1
|
Weber NH, Mackie JC, Bolam J, Lucas JA, Stockenhuber M, Kennedy EM. Thermal decomposition of atrazine and its toxic products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1448-1457. [PMID: 40289644 DOI: 10.1039/d4em00751d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Atrazine (ATZ) is one of the most widely used herbicides and is highly scrutinized due to its environmental impact. Given its extensive use, ATZ is likely to be exposed to high-temperature conditions such as those encountered during wildfires, incineration, or thermal desorption processes. However, there are limited experimental data on the thermal decomposition of ATZ. The present study investigates the decomposition of ATZ in a flow reactor constructed of α-alumina at temperatures between 400 and 800 °C. At temperatures above 400 °C, thermal decomposition was observed to occur and the formation of HCl and several hazardous chemicals, including hydrogen cyanide and cyanoacetylene were observed during the thermal decomposition of ATZ. Quantum chemical calculations were also performed to elucidate the decomposition pathways and determine the relevant reaction rates. These findings provide crucial insights into the risks associated with exposing ATZ to high temperatures and the potential release of harmful gases from its thermal decomposition.
Collapse
Affiliation(s)
- Nathan H Weber
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - John C Mackie
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Justin Bolam
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - John A Lucas
- Veolia Australia and New Zealand, 324 St Kilda Road, Southbank, VIC. 3004, Australia
- Department of Chemical and Biological Engineering, Monash University, VIC 3800, Australia
| | - Michael Stockenhuber
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Eric M Kennedy
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
2
|
Hu X, Xu Z, Xu J, Ma G, Pan Y, Cai M, Lin Z, Ji T, Wang K. Impact of Atrazine on Sucrose Sensitivity in Honey Bees. INSECTS 2025; 16:491. [PMID: 40429204 PMCID: PMC12112258 DOI: 10.3390/insects16050491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
Honey bees (Apis mellifera) are essential pollinators, responsible for the pollination of over 80% of crops and flowering plants globally. However, there is concern that the extensive use of pesticides, particularly atrazine, can harm pollinators. Despite the widespread use of atrazine, the sublethal effects on honey bees remain unclear. This study investigated the effects of atrazine on honey bee sucrose sensitivity and clarified the underlying molecular mechanisms using transcriptomic analyses. Atrazine exposure reduced the sucrose sensitivity of honey bees substantially, likely through the inhibition of functional genes associated with cognition in the brain. Genes related to neurodegenerative diseases and behavior were differentially expressed in response to atrazine. These findings provide novel insights into the neurophysiological and behavioral effects of atrazine on honey bees, contributing to a better understanding of pesticide risks and informing future environmental regulations.
Collapse
Affiliation(s)
- Xiexin Hu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China;
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zixuan Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiachen Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guiyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yiren Pan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minqi Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zheguang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kang Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China;
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Oliveira WDL, Mota TFM, da Silva AP, Oliveira RDDL, Comelli CL, Orlandini ND, Zimmer DF, de Oliveira EC, Ghisi NDC. Does the atrazine increase animal mortality: Unraveling through a meta-analytic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175553. [PMID: 39153636 DOI: 10.1016/j.scitotenv.2024.175553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Atrazine is one of the most used herbicides in the world, although it is banned in several countries. Pollution of terrestrial and aquatic ecosystems represents a threat to non-target organisms, with various damages already reported in different species. However, there is controversy in studies on atrazine. The question of whether atrazine increases animal mortality is not yet clearly resolved. In this context, this study aimed to carry out a meta-analytic review, focusing on studies on environmental concentrations of the herbicide atrazine to evaluate its lethal effects on various animal species. We identified and analyzed 107 datasets through a selection process that used the Scopus, PubMed, and Web of Science (WoS) databases. A significant increase in the mortality rate of animals exposed to environmental concentrations of atrazine was observed. Nematodes, amphibians, molluscs, insects, and fish showed increased mortality after exposure to atrazine. Animals in the larval and juvenile stages showed greater susceptibility when exposed to different concentrations of atrazine. Furthermore, both commercial and pure formulations resulted in high mortality rates for exposed animals. Atrazine and other pesticides had a synergistic effect, increasing the risk of mortality in animals. There are still many gaps to be filled, and this study can serve as a basis for future regulations involving atrazine.
Collapse
Affiliation(s)
- Wesley de Lima Oliveira
- Graduate Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Thais Fernandes Mendonça Mota
- Universidade Estadual do Paraná - Unespar e Rede Estadual de Educação Básica do Paraná, Brazil; Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Ana Paula da Silva
- Programa de Pós-Graduação em Agroecossistemas (PPGSIS), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil; Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Rangel David de Lima Oliveira
- Pontifícia Universidade Católica de Campinas, Rua Professor Dr. Euryclides de Jesus Zerbini, 1516 - Parque Rural Fazenda Santa Cândida, Campinas, SP 13087-571, Brazil
| | - Camila Luiza Comelli
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | | | - Douglas Fernando Zimmer
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Elton Celton de Oliveira
- Programa de Pós-Graduação em Agroecossistemas (PPGSIS), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil.
| |
Collapse
|
4
|
AbuQamar SF, El-Saadony MT, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mathew BT, Aljasmi AN, Alhammadi HS, Salem HM, Abd El-Mageed TA, Zaghloul RA, Mosa WFA, Ahmed AE, Elrys AS, Saad AM, Alsaeed FA, El-Tarabily KA. Ecological impacts and management strategies of pesticide pollution on aquatic life and human beings. MARINE POLLUTION BULLETIN 2024; 206:116613. [PMID: 39053258 DOI: 10.1016/j.marpolbul.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
Pesticide contamination has become a global concern. Pesticides can sorb onto suspended particles and deposit into the sedimentary layers of aquatic environments, resulting in ecosystem degradation, pollution, and diseases. Pesticides impact the behavior of aquatic environments by contaminating organic matter in water, which serves as the primary food source for aquatic food webs. Pesticide residues can increase ammonium, nitrite, nitrate, and sulfate in aquatic systems; thus, threatening ecological environment and human health. Several physical, chemical, and biological methodologies have been implemented to effectively remove pesticide traces from aquatic environments. The present review highlights the potential consequences of pesticide exposure on fish and humans, focusing on the (epi)genetic alterations affecting growth, behavior, and immune system. Mitigation strategies (e.g., bioremediation) to prevent/minimize the detrimental impacts of pesticides are also discussed. This review aims to shed light on the awareness in reducing the risk of water pollution for safe and sustainable pesticide management.
Collapse
Affiliation(s)
- Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar S Alkafaas
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara S Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menoufia University, Shebin El Kom, Menofia, 32511, Egypt; Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Betty T Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Amal N Aljasmi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Hajar S Alhammadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Taia A Abd El-Mageed
- Department of Soil and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Fatimah A Alsaeed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
5
|
Deng S, Chen C, Wang Y, Liu S, Zhao J, Cao B, Jiang D, Jiang Z, Zhang Y. Advances in understanding and mitigating Atrazine's environmental and health impact: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121530. [PMID: 38905799 DOI: 10.1016/j.jenvman.2024.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Atrazine is a widely used herbicide in agriculture, and it has garnered significant attention because of its potential risks to the environment and human health. The extensive utilization of atrazine, alongside its persistence in water and soil, underscores the critical need to develop safe and efficient removal strategies. This comprehensive review aims to spotlight atrazine's potential impact on ecosystems and public health, particularly its enduring presence in soil, water, and plants. As a known toxic endocrine disruptor, atrazine poses environmental and health risks. The review navigates through innovative removal techniques across soil and water environments, elucidating microbial degradation, phytoremediation, and advanced methodologies such as electrokinetic-assisted phytoremediation (EKPR) and photocatalysis. The review notably emphasizes the complex process of atrazine degradation and ongoing scientific efforts to address this, recognizing its potential risks to both the environment and human health.
Collapse
Affiliation(s)
- Shijie Deng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cairu Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuhang Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanqi Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiaying Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Duo Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
6
|
Humann-Guilleminot S, Fuentes A, Maria A, Couzi P, Siaussat D. Cadmium and phthalate impacts developmental growth and mortality of Spodoptera littoralis, but not reproductive success. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116605. [PMID: 38936052 DOI: 10.1016/j.ecoenv.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Our environment is increasingly polluted with various molecules, some of which are considered endocrine disruptors. Metals and phthalates, originating from industrial activities, agricultural practices, or consumer products, are prominent examples of such pollutants. We experimentally investigated the impacts of the heavy metal cadmium and the phthalate DEHP on the moth Spodoptera littoralis. More specifically, larvae were reared in laboratory conditions, where they were exposed to diets contaminated with either two doses of cadmium at concentrations of 62.5 µg/g or 125 µg/g, two doses of DEHP at 100 ng/g and 10 µg/g, or a combination of both low and high doses of the two compounds, with a control group for comparison. Our findings indicate that cadmium delays the developmental transition from larva to adult. Notably, the combination of cadmium and DEHP exacerbated this delay, highlighting a synergistic effect. In contrast, DEHP alone did not affect larval development. Additionally, we observed that cadmium exposure, both alone and in combination with DEHP, led to a lower mass at all larval stages. However, cadmium-exposed individuals that reached adulthood eventually reached a similar mass to those in other groups. Interestingly, while our results did not show any effect of the treatments on hatching success, there was a higher adult mortality rate in the cadmium-treated groups. This suggests that while moths may prioritize reproductive success, their survival at the adult stage is compromised by cadmium exposure. In conclusion, our study demonstrates the impact of cadmium on the development, mass, and adult survival of moths, and reveals synergistic effects when combined with DEHP. These results confirm cadmium as an endocrine disruptor, even at low doses. These insights underscore the importance of understanding the toxicological effects of low doses of pollutants like cadmium and DEHP, both individually and in combination.
Collapse
Affiliation(s)
- Ségolène Humann-Guilleminot
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Annabelle Fuentes
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Annick Maria
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Philippe Couzi
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France.
| |
Collapse
|
7
|
de Souza AR, Bernardes RC, Barbosa WF, Dos Santos Araújo R, Martins GF, Lima MAP. A mixture of mesotrione and atrazine harms adults and larvae of the predatory wasp Polistes satan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171526. [PMID: 38458447 DOI: 10.1016/j.scitotenv.2024.171526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Herbicides have been intensively used for weed control, raising concerns about their potentially adverse effects on non-target organisms. Research on the effects of these common agrochemicals on beneficial insects and the ecosystem services they provide (e.g., predation and pollination) is scarce. Therefore, we tested whether a commercial formulation comprising a mixture of mesotrione and atrazine was detrimental to adult females and larvae of the Neotropical predatory social wasp Polistes satan, which is an effective natural enemy of crop pests. Wasps were individually fed syrups contaminated with different concentrations of the herbicide above and below the maximum label rate (MLR = 12 mL/L). Survival was assessed. The locomotor activity, immune response, and midgut morphology of adults as well as the immune response of the larvae were also studied. Herbicide concentrations far above the MLR (12, 40, and 100 times) caused adult mortality, whereas lower concentrations (0.5, 1, and 6 times) did not. Herbicide exposure at 0.5 to 12 times the MLR increased adult activity. Adult exposure at 0.1 or 0.5 times the MLR did not affect melanotic encapsulation of foreign bodies but led to changes in the morphology of the midgut epithelium and peritrophic matrix. In larvae, the ingestion of herbicide at 0.1 or 0.2 times the MLR (corresponding to 9.6 and 19.2 ng of herbicide per individual) did not cause mortality but decreased their melanization-encapsulation response. Increased locomotor activity in herbicide-exposed adults can affect their foraging activity. The altered midgut morphology of adults coupled with the decreased immune response in larvae caused by herbicide exposure at realistic concentrations can increase the susceptibility of wasps to infections. Therefore, herbicides are toxic to predatory wasps.
Collapse
Affiliation(s)
- André Rodrigues de Souza
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | - Renan Dos Santos Araújo
- Istituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil
| | | | | |
Collapse
|
8
|
de Oliveira-Júnior FC, Oliveira ACPD, Pansa CC, Molica LR, Moraes KCM. Drosophila melanogaster as a Biotechnological Tool to Investigate the Close Connection Between Fatty Diseases and Pesticides. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2024; 67. [DOI: 10.1590/1678-4324-2024230091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Wang K, Cai M, Sun J, Chen H, Lin Z, Wang Z, Niu Q, Ji T. Atrazine exposure can dysregulate the immune system and increase the susceptibility against pathogens in honeybees in a dose-dependent manner. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131179. [PMID: 36948121 DOI: 10.1016/j.jhazmat.2023.131179] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Recently, concerns regarding the impact of agrochemical pesticides on non-target organisms have increased. The effect of atrazine, the second-most widely used herbicide in commercial farming globally, on honeybees remains poorly understood. Here, we evaluated how atrazine impacts the survival of honeybees and pollen and sucrose consumption, investigating the morphology and mRNA expression levels of midgut tissue, along with bacterial composition (relative abundance) and load (absolute abundance) in the whole gut. Atrazine did not affect mortality, but high exposure (37.3 mg/L) reduced pollen and sucrose consumption, resulting in peritrophic membrane dysplasia. Sodium channels and chitin synthesis were considered potential atrazine targets, with the expression of various genes related to lipid metabolism, detoxification, immunity, and chemosensory activity being inhibited after atrazine exposure. Importantly, 37.3 mg/L atrazine exposure substantially altered the composition and size of the gut microbial community, clearly reducing both the absolute and relative abundance of three core gram-positive taxa, Lactobacillus Firm-5, Lactobacillus Firm-4, and Bifidobacterium asteroides. With altered microbiome composition and a weakened immune system following atrazine exposure, honeybees became more susceptible to infection by the opportunistic pathogen Serratia marcescens. Thus, considering its scale of use, atrazine could negatively impact honeybee populations worldwide, which may adversely affect global food security.
Collapse
Affiliation(s)
- Kang Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Minqi Cai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Jie Sun
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Heng Chen
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Zheguang Lin
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Zhi Wang
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Qingsheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China.
| |
Collapse
|
10
|
Ikeji CN, Adedara IA, Farombi EO. Dietary myricetin assuages atrazine-mediated hypothalamic-pituitary-testicular axis dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15655-15670. [PMID: 36169847 DOI: 10.1007/s11356-022-23033-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATZ) exposure is associated with reproductive dysfunction in both animals and humans. Myricetin, a flavonoid compound, is well documented for its numerous pharmacological activities. However, the impact of myricetin on the atrazine-mediated dysfunctional hypothalamic-pituitary-testicular axis is not known. This study investigated the role of myricetin on the atrazine-induced alterations in the male reproductive axis in rats orally gavaged with ATZ alone (50 mg/kg) or co-treated with ATZ + myricetin (MYR) at 5, 10, and 20 mg/kg for 30 consecutive days. Myricetin assuaged ATZ-induced reductions in intra-testicular testosterone, serum follicle-stimulating hormone, luteinizing hormone, and testosterone, coupled with decreases in alkaline phosphatase, acid phosphatase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase activities. Also, MYR treatment improved epididymal sperm count and motility and decreased sperm defects in ATZ-treated rats. Testicular sperm number, daily sperm production, and sperm viability remained unchanged in all treatment groups. Administration of MYR abated ATZ-mediated depletion in antioxidant status, an increase in myeloperoxidase activity, nitric oxide, hydrogen peroxide, malondialdehyde levels, and reactive oxygen and nitrogen species, as well as the histological lesions in the hypothalamus, epididymis, and testes of treated animals. All in all, MYR mitigated atrazine-mediated functional changes in the reproductive axis via anti-inflammatory and antioxidant mechanisms in atrazine-exposed rats. Dietary intake of MYR could be a worthy chemoprotective approach against reproductive dysfunction related to ATZ exposure.
Collapse
Affiliation(s)
- Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
11
|
Mechanism and Kinetic Analysis of the Degradation of Atrazine by O3/H2O2. WATER 2022. [DOI: 10.3390/w14091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In phosphate buffer, the degradation of ATZ by ozone/(O3/H2O2) under various circumstance was explored and the degradation mechanism and dynamics were probed. The findings revealed that when maintaining the reaction temperature at 25 °C, the H2O2 concentration and the O3 concentration were 20 mol/L and 20 mol/L, respectively. Moreover, the degradation rate of 5 mol/L ATZ under the influence of O3/H2O2 was 92.59% in phosphate buffer at pH7. The mechanism analysis showed that HO• and O3 underwent co-oxidized degradation and that the HO• and O3 oxidation degradation ratios were close to 1:1 under acidic conditions. Furthermore, HO• oxidative degradation dominated the ATZ degradation process. The kinetics analysis showed that the ATZ kinetics of O3/H2O2 degradation were more compatible with quasi-second-order reaction kinetics under different temperatures, pH values, and H2O2 concentrations.
Collapse
|
12
|
Men TT, Phien HH, Tu Ai TT, Van Ay N, Kim Hue NT, Khang DT, Binh TD. The insecticidal capacity of ethanol extract from Cascabela peruviana (L.) Lippold against fruit fly. Heliyon 2022; 8:e09313. [PMID: 35497027 PMCID: PMC9039844 DOI: 10.1016/j.heliyon.2022.e09313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
Cascabela peruviana (L.) Lippold (C. peruviana) has been extensively used for its antifungal and antibacterial properties. However, its role in anti-insect is still under investigation. To investigate the ability of the ethanol extract of C. peruviana against insects, we used the fruit fly (Drosophila melanogaster) as a model to gain more insight into the toxic effects of this extract. We found that the ethanol extract from the stem and leaves of C. peruviana was effective against insects and contained polyphenol and flavonoid compounds. C. peruviana could induce mortality of 2nd-instar larvae and reduce growth and reproduction of fruit flies. Interestingly, the toxicity of C. peruviana extract has been remained to affect the development of the next generation of fruit flies. The locomotor activity and feeding ability of the F1 generation of this insect were significantly reduced by C. peruviana. In addition, flavonoids and polyphenols, as well as saponins and tannins were detected in the ethanol extract of C. peruviana. We assume that the ability of the extract of C. peruviana to control insects may be related to the presence of high levels of these compounds. The findings highlighted that the extract from the leaves of Cascabela peruviana has the potential to be used as an insecticide.
Collapse
Affiliation(s)
- Tran Thanh Men
- Department of Biology, College of Natural Sciences, Can Tho University, Cantho City 900000, Viet Nam
| | - Huynh Hong Phien
- Department of Biology, College of Natural Sciences, Can Tho University, Cantho City 900000, Viet Nam
| | - Tran Thi Tu Ai
- Department of Biology, College of Natural Sciences, Can Tho University, Cantho City 900000, Viet Nam
| | - Nguyen Van Ay
- Department of Plant Physiology and Biochemistry, College of Agriculture, Can Tho University, Cantho City, 94000, Viet Nam
| | - Nguyen Thi Kim Hue
- Department of Biology, College of Natural Sciences, Can Tho University, Cantho City 900000, Viet Nam
| | - Do Tan Khang
- Department of Molecular Biotechnology, Biotechnology Research and Development Institute, Can Tho University, Cantho City, 94000, Viet Nam
| | - Tran Duy Binh
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- Corresponding author.
| |
Collapse
|
13
|
Beribaka M, Jelić M, Tanasković M, Lazić C, Stamenković-Radak M. Life History Traits in Two Drosophila Species Differently Affected by Microbiota Diversity under Lead Exposure. INSECTS 2021; 12:insects12121122. [PMID: 34940211 PMCID: PMC8708062 DOI: 10.3390/insects12121122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary Microbiota have a significant functional role in the life of the host, including immunity, lifespan and reproduction. Drosophila species are attractive model organisms for investigating microbiota diversity from different aspects due to their simple gut microbiota, short generation time and high fertility. Considering such an important role of the microbiota in the life of Drosophila, we investigated the extent to which lead (Pb), as one of the most abundant heavy metals in the environment, affects the microbiota and the fitness of this insect host. The results indicate that different factors, such as population origin and sex, may affect individual traits differently and this could be species-specific. In addition, there are members of microbiota that help the host to overcome environmental stress and they could play a key role in reducing the fitness cost in such situations. Studying the influence of microbiota on the adaptive response to heavy metals and the potential implications on overall host fitness is of great pertinence. Abstract Life history traits determine the persistence and reproduction of each species. Factors that can affect life history traits are numerous and can be of different origin. We investigated the influence of population origin and heavy metal exposure on microbiota diversity and two life history traits, egg-to-adult viability and developmental time, in Drosophila melanogaster and Drosophila subobscura, grown in the laboratory on a lead (II) acetate-saturated substrate. We used 24 samples, 8 larval and 16 adult samples (two species × two substrates × two populations × two sexes). The composition of microbiota was determined by sequencing (NGS) of the V3–V4 variable regions of the 16S rRNA gene. The population origin showed a significant influence on life history traits, though each trait in the two species was affected differentially. Reduced viability in D. melanogaster could be a cost of fast development, decrease in Lactobacillus abundance and the presence of Wolbachia. The heavy metal exposure in D. subobscura caused shifts in developmental time but maintained the egg-to-adult viability at a similar level. Microbiota diversity indicated that the Komagataeibacter could be a valuable member of D. subobscura microbiota in overcoming the environmental stress. Research on the impact of microbiota on the adaptive response to heavy metals and consequently the potential tradeoffs among different life history traits is of great importance in evolutionary research.
Collapse
Affiliation(s)
- Mirjana Beribaka
- Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34A, 75400 Zvornik, Bosnia and Herzegovina;
- Correspondence:
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.J.); (M.S.-R.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Cvijeta Lazić
- Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34A, 75400 Zvornik, Bosnia and Herzegovina;
| | - Marina Stamenković-Radak
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.J.); (M.S.-R.)
| |
Collapse
|
14
|
Zhang Q, Hao L, Hong Y. Detrimental effects induced by diisononyl phthalate on development and behavior of Drosophila larva and potential mechanisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108967. [PMID: 33412299 DOI: 10.1016/j.cbpc.2020.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
Diisononyl phthalate (DINP) as one of the most commonly used phthalates, has been found in various environmental samples and is considered to have potential risks to ecosystem. Till now, DINP has no clear effect consensus on insects from development to behavior and even mechanisms. Here, Drosophila melanogaster was selected as model organisms and the toxic effects of DINP (0.1%, 0.2%, 0.5% and 1.0%) (v/v) on its metamorphosis, crawling behavior, intestinal cells and cellular redox balance were investigated. During metamorphosis process, lower hatching rate, longer development time, lighter body weight and malformation were observed at high concentration groups. The crawling ability of larvae was severely inhibited by DINP and the movement distance was drastically reduced. DINP could cause severe damage to the larval intestinal cells in the dose-dependent and time-dependent manners. DINP was found to induce redox imbalance with activities of two important antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)) increasing, and reactive oxygen species (ROS) level fluctuation in larvae. Our findings provide theoretical basis and data support for scientific management of DINP to reduce ecological risk.
Collapse
Affiliation(s)
- Qing Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lichong Hao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
15
|
Adedara IA, Godswill UAS, Mike MA, Afolabi BA, Amorha CC, Sule J, Rocha JBT, Farombi EO. Chronic ciprofloxacin and atrazine co-exposure aggravates locomotor and exploratory deficits in non-target detritivore speckled cockroach (Nauphoeta cinerea). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25680-25691. [PMID: 33469791 DOI: 10.1007/s11356-021-12460-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
The global detection of ciprofloxacin and atrazine in soil is linked to intensive anthropogenic activities in agriculture and inadvertent discharge of industrial wastes to the environment. Nauphoeta cinerea is a terrestrial insect with cosmopolitan distribution and great environmental function. The current study probed the neurobehavioral and cellular responses of N. cinerea singly and jointly exposed to atrazine (1.0 and 0.5 μg g-1 feed) and ciprofloxacin (0.5 and 0.25 μg g-1 feed) for 63 days. Results demonstrated that the reductions in the body rotation, maximum speed, turn angle, path efficiency, distance traveled, episodes, and time of mobility induced by atrazine or ciprofloxacin per se was exacerbated in the co-exposure group. The altered exploratory and locomotor in insects singly and jointly exposed to ciprofloxacin and atrazine were verified by track plots and heat maps. Furthermore, we observed a decrease in acetylcholinesterase and anti-oxidative enzyme activities with concomitant elevation in the levels of lipid peroxidation, nitric oxide, and reactive oxygen and nitrogen species were significantly intensified in the midgut, hemolymph, and head of insects co-exposed to ciprofloxacin and atrazine. In conclusion, exposure to binary mixtures of ciprofloxacin and atrazine elicited greater locomotor and exploratory deficits than upon exposure to the individual compound by inhibiting acetylcholinesterase activity and induction of oxido-inflammatory stress responses in the insects. N. cinerea may be a usable model insect for checking contaminants of ecological risks.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Umin-Awaji S Godswill
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Miriam A Mike
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Chizoba C Amorha
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joseph Sule
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
16
|
Araújo RDS, Bernardes RC, Martins GF. A mixture containing the herbicides Mesotrione and Atrazine imposes toxicological risks on workers of Partamona helleri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142980. [PMID: 33121769 DOI: 10.1016/j.scitotenv.2020.142980] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
A mixture of Mesotrione and Atrazine (Calaris®) has been reported as an improvement of the atrazine herbicides, which are agrochemicals used for weed control. However, its possible harmful effects on non-target organisms, including pollinators, needs to be better understood. In this work, the effects of the mix of herbicides on food consumption, behaviour (walking distance, and meandering), and the morphology of the midgut of the stingless bee Partamona helleri were studied. Foragers were orally exposed to different concentrations of the mix. The concentrations leading to 10% and 50% mortality (LC10 and LC50, respectively) were estimated and used in the analysis of behaviour and morphology. The ingestion of contaminated diets (50% aqueous sucrose solution + mix) led to a reduction in food consumption by the bees when compared to the control, bees fed a non-contaminated diet (sucrose solution). Ingestion of the LC50 diet reduced locomotor activity, increased meandering, induced the degradation of the epithelium and peritrophic matrix, and also changed the number of cells positive for signalling-pathway proteins in the midgut. These results show the potential toxicological effects and environmental impacts of the mix of herbicides in beneficial insects, including a native bee.
Collapse
|
17
|
Zhang Q, Hao L, Hong Y. Exploring the multilevel effects of triclosan from development, reproduction to behavior using Drosophila melanogaster. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144170. [PMID: 33360465 DOI: 10.1016/j.scitotenv.2020.144170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS) is widely used as an antibacterial agent, but its residue in the environment poses a great threat. In this study, Drosophila melanogaster were treated with series concentrations of TCS and the effects on development, behavior, reproduction, and oxidative stress indicators were investigated. The results showed that high concentrations of TCS severely interfered with the metamorphosis, resulting in lower hatching rate and longer development time. The hatching rate was only 75.00% ± 4.08% in 0.80 mg/mL TCS group. TCS also showed dose-dependent damage to the fertility of flies, causing ovarian defects and decreased the number of offspring. Almost no offspring adults hatched when exposed to high concentrations of TCS (0.50 and 0.80 mg/mL), and the hatching rate was 0% in 0.80 mg/mL TCS group. Larvae crawling, adult climbing and anti-starvation ability were also affected to varying degrees and showed hormesis. TCS could damage larval intestinal cells in a dose-dependent manner, and injury was lightened with culture time prolonging to 30 h. It is noteworthy that TCS caused redox imbalance with an increase on catalase (CAT) activity and decrease on reactive oxygen species (ROS) level. Our results conclude that TCS elicits multiple impacts on Drosophila and its rational use should be strengthened.
Collapse
Affiliation(s)
- Qing Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lichong Hao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Le Navenant A, Brouchoud C, Capowiez Y, Rault M, Suchail S. How lasting are the effects of pesticides on earwigs? A study based on energy metabolism, body weight and morphometry in two generations of Forficula auricularia from apple orchards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143604. [PMID: 33246715 DOI: 10.1016/j.scitotenv.2020.143604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Widespread use of pesticides to control pests is the dominant system in conventional apple orchards. To avoid adverse side effects, there is a growing interest in promoting alternative methods including biological control based on the use of natural enemies. The European earwig Forficula auricularia L. (Dermaptera: Forficuidae) is an effective predator in apple orchards. Pesticide pressure has been shown to divert energy resources which could have a negative impact on life history traits. In this study we assessed (i) whether variations in pesticide exposure could differentially impact energy reserves, body weight and morphometric parameters of F. auricularia, and (ii) whether these effects persist into the next generation reared under optimal conditions. Individuals from the first generation were collected in late October from organic, IPM and conventional orchards. The next generation was obtained under a rearing program, in the absence of pesticide exposure. Earwigs collected from conventional orchards exhibited lower values for all morphometric parameters compared to those collected in organic orchards. However, a relaxed period without pesticide exposure (in autumn) appears to have allowed the females to recover their energy reserves to ensure reproduction and maternal care. Glycogen contents were the reserves that were more easily restored. However, probably due to the rearing conditions (food ad libitum), all the earwigs from the second generation exhibited higher body weights and energy reserves than their parents.
Collapse
Affiliation(s)
- Adrien Le Navenant
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916 Avignon, France
| | - Corinne Brouchoud
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916 Avignon, France
| | - Yvan Capowiez
- INRAE, UMR 1114 EMMAH Domaine Saint Paul, 84914 Avignon cedex 09, France
| | - Magali Rault
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916 Avignon, France.
| | - Séverine Suchail
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916 Avignon, France
| |
Collapse
|
19
|
Yin J, Hong X, Ma L, Liu R, Bu Y. Non-targeted metabolomic profiling of atrazine in Caenorhabditis elegans using UHPLC-QE Orbitrap/MS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111170. [PMID: 32861007 DOI: 10.1016/j.ecoenv.2020.111170] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of the herbicides Atrazine (ATR) has been raised attention due to its ubiquitous occurrence in the environment. As an endocrine disruptor, ATR causes reproductive, immune, nervous system toxicity in biota. In this study, we aimed to investigate metabolic profile characteristics and potential metabolic biomarker that reflects specific damage in toxic effect after ATR exposure. Hence, a metabolomics study was performed to determine the significantly affected metabolites and the reproduction and locomotion of C. elegans were investigated. Mediation analysis was used to evaluate the mediating effect of metabolites on association between ATR exposure and toxic effect. ATR (≥0.04 mg/L) caused the significant dose dependent reduction of brood size and locomotion behavior, however, the body length and width were significantly decreased only in 40 mg/L group. These results suggesting that brood size, head thrashes and body bends are more sensitive indictor to assessment ATR toxicity in C. elegans. Meanwhile, metabolomics analysis revealed that ATR exposure can induce metabolic profiles significant alterations in C. elegans. We found that 9 metabolites significantly increased and 18 metabolites significantly decreased, such as phosphatidylcholine, GMP, CDP-choline, neopterin etc. Those alteration of metabolites were mainly involved in the pathways: glycerophospholipid metabolism, glycolysis/gluconeogenesis, folate biosynthesis, glycine, serine and threoninemetabolism, pyrimidine and purine metabolism. Overall, these changes are signs of possible oxidative stress and ATP synthesis disruption modification. Mediation analysis showed a significant indirect effect of ATR exposure on brood size, via 7,8-dihydroneopterin 2',3'-cyclic-p, and phosphatidylcholine might mediate association between ATR exposure and body bends, suggesting that 7,8-dihydroneopterin 2',3'-cyclic-p and phosphatidylcholine might be potentially specificity marker for brood size and body bend respectively. This preliminary analysis investigates metabolic characteristics in C. elegans after ATR exposure, helping to understand the pathways involved in the response to ATR exposure and provide potential biomarkers for the safety evaluation of ATR.
Collapse
Affiliation(s)
- Jiechen Yin
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingyi Ma
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
20
|
Zhang Q, Hao LC, Hong Y. Exposure evaluation of diisononyl phthalate in the adults of Drosophila melanogaster: Potential risks in fertility, lifespan, behavior, and modes of action. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108847. [PMID: 32781294 DOI: 10.1016/j.cbpc.2020.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 11/19/2022]
Abstract
Diisononyl phthalate (DINP) as a phthalate plasticizer is widely used in daily life and production, which shows endocrine disruption effects and has several adverse effects on the normal physiological function. Here, the effects of DINP (0.1%, 0.2%, 0.5%, and 1.0%) (v/v) on the fertility, lifespan, climbing behavior, anti-starvation ability of Drosophila melanogaster and the potential modes of action were investigated. The results showed that DINP impaired fertility in a dose-dependent manner and smaller ovarian volume, lower hatching rate, and fewer offspring was observed at higher concentrations. The effect of DINP on the lifespan showed gender-specific, and mortality was increased after exposure above 0.2% DINP. The climbing ability increased at 0.1% DINP compared with the vehicle group, while it manifested a dose-dependent decrease at higher concentrations. The anti-starvation ability exhibited hormesis after short-term culture and reduced as culture time extending. By measuring the redox status (catalase (CAT) and reactive oxygen species (ROS)) of adult flies after two exposure methods, it was found that DINP induced redox instability, which may explain the above effects at the molecular level. This study provides data to support a comprehensive analysis of DINP potential toxicity and to guide its rational use and management better.
Collapse
Affiliation(s)
- Qing Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li-Chong Hao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Chaudhuri A, Johnson R, Rakshit K, Bednářová A, Lackey K, Chakraborty SS, Krishnan N, Chaudhuri A. Exposure to Spectracide® causes behavioral deficits in Drosophila melanogaster: Insights from locomotor analysis and molecular modeling. CHEMOSPHERE 2020; 248:126037. [PMID: 32018111 DOI: 10.1016/j.chemosphere.2020.126037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
This study was focused on gaining insights into the mechanism by which the herbicide- Spectracide®, induces oxidative stress and alters behavior in Drosophila melanogaster. Exposure to Spectracide® (50%) significantly (p < 0.05) reduced the negative geotaxis response, jumping behavior and dampened locomotor activity rhythm in adult flies compared to non-exposed flies. Protein carbonyl levels indicative of oxidative damage increased significantly coupled with down-regulation of Sniffer gene expression encoding carbonyl reductase (CR) and its activity in Spectracide®-exposed flies. In silico modeling analysis revealed that the active ingredients of Spectracide® (atrazine, diquat dibromide, fluazifop-p-butyl, and dicamba) have significant binding affinity to the active site of CR enzyme, with atrazine having comparatively greater affinity. Our results suggest a mechanism by which ingredients in Spectracide® induce oxidative damage by competitive binding to the active site of a protective enzyme and impair its ability to prevent damage to proteins thereby leading to deficits in locomotor behavior in Drosophila.
Collapse
Affiliation(s)
- Ankur Chaudhuri
- Department of Microbiology, West Bengal State University, Barasat, Kolkata, 126, India
| | | | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrea Bednářová
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, MS, 39762, USA; Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic
| | - Kimberly Lackey
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | | | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, MS, 39762, USA.
| | - Anathbandhu Chaudhuri
- Biology Department, Stillman College, Tuscaloosa, AL, 35404, USA; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
22
|
Lamb SD, Chia JHZ, Johnson SL. Paternal exposure to a common herbicide alters the behavior and serotonergic system of zebrafish offspring. PLoS One 2020; 15:e0228357. [PMID: 32275662 PMCID: PMC7147785 DOI: 10.1371/journal.pone.0228357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Increasingly, studies are revealing that endocrine disrupting chemicals (EDCs) can alter animal behavior. Early life exposure to EDCs may permanently alter phenotypes through to adulthood. In addition, the effects of EDCs may not be isolated to a single generation − offspring may indirectly be impacted, via non-genetic processes. Here, we analyzed the effects of paternal atrazine exposure on behavioral traits (distance moved, exploration, bottom-dwelling time, latency to enter the top zone, and interaction with a mirror) and whole-brain mRNA of genes involved in the serotonergic system regulation (slc6a4a, slc6a4b, htr1Aa, htr1B, htr2B) of zebrafish (Danio rerio). F0 male zebraFIsh were exposed to atrazine at 0.3, 3 or 30 part per billion (ppb) during early juvenile development, the behavior of F1 progeny was tested at adulthood, and the effect of 0.3 ppb atrazine treatment on mRNA transcription was quantified. Paternal exposure to atrazine significantly reduced interactions with a mirror (a proxy for aggression) and altered the latency to enter the top zone of a tank in unexposed F1 offspring. Bottom-dwelling time (a proxy for anxiety) also appeared to be somewhat affected, and activity (distance moved) was reduced in the context of aggression. slc6a4a and htr1Aa mRNA transcript levels were found to correlate positively with anxiety levels in controls, but we found that this relationship was disrupted in the 0.3 ppb atrazine treatment group. Overall, paternal atrazine exposure resulted in alterations across a variety of behavioral traits and showed signs of serotonergic system dysregulation, demonstrating intergenerational effects. Further research is needed to explore transgenerational effects on behavior and possible mechanisms underpinning behavioral effects.
Collapse
Affiliation(s)
- Simon D. Lamb
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (SDL); (SLJ)
| | - Jolyn H. Z. Chia
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
| | - Sheri L. Johnson
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (SDL); (SLJ)
| |
Collapse
|
23
|
Leão MB, Gonçalves DF, Miranda GM, da Paixão GMX, Dalla Corte CL. Toxicological evaluation of the herbicide Palace® in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1172-1185. [PMID: 31875774 DOI: 10.1080/15287394.2019.1709109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drosophila melanogaster is a suitable model for toxicological studies of environmental pollutants including pesticides, which are known to produce adverse effects on the ecosystem. The aim of the present study was to investigate the adverse influence of the pesticide Palace®, a mixture of 2,4-dichlorophenoxyacetic acid (2,4-D) and picloram, using D. melanogaster as a model organism. D. melanogaster larvae were exposed to 0.011%, 0.022%, 0.112%, 0.224%, and 1.12% of Palace® and development examined. Adult flies were treated with 0.224%, 1.12%, 2.24%, 11.2%, and 22.4% of Palace® and the following analyzed survival, locomotor behavior, acetylcholinesterase (AchE) activity, reactive oxygen species (ROS) production, total and non-protein thiol levels, and mitochondrial function. Data demonstrated that exposure of flies during larval stage to Palace® significantly affected development of larvae to the adult stage. In adults, treatment with Palace® resulted in dose-dependent progressive adverse effects on survival and behavior with males more sensitive than females. In both males and females, ROS production and AchE activity were not markedly affected by Palace®. However, total thiol levels increased in female heads treated with highest dilution of Palace®, while decreased levels of non-protein thiols were detected in heads of male flies following Palace® exposure. In females and males flies exposed to Palace® reduced mitochondrial oxygen consumption related to oxidative phosphorylation (OXPHOS) state, mitochondrial capacity of excess (E-P) and respiratory control ratio (RCR) was noted, indicating that the pesticide mixture altered mitochondrial complexes functionality with consequences on bioenergetics. In summary, Palace® exposure produced adverse effects on D. melanogaster affecting survival, development, behavior and mitochondrial function, which may exert ecotoxicological consequences which poses risks to different organisms in the ecosystem.
Collapse
Affiliation(s)
- Mayara B Leão
- Department of Biology, Universidade Federal do Pampa - Campus Caçapava do Sul, Caçapava do Sul, RS, Brazil
| | - Débora F Gonçalves
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela M Miranda
- Department of Biology, Universidade Federal do Pampa - Campus Caçapava do Sul, Caçapava do Sul, RS, Brazil
| | - Giovanna M X da Paixão
- Department of Biology, Universidade Federal do Pampa - Campus Caçapava do Sul, Caçapava do Sul, RS, Brazil
| | - Cristiane L Dalla Corte
- Department of Biology, Universidade Federal do Pampa - Campus Caçapava do Sul, Caçapava do Sul, RS, Brazil
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
24
|
Lovejoy PC, Fiumera AC. Effects of Dual Exposure to the Herbicides Atrazine and Paraquat on Adult Climbing Ability and Longevity in Drosophila melanogaster. INSECTS 2019; 10:E398. [PMID: 31717666 PMCID: PMC6920984 DOI: 10.3390/insects10110398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Anthropomorphic effects are changing the planet, and therefore, organisms are being exposed to many new biotic and abiotic stressors. Exposure to multiple stressors can affect organisms in ways that are different than the sum of their individual effects, and these interactions are often difficult to predict. Atrazine and paraquat are two of the most widely used herbicides in the United States, and are individually known to increase oxidative damage, affect dopaminergic functioning, reduce longevity, and alter motor ability in non-target organisms. We measured the effects of individual and combined exposure to low doses of atrazine and paraquat on climbing ability and longevity of Drosophila melanogaster. Atrazine and paraquat interact to affect D. melanogaster climbing ability and longevity in different ways. Atrazine appeared to have a weak mitigative effect against the decrease in climbing ability caused by paraquat. In contrast, combined exposure to atrazine and paraquat had detrimental synergistic effects on female longevity. Overall, this study shows that atrazine and paraquat can interact and that it is important to measure several traits when assessing the consequences of exposure to multiple stressors. Future studies should continue to assess the impacts of stressor interactions on organisms, as many combinations have never been examined.
Collapse
Affiliation(s)
| | - Anthony C. Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA;
| |
Collapse
|
25
|
Yoon DS, Park JC, Park HG, Lee JS, Han J. Effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105213. [PMID: 31200332 DOI: 10.1016/j.aquatox.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is a widely used pesticide which acts as an endocrine disruptor in various organisms. The aim of this study was to investigate adverse effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. In T. japonicus, no mortality was shown in response to atrazine up to 20 mg/L in acute toxicity assessment. In nauplii, retardation in the growth and prolonged molting and metamorphosis resulted under chronic exposure of atrazine at 20 mg/L. In addition, body sizes of T. japonicus nauplii were significantly decreased (P < 0.01 in length and P < 0.001 in width) in response to 20 mg/L of atrazine. Furthermore, atrazine induced oxidative stress by the generation of reactive oxygen species at all concentrations compared to the control in the nauplii. Also, significant increase in glutathione-S transferase activity was observed in adult T. japonicus at low concentration of atrazine. To understand effects of atrazine on ecdysteroid biosynthetic pathway-involved genes (e.g., neverland, CYP307E1, CYP306A1, CYP302A1, CYP3022A1 [CYP315A1], CYP314A1, and CYP18D1) were examined with mRNA expressions of ecdysone receptor (EcR) and ultraspiracle (USP) in response to 20 mg/L atrazine in nauplii and adults. In the nauplii, these genes were significantly downregulated (P < 0.05) in response to atrazine, compared to the control but not in the adult T. japonicus. These results suggest that atrazine can interfere in vivo life parameters by oxidative stress-induced retrogression and ecdysteroid biosynthetic pathway in this species.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
26
|
Suchail S, Le Navenant A, Capowiez Y, Thiéry A, Rault M. An exploratory study of energy reserves and biometry as potential tools for assessing the effects of pest management strategies on the earwig, Forficula auricularia L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22766-22774. [PMID: 29855877 DOI: 10.1007/s11356-018-2371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Apple orchards are heavily treated crops and some sprayed insecticides are recognized to have toxic effects on non-target arthropods. Earwigs are important natural enemies in pip-fruit orchards and contribute to the biological control of aphids. In addition, due to their ease of capture and identification, they are an interesting potential bioindicator of the possible detrimental effects of different orchard management strategies. In this study, we measured the energy reserves and some morphological traits of Forficula auricularia L. sampled in apple orchards under management strategies (organic versus integrated pest management (IPM)). We observed a significant decrease in mass (22 to 27%), inter-eye width (3%), and prothorax width (2 to 5%) in earwigs from IPM compared to organic orchards. Energy body reserves also confirmed these results with a significant decrease of 48% in glycogen and 25 to 42% in lipid content in earwigs from IPM compared to organic orchards. However, the protein content was approximately 70% higher in earwigs from IPM than in organic orchards. Earwigs sampled in IPM orchards may adapt to minimize the adverse toxic effects of pesticide treatments using a large number of strategies, which are reflected in changes to their energy reserves. These strategies could, in turn, influence the population dynamics of natural enemies and impair their role in the biological control of pests in apple orchards.
Collapse
Affiliation(s)
- Séverine Suchail
- UAPV, Université d'Avignon et des Pays de Vaucluse, Aix Marseille Univ, CNRS IRD, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon Cedex, France.
| | - Adrien Le Navenant
- UAPV, Université d'Avignon et des Pays de Vaucluse, Aix Marseille Univ, CNRS IRD, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon Cedex, France
- INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Site Agroparc, 84914, Avignon Cedex 9, France
| | - Yvan Capowiez
- INRA, UMR 1114 Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Site Agroparc, 84914, Avignon Cedex 9, France
| | - Alain Thiéry
- UAPV, Université d'Avignon et des Pays de Vaucluse, Aix Marseille Univ, CNRS IRD, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon Cedex, France
| | - Magali Rault
- UAPV, Université d'Avignon et des Pays de Vaucluse, Aix Marseille Univ, CNRS IRD, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon Cedex, France
| |
Collapse
|
27
|
García-Espiñeira M, Tejeda-Benitez L, Olivero-Verbel J. Toxicity of atrazine- and glyphosate-based formulations on Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:216-222. [PMID: 29550685 DOI: 10.1016/j.ecoenv.2018.02.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/04/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Atrazine and Glyphosate are herbicides massively used in agriculture for crop protection. Upon application, they are available to the biota in different ecosystems. The aim of this research was to evaluate the toxicity of Glyphosate and Atrazine based formulations (GBF and ABF, respectively). Caenorhabditis elegans was exposed to different concentrations of each single formulation, and to the mixture. Lethality, locomotion, growth, and fertility were measured as endpoints. Effects on gene expression were monitored utilizing green fluorescence protein transgenic strains. ABF caused lethality of 12%, 15%, and 18% for 6, 60, and 600 μM, respectively, displaying a dose dependence trend. GBF produced lethality of 20%, 50%, and 100% at 0.01, 10, and 100 μM, respectively. Locomotion inhibition ranged from 21% to 89% at the lowest and maximum tested concentrations for Atrazine; whereas for Glyphosate, exposure to 10 μM inhibited 87%. Brood size was decreased by 67% and 93% after treatment to 0.06 and 6 μM Atrazine, respectively; and by 23% and 93% after exposure to 0.01 and 10 μM Glyphosate, respectively. There were no significant differences in growth. Changes in gene expression occurred in all genes, highlighting the expression of sod-1, sod-4, and gpx-4 that increased more than two-fold after exposure to 600 μM ABF and 10 μM GBF. The effects observed for the mixture of these formulations were additive for lethality, locomotion and fertility. In short, GBF, ABF, and their mixture induced several toxic responses related to oxidative stress on C. elegans.
Collapse
Affiliation(s)
- María García-Espiñeira
- Environmental and Computational Chemistry Group, Zaragocilla Campus. School of Pharmaceutical Sciences. University of Cartagena, Cartagena 130015, Colombia.
| | - Lesly Tejeda-Benitez
- Development and Use of Biomass Research Group, Piedra de Bolivar Campus, School of Engineering, Universidad de Cartagena, Cartagena, 130015, Colombia.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, Zaragocilla Campus. School of Pharmaceutical Sciences. University of Cartagena, Cartagena 130015, Colombia.
| |
Collapse
|
28
|
Oxidative stress in triazine pesticide toxicity: a review of the main biomarker findings. Arh Hig Rada Toksikol 2018; 69:109-125. [DOI: 10.2478/aiht-2018-69-3118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/01/2018] [Indexed: 11/20/2022] Open
Abstract
Abstract
This review article provides a summary of the studies relying on oxidative stress biomarkers (lipid peroxidation and antioxidant enzymes in particular) to investigate the effects of atrazine and terbuthylazine exposure in experimental animals and humans published since 2010. In general, experimental animals showed that atrazine and terbuthylazine exposure mostly affected their antioxidant defences and, to a lesser extent, lipid peroxidation, but the effects varied by the species, sex, age, herbicide concentration, and duration of exposure. Most of the studies involved aquatic organisms as useful and sensitive bio-indicators of environmental pollution and important part of the food chain. In laboratory mice and rats changes in oxidative stress markers were visible only with exposure to high doses of atrazine. Recently, our group reported that low-dose terbuthylazine could also induce oxidative stress in Wistar rats. It is evident that any experimental assessment of pesticide toxic effects should take into account a combination of several oxidative stress and antioxidant defence biomarkers in various tissues and cell compartments. The identified effects in experimental models should then be complemented and validated by epidemiological studies. This is important if we wish to understand the impact of pesticides on human health and to establish safe limits.
Collapse
|
29
|
Figueira FH, de Quadros Oliveira N, de Aguiar LM, Escarrone AL, Primel EG, Barros DM, da Rosa CE. Exposure to atrazine alters behaviour and disrupts the dopaminergic system in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:94-102. [PMID: 28847529 DOI: 10.1016/j.cbpc.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Atrazine is an extensively used herbicide, and has become a common environmental contaminant. Effects on dopaminergic neurotransmission in mammals following exposure to atrazine have been previously demonstrated. Here, the effects of atrazine regarding behavioural and dopaminergic neurotransmission parameters were assessed in the fruit fly D. melanogaster, exposed during embryonic and larval development. Embryos (newly fertilized eggs) were exposed to two atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Negative geotaxis assay, as well as exploratory behaviour, immobility time and number of grooming episodes in an open field system were assessed. Tyrosine hydroxylase (TH) activity and gene expression of the dopaminergic system were also evaluated in newly emerged male and female flies. All analyzed parameters in male flies were not significantly affected by atrazine exposure. However female flies exposed to atrazine at 10μM presented an increase in immobility time and a reduction in exploratory activity in the open field test, which was offset by an increase in the number of grooming episodes. Also, female flies exposed to 100μM of atrazine presented an increase in immobility time. Gene expression of DOPA decarboxylase and dopamine (DA) receptors were also increased only in females. The behavioural effects of atrazine exposure observed in female flies were due to a disturbance in the dopaminergic system.
Collapse
Affiliation(s)
- Fernanda Hernandes Figueira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Natália de Quadros Oliveira
- Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Lais Mattos de Aguiar
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Ana Laura Escarrone
- Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Daniela Martí Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Carlos Eduardo da Rosa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
30
|
Figueira FH, Aguiar LMD, Rosa CED. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:78-85. [PMID: 27687474 DOI: 10.1016/j.cbpc.2016.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022]
Abstract
The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure.
Collapse
Affiliation(s)
- Fernanda Hernandes Figueira
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Lais Mattos de Aguiar
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Carlos Eduardo da Rosa
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|