after HaTpx knockdown. These results indicated that HaTpx contributes to the susceptibility of H. armigera to NPV, and the results also provide a theoretical basis for a novel strategy for developing new chemicals and microbial pesticides that target HaTpx gene for controlling H. armigera.
Collapse
Affiliation(s)
- Songdou Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhongjian Shen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Fengming Wu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Boyu Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yanjun Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Feng YC, Liao CY, Xia WK, Jiang XZ, Shang F, Yuan GR, Wang JJ. Regulation of three isoforms of SOD gene by environmental stresses in citrus red mite, Panonychus citri. EXPERIMENTAL & APPLIED ACAROLOGY 2015; 67:49-63. [PMID: 26063404 DOI: 10.1007/s10493-015-9930-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Superoxide dismutase (SOD) is a family of enzymes with multiple isoforms that possess antioxidative abilities in response to environmental stresses. Panonychus citri is one of the most important pest mites and has a global distribution. In this study, three distinct isoforms of SOD were cloned from P. citri and identified as cytoplasmic Cu-ZnSOD (PcSOD1), extracellular Cu-ZnSOD (PcSOD2), and mitochondrial MnSOD (PcSOD3). mRNA expression level analysis showed that all three isoforms were up-regulated significantly after exposure to the acaricide abamectin and to UV-B ultraviolet irradiation. In particular, PcSOD3 was up-regulated under almost all environmental stresses tested. The fold change of PcSOD3 expression was significantly higher than those of the two Cu-ZnSOD isoforms. Taken together, the results indicate that abamectin and UV-B can induce transcripts of all three SOD isoforms in P. citri. Furthermore, PcSOD3 seems to play a more important role in P. citri tolerance to oxidative stress.
Collapse
Affiliation(s)
- Ying-Cai Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Saranya Revathy K, Umasuthan N, Whang I, Jung HB, Lim BS, Nam BH, Lee J. A potential antioxidant enzyme belonging to the atypical 2-Cys peroxiredoxin subfamily characterized from rock bream, Oplegnathus fasciatus. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:1-13. [PMID: 25934084 DOI: 10.1016/j.cbpb.2015.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/14/2015] [Accepted: 04/21/2015] [Indexed: 12/25/2022]
Abstract
Peroxiredoxins (Prxs), a diverse family of antioxidant enzymes, exert their antioxidant function through which different peroxide species are detoxified. This study describes both structural and functional characterization of a mitochondrial Prx identified in rock bream, Oplegnathus fasciatus (RbPrx5). The ORF (573 bp) of RbPrx5 encoded a protein of 190 amino acids (20 kDa) containing a putative mitochondrial targeting sequence (residues 1-20) and a thioredoxin-2 motif (residues 31-190) and three conserved Cys residues. Homology assessment and phylogenetic analysis clearly disclosed relatively higher amino acid sequence similarities and a closer evolutionary position of RbPrx5 with those of other teleost homologs. The ORF of RbPrx5 was distributed among six exons as found in other vertebrates, but it possessed an additional exon in its 5'-UTR. In silico examination of RbPrx5 gene's putative promoter region revealed the presence of several cis-elements which may be important in its transcriptional regulation. Constitutive expression of RbPrx5 was detected in eleven tissues with the highest level in the heart. Modulation of RbPrx5 transcription was evidenced from varying mRNA levels in head kidney post in vivo LPS-, poly I:C-, Edwardsiella tarda bacterial- and rock bream iridoviral-challenges. The antioxidant function of RbPrx5 was investigated using recombinant RbPrx5 protein. Results of an in vitro mixed-function oxidase assay demonstrated a dose-dependent inhibition of DNA damage by rRbPrx5. A H2O2 tolerance assay showed that in vivo overexpression of rRbPrx5 increased the bacterial survival under H2O2-mediated oxidative stress condition. These findings provide an overall insight into the structural, expressional and functional aspects of RbPrx5.
Collapse
Affiliation(s)
- Kasthuri Saranya Revathy
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Hyung-Bok Jung
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Bong-Soo Lim
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 619-705, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
24
|
Zhang L, Lu Z. Expression, purification and characterization of an atypical 2-Cys peroxiredoxin from the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2015; 24:203-212. [PMID: 25512182 DOI: 10.1111/imb.12149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Peroxiredoxins (Prxs) play important roles in protecting organisms against damage caused by reactive oxygen species (ROS). In this study, we cloned a cDNA of Bombyx mori peroxiredoxin 5 (BmPrx5), which contained a 565-bp open reading frame for a 188-residue protein. Sequence analysis indicated that BmPrx5 belongs to the atypical 2-Cys peroxiredoxin family. Recombinant BmPrx5 purified from Escherichia coli showed antioxidant activity that removes H2 O2 and protects DNA from oxidative damage. Quantitative real-time PCR showed that the level of BmPrx5 mRNA in haemocytes increased early and decreased by 24 h after injection of H2 O2 whereas, in the fat body, the transcript level decreased at 6 h and increased at 12 h. Pseudomonas aeruginosa and Staphylococcus aureus infection resulted in higher levels of H2 O2 in the haemolymph and of BmPrx5 mRNA in haemocytes at 8 h postinfection. These data suggest that BmPrx5 acts as an antioxidant enzyme to protect the silkworm from oxidative damage induced by bacterial infection. Further study is needed to elucidate the exact role of BmPrx5 in the silkworm immune system.
Collapse
Affiliation(s)
- L Zhang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | | |
Collapse
|
25
|
Chen X, Yao P, Chu X, Hao L, Guo X, Xu B. Isolation of arginine kinase from Apis cerana cerana and its possible involvement in response to adverse stress. Cell Stress Chaperones 2015; 20:169-83. [PMID: 25135575 PMCID: PMC4255252 DOI: 10.1007/s12192-014-0535-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 02/04/2023] Open
Abstract
Arginine kinases (AK) in invertebrates play the same role as creatine kinases in vertebrates. Both proteins are important for energy metabolism, and previous studies on AK focused on this attribute. In this study, the arginine kinase gene was isolated from Apis cerana cerana and was named AccAK. A 5'-flanking region was also cloned and shown to contain abundant putative binding sites for transcription factors related to development and response to adverse stress. We imitated several abiotic and biotic stresses suffered by A. cerana cerana during their life, including heavy metals, pesticides, herbicides, heat, cold, oxidants, antioxidants, ecdysone, and Ascosphaera apis and then studied the expression patterns of AccAK after these treatments. AccAK was upregulated under all conditions, and, in some conditions, this response was very pronounced. Western blot and AccAK enzyme activity assays confirmed the results. In addition, a disc diffusion assay showed that overexpression of AccAK reduced the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, our results indicated that AccAK may be involved of great significance in response to adverse abiotic and biotic stresses.
Collapse
Affiliation(s)
- Xiaobo Chen
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Pengbo Yao
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Xiaoqian Chu
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Lili Hao
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Xingqi Guo
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Baohua Xu
- />College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| |
Collapse
|
26
|
Dou H, Xv K, Meng Q, Li G, Yang X. Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. PLANT, CELL & ENVIRONMENT 2015; 38:61-72. [PMID: 24811248 DOI: 10.1111/pce.12366] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/24/2014] [Indexed: 05/08/2023]
Abstract
CBF3, a known cold-inducible gene that encodes a transcription factor, was isolated from Arabidopsis thaliana and introduced into the potato (Solanum tuberosum cv. 'luyin NO.1') under the control of the CaMV35S promoter or the rd29A promoter. Our results revealed that temperature of 40 °C or higher can significantly induce AtCBF3 expression. After heat stress, the net photosynthetic rate (Pn ), the maximal photochemical efficiency of photosystem II (PSII) (Fv /Fm ) and the accumulation of the D1 protein were higher in the transgenic lines than in the wild-type (WT) line. Moreover, compared with the WT line, O2 (●-) and H2 O2 accumulation in the transgenic lines were reduced. A Q-PCR assay of a subset of the genes involved in photosynthesis and antioxidant defence further verified the above results. Interestingly, under heat stress conditions, the accumulation of heat-shock protein 70 (HSP70) increased in the WT line but decreased in the transgenic lines. These results suggest that potato plants ectopically expressing AtCBF3 exhibited enhanced tolerance to high temperature, which is associated with improved photosynthesis and antioxidant defence via induction of the expression of many stress-inducible genes. However, this mechanism may not depend upon the regulatory pathways in which HSP70 is involved.
Collapse
Affiliation(s)
- Haiou Dou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | | | | | | | | |
Collapse
|
27
|
Kang T, Wan H, Zhang Y, Shakeel M, Lu Y, You H, Lee KS, Jin BR, Li J. Comparative study of two thioredoxins from common cutworm (Spodoptera litura): cloning, expression, and functional characterization. Comp Biochem Physiol B Biochem Mol Biol 2014; 182:47-54. [PMID: 25542738 DOI: 10.1016/j.cbpb.2014.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 01/13/2023]
Abstract
Thioredoxins (Trxs) are a ubiquitous family of antioxidant enzymes that are involved in protecting organisms against various oxidative stresses. Here, we cloned and characterized two thioredoxins, named SlTrx1 and SlTrx2, from the common cutworm Spodoptera litura. SlTrx1 and SlTrx2, respectively, consist of 988 and 606 bp full-length cDNA with 318 and 447 bp open reading frames encoding 106 and 149 amino acid residues. Furthermore, the N-terminal region of SlTrx2 contains a predicted mitochondrial localization signal (33 amino acids). A phylogenetic relationship analysis revealed that SlTrx1 is in the cytosolic thioredoxin Trx1 cluster, whereas SlTrx2 is in the mitochondrial thioredoxin Trx2 cluster. Recombinant SlTrx1 (14 kDa) and SlTrx2 (16 kDa), expressed in baculovirus-infected insect Sf9 cells, demonstrated insulin disulfide reductase activity at the same optimum temperature and pH value of 35 °C and 7.0, respectively, in vitro. During S. litura development, we found that SlTrx1 and SlTrx2 had similar transcript expression patterns and were constitutively expressed in the epidermis, fat body, and midgut, with the highest expression occurring in the sixth-instar larval stage in the epidermis and midgut. In addition, both SlTrx1 and SlTrx2 mRNA were up-regulated in S. litura after injection with H2O2, cumene hydroperoxide, indoxacarb, and metaflumizone. These results suggest that SlTrx1 and SlTrx2 function as potent antioxidant enzymes, and provide a molecular basis for the roles SlTrx1 and SlTrx2 during development and the oxidative stress response of S. litura.
Collapse
Affiliation(s)
- Tinghao Kang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yashu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Shakeel
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanhui Lu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hong You
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Byung Rae Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea.
| | - Jianhong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
28
|
Wan H, Kang T, Zhan S, You H, Zhu F, Lee KS, Zhao H, Jin BR, Li J. Peroxiredoxin 5 from common cutworm (Spodoptera litura) acts as a potent antioxidant enzyme. Comp Biochem Physiol B Biochem Mol Biol 2014; 175:53-61. [DOI: 10.1016/j.cbpb.2014.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 01/12/2023]
|
29
|
Yan Y, Zhang Y, Huaxia Y, Wang X, Yao P, Guo X, Xu B. Identification and characterisation of a novel 1-Cys thioredoxin peroxidase gene ( AccTpx5 ) from Apis cerana cerana. Comp Biochem Physiol B Biochem Mol Biol 2014; 172-173:39-48. [DOI: 10.1016/j.cbpb.2014.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/01/2014] [Accepted: 04/09/2014] [Indexed: 12/16/2022]
|
30
|
Ruan Z, Liu G, Guo Y, Zhou Y, Wang Q, Chang Y, Wang B, Zheng J, Zhang L. First report of a thioredoxin homologue in jellyfish: molecular cloning, expression and antioxidant activity of CcTrx1 from Cyanea capillata. PLoS One 2014; 9:e97509. [PMID: 24824597 PMCID: PMC4019632 DOI: 10.1371/journal.pone.0097509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/17/2014] [Indexed: 01/10/2023] Open
Abstract
Thioredoxins (Trx proteins) are a family of small, highly-conserved and ubiquitous proteins that play significant roles in the resistance of oxidative damage. In this study, a homologue of Trx was identified from the cDNA library of tentacle of the jellyfish Cyanea capillata and named CcTrx1. The full-length cDNA of CcTrx1 was 479 bp with a 312 bp open reading frame encoding 104 amino acids. Bioinformatics analysis revealed that the putative CcTrx1 protein harbored the evolutionarily-conserved Trx active site 31CGPC34 and shared a high similarity with Trx1 proteins from other organisms analyzed, indicating that CcTrx1 is a new member of Trx1 sub-family. CcTrx1 mRNA was found to be constitutively expressed in tentacle, umbrella, oral arm and gonad, indicating a general role of CcTrx1 protein in various physiological processes. The recombinant CcTrx1 (rCcTrx1) protein was expressed in Escherichia coli BL21 (DE3), and then purified by affinity chromatography. The rCcTrx1 protein was demonstrated to possess the expected redox activity in enzymatic analysis and protection against oxidative damage of supercoiled DNA. These results indicate that CcTrx1 may function as an important antioxidant in C. capillata. To our knowledge, this is the first Trx protein characterized from jellyfish species.
Collapse
Affiliation(s)
- Zengliang Ruan
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Guoyan Liu
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yufeng Guo
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yonghong Zhou
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qianqian Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yinlong Chang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Beilei Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jiemin Zheng
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Liming Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
31
|
Yao P, Chen X, Yan Y, Liu F, Zhang Y, Guo X, Xu B. Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Free Radic Biol Med 2014; 68:335-46. [PMID: 24389255 DOI: 10.1016/j.freeradbiomed.2013.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022]
Abstract
Glutaredoxins (Grxs) and thioredoxins (Trxs) play important roles in maintaining intracellular thiol-redox homeostasis by scavenging reactive oxygen species. However, few Grxs and Trxs have been functionally characterized in Apis cerana cerana. In this study, we identified three genes, AccGrx1, AccGrx2, and AccTrx1, and investigated their connection to antioxidant defense. AccGrx1 and AccGrx2 were mainly detected in dark-eyed pupae, whereas AccTrx1 was highly concentrated in 15-day postemergence adults. The expression levels of AccGrx1 and AccTrx1 were the highest in fat body and epidermis, respectively. However, the expression level of AccGrx2 was the highest in muscle, followed by the epidermis. AccGrx1, AccGrx2, and AccTrx1 were induced by 4, 16, and 42°C; H2O2; and pesticide (acaricide, paraquat, cyhalothrin, and phoxime) treatments and repressed by UV light. AccGrx1 and AccGrx2 were upregulated by HgCl2 treatment, whereas AccTrx1 was downregulated. We investigated the knockdown of AccGrx1, AccGrx2, AccTpx-3, and AccTrx1 in A. cerana cerana and surprisingly found that knockdown of the these four genes enhanced the enzymatic activities of CAT and POD; the metabolite contents of hydrogen peroxide, carbonyls, and ascorbate; and the ratios of GSH/GSSG and NADP(+)/NADPH. In addition, we also analyzed the transcripts of other antioxidant genes and found that some were upregulated and others were downregulated, revealing that the upregulated genes may be involved in compensating for the knockdown of AccGrx1, AccGrx2, AccTpx-3, and AccTrx1. Taken together, these results suggest that AccGrx1, AccGrx2, AccTpx-3, and AccTrx1 may play critical roles in antioxidant defense.
Collapse
Affiliation(s)
- Pengbo Yao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xiaobo Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Yan Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Feng Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Yuanying Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
32
|
Yao P, Hao L, Wang F, Chen X, Yan Y, Guo X, Xu B. Molecular cloning, expression and antioxidant characterisation of a typical thioredoxin gene (AccTrx2) in Apis cerana cerana. Gene 2013; 527:33-41. [PMID: 23747404 DOI: 10.1016/j.gene.2013.05.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 11/26/2022]
Abstract
Thioredoxins (Trxs) are a family of small, highly conserved and ubiquitous proteins that are involved in protecting organisms against toxic reactive oxygen species (ROS). In this study, a typical thioredoxin 2 gene was isolated from Apis cerana cerana, AccTrx2. The full-length cDNA sequence of AccTrx2 was composed of 407 bp containing a 318 bp open reading frame (ORF) that encodes a predicted protein of 105 amino acids, 11.974 kDa and an isoelectric point of 4.45. Expression profile of AccTrx2 as determined by a quantitative real-time PCR (qRT-PCR) analysis was higher in brain than in other tissues, with its highest transcript occurring on the 15day post-emergence adult and upregulated by such abiotic stresses as 4 °C, 16 °C, 25 °C, H2O2, cyhalothrin, acaricide, paraquat, phoxime and mercury (HgCl2) treatments. However, AccTrx2 was slightly repressed when exposed to 42 °C treatment. Characterisation of the recombinant protein showed that the purified AccTrx2 had insulin disulfide reductase activity and could protect DNA from ROS damage. These results indicate that AccTrx2 functions as an antioxidant that plays an important role in response to oxidative stress.
Collapse
Affiliation(s)
- Pengbo Yao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | | | | | | | | | | | | |
Collapse
|