1
|
Chen SC, Holmes CJ, Ajayi OM, Goodhart G, Eaton D, Catlett N, Cady T, Tran H, Lutz LE, Wang L, Girard E, Savino J, Bidiwala A, Benoit JB. The impact of sugar diet on humidity preference, survival, and host landing in mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf048. [PMID: 40221846 DOI: 10.1093/jme/tjaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Mosquito-borne diseases have caused more than 1 million deaths each year. There is an urgent need to develop an effective way to reduce mosquito-host interaction to mitigate disease transmission. Sugar diets have long been linked to abnormal physiology in animals, making them potential candidates for mosquito control. Here, we show the impact of sugar diets on humidity preference and survival in Aedes aegypti (Gainesville) and Culex pipiens (Buckeye). Two-choice assays with high and low relative humidity (80% and 50% RH) show that the impact of sugar diets on humidity preference is species-specific. In comparison to Cx. pipiens, various sugar diets resulted in marked reductions in humidity avidity and preference in Ae. aegypti, which exhibited significant differences. Among the sugar diets, arabinose significantly reduced the survival rate of mosquitoes at low concentrations. Moreover, we found that host landing was not impacted by feeding on different sugar types. Our study suggests that specific sugar treatments could be applied to mosquito control by dampening their humidity preference and reducing their lifespan, thus reducing mosquito-borne disease transmission.
Collapse
Affiliation(s)
- Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Grace Goodhart
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daniel Eaton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan Catlett
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tabitha Cady
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hannah Tran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Luke E Lutz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lyn Wang
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ella Girard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jaida Savino
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Amena Bidiwala
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Holmes CJ, Chakraborty S, Ajayi OM, Uhran MR, Frigard R, Stacey CL, Susanto EE, Chen SC, Rasgon JL, DeGennaro M, Xiao Y, Benoit JB. Multiple blood feeding bouts in mosquitoes allow for prolonged survival and are predicted to increase viral transmission during dry periods. iScience 2025; 28:111760. [PMID: 39935457 PMCID: PMC11810705 DOI: 10.1016/j.isci.2025.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/05/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
Dry conditions increase blood feeding in mosquitoes, but it is unknown if dehydration-induced bloodmeals are increased beyond what is necessary for reproduction. In this study, we investigated the role of dehydration in secondary blood feeding behaviors of mosquitoes. Following an initial bloodmeal, prolonged exposure to dry conditions increased secondary blood feeding in mosquitoes by nearly two-fold, and chronic blood feeding allowed mosquitoes to survive up to 20 days without access to water. Exposure to desiccating conditions following a bloodmeal resulted in increased activity, decreased sleep levels, and prompted a return of CO2 sensing before egg deposition. Increased blood feeding and higher survival during dry periods are predicted to increase pathogen transmission, allowing for a rapid rebound in mosquito populations when favorable conditions return. Overall, these results solidify our understanding of how dry periods impact mosquito blood feeding and the role that mosquito dehydration contributes to pathogen transmission dynamics.
Collapse
Affiliation(s)
- Christopher J. Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Oluwaseun M. Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Melissa R. Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ronja Frigard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Crystal L. Stacey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Emily E. Susanto
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jason L. Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics and Huck Institutes for Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew DeGennaro
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
3
|
Kelley M, Holmes CJ, Herbert C, Rayhan A, Joves J, Uhran M, Klaus L, Frigard R, Singh K, Limbach PA, Addepalli B, Benoit JB. Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2025; 34:65-80. [PMID: 39105593 PMCID: PMC11705514 DOI: 10.1111/imb.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post-blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codon decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we discovered that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | | | - Asif Rayhan
- Department of ChemistryUniversity of CincinnatiCincinnatiOhioUSA
| | - Judd Joves
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Melissa Uhran
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Lucas Klaus
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Ronja Frigard
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Khwahish Singh
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | | | - Joshua B. Benoit
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
4
|
Dahake A, Persaud SG, Jones MN, Goyret J, Davidowitz G, Raguso RA. Dying of thirst: Osmoregulation by a hawkmoth pollinator in response to variability in ambient humidity and nectar availability. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104700. [PMID: 39255897 DOI: 10.1016/j.jinsphys.2024.104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Climate-induced shifts in flowering phenology can disrupt pollinator-floral resource synchrony, especially in desert ecosystems where rainfall dictates both. However, baseline metrics to gauge pollinator health in the wild amidst rapid climate change are lacking. Our laboratory-based study establishes a baseline for pollinator physiological state by exploring how osmotic conditions influence survivorship in a desert hawkmoth pollinator, Manduca sexta. We sampled hemolymph osmolality from over 1000 lab-grown moths at 20 %, 50 %, and 80 % ambient humidity levels. Starved moths maintained healthy osmolality of 350-400 mmol/kg for 1-3 days after eclosion regardless of ambient humidity, but it sharply rose to 550 mmol/kg after 4-5 days in low and moderate humidity, and after 5 days in high humidity. Starved moths in low humidity conditions perished within 5 days, while those in high humidity survived twice as long. Moths fed synthetic Datura wrightii nectar, synthetic Agave palmeri nectar, or water, maintained osmolality within a healthy range of 350-400mmol/kg. The same was true for moths fed authentic floral nectars from Datura and Agave plants, although moths consumed more synthetic than authentic nectars, possibly due to non-sugar constituents. Simulating a 4-day mismatch between pollinator emergence and nectar availability, a single nectar meal osmotically rescued moths under dry ambient conditions. Our findings highlight hemolymph osmolality as a rapid and accurate biomarker distinguishing dehydrated from hydrated states in insect pollinators.
Collapse
Affiliation(s)
- Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA.
| | - Steven G Persaud
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | - Marnesha N Jones
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Joaquín Goyret
- Department of Biology, University of Tennessee, Martin, TN 38237, USA
| | - Goggy Davidowitz
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
5
|
Chen SC, Holmes CJ, Ajayi OM, Goodhart G, Eaton D, Catlett N, Cady T, Tran H, Lutz LE, Wang L, Girard E, Savino J, Bidiwala A, Benoit JB. The impact of sugar diet on humidity preference, survival, and host landing in mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.613762. [PMID: 39386524 PMCID: PMC11463526 DOI: 10.1101/2024.09.23.613762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mosquito-borne diseases have caused more than one million deaths each year. There is an urgent need to develop an effective way to reduce mosquito-host interaction to mitigate disease transmission. Sugar diets have long been linked to abnormal physiology in animals, making them potential candidates for mosquito control. Here, we show the impact of sugar diets on humidity preference and survival in Aedes aegypti and Culex pipiens . With two-choice assays between 100% and 75% relative humidity (RH), we demonstrate that the effect of sugar diets on humidity preference is species-specific where Ae. aegypti showed significant differences and the reduced effects were noted in Cx. pipiens . Among the sugar diets, arabinose significantly reduced the survival rate of mosquitoes even at low concentrations. Moreover, we found that host landing was not impacted by feeding on different sugar types. Our study suggests that specific sugar treatments could be applied to mosquito control by dampening their humidity preference and reducing their lifespan, thus reducing mosquito-borne disease transmission.
Collapse
|
6
|
Abu AEI, Becker M, Accoti A, Sylla M, Dickson LB. Low humidity enhances Zika virus infection and dissemination in Aedes aegypti mosquitoes. mSphere 2024; 9:e0040124. [PMID: 39092912 DOI: 10.1128/msphere.00401-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
As climate change alters Earth's biomes, it is expected the transmission dynamics of mosquito-borne viruses will change. While the effects of temperature changes on mosquito-virus interactions and the spread of the pathogens have been elucidated over the last decade, the impact of relative humidity changes is still relatively unknown. To overcome this knowledge gap, we exposed Aedes aegypti females to various humidity conditions. We measured different components of vectorial capacity such as survival, blood-feeding rates, and changes in infection and dissemination of Zika virus. Survival decreased as the humidity level decreased, while infection rates increased as the humidity level decreased. Alternatively, blood feeding rates and disseminated infection rates peaked at the intermediate 50% relative humidity treatment but were the same in the 30% and 80% relative humidity treatments. These results provide empirical evidence that Ae. aegypti exposure to low humidity can enhance Zika virus infection in the mosquito, which has important implications in predicting how climate change will impact mosquito-borne viruses.IMPORTANCEViruses transmitted by mosquitoes to humans are a major public health burden and are expected to increase under climate change. While we know that temperature is an important driver of variation in arbovirus replication in the mosquito, very little is known about how other relevant climate variables such as humidity will influence the interaction between mosquitoes and the viruses they transmit. Given the variability in humidity across environments, and the predicted changes in humidity under climate change, it is imperative that we also study the impact that it has on mosquito infection and transmission of arboviruses.
Collapse
Affiliation(s)
- Angel Elma I Abu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Margaret Becker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anastasia Accoti
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Massamba Sylla
- Laboratory Vectors and Parasites, Department of Livestock Sciences and Techniques, Sine Saloum University El Hadji Ibrahima NIASS, Kaffrine, Senegal
| | - Laura B Dickson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Vector-borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- The West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
7
|
Holmes CJ, Chakraborty S, Ajayi OM, Unran MR, Frigard RA, Stacey CL, Susanto EE, Chen SC, Rasgon JL, DeGennaro MJ, Xiao Y, Benoit JB. Multiple bouts of blood feeding in mosquitoes allow prolonged survival and are predicted to increase viral transmission during drought. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595907. [PMID: 38854138 PMCID: PMC11160655 DOI: 10.1101/2024.05.28.595907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Survival through periods of drought is critical for mosquitoes to reside in semi-arid regions with humans, but water sources may be limited. Previous studies have shown that dehydrated mosquitoes will increase blood feeding propensity, but how this would occur over extended dry periods is unknown. Following a bloodmeal, prolonged exposure to dry conditions increased secondary blood feeding in mosquitoes by nearly two-fold, and chronic blood feeding allowed mosquitoes to survive twenty days without access to water sources. This refeeding did not alter the number of eggs generated, suggesting this refeeding is for hydration and nutrient replenishment. Exposure to desiccating conditions following a bloodmeal resulted in increased activity, decreased sleep levels, and prompted a return of CO2 sensing before egg deposition. The increased blood feeding during the vitellogenic stage and higher survival during dry periods are predicted to increase pathogen transmission and explain the elevated levels of specific arbovirus cases during dry conditions. These results solidify our understanding of the role of dry periods on mosquito blood feeding and how mosquito dehydration contributes to vectorial capacity and disease transmission dynamics.
Collapse
|
8
|
Bailey ST, Kondragunta A, Choi HA, Han J, McInnes H, Rotenberg D, Ullman DE, Benoit JB. Dehydration and tomato spotted wilt virus infection combine to alter feeding and survival parameters for the western flower thrips, Frankliniella occidentalis. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100086. [PMID: 39193173 PMCID: PMC11345507 DOI: 10.1016/j.cris.2024.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 08/29/2024]
Abstract
Dehydration and tomato spotted wilt virus (TSWV) infection substantially impact the feeding of western flower thrips, Frankliniella occidentalis. Until now, the dynamics between these biotic and abiotic stresses have not been examined for thrips. Here, we report water balance characteristics and changes in other biological parameters during infection with TSWV for the western flower thrips. There were no apparent differences in water balance parameters during TSWV infection of male or female thrips. Our results show that, although water balance characteristics of western flower thrips are minimally impacted by TSWV infection, the increase in feeding and activity when dehydration and TSWV are combined suggests that virus transmission could be increased under periods of drought. Importantly, survival and progeny generation were impaired during TSWV infection and dehydration bouts. The negative impact on survival and reproduction suggests that the interactions between TSWV infection and dehydration will likely reduce thrips populations. The opposite effects of dehydration on feeding/activity and survival/reproduction for virus infected thrips suggest the impact of vectorial capacity will likely be minor for TSWV transmission. As water stress significantly impacts insect-plant-virus dynamics, these studies highlight that all interactions and effects need to be measured to understand thrips-TSWV interactions in their role as viral vector to plants.
Collapse
Affiliation(s)
- Samuel T. Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Alekhya Kondragunta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hyojin A. Choi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Holly McInnes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Diane E. Ullman
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
9
|
Abu AEI, Becker M, Accoti A, Sylla M, Dickson LB. Low humidity enhances Zika virus infection and dissemination in Aedes aegypti mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576075. [PMID: 38293131 PMCID: PMC10827182 DOI: 10.1101/2024.01.17.576075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
As climate change alters Earth's biomes, it is expected the transmission dynamics of mosquito-borne viruses will change. While the effects of temperature changes on mosquito-virus interactions and spread of the pathogens have been elucidated over the last decade, the effects of relative humidity changes are still relatively unknown. To overcome this knowledge gap, we exposed Ae. aegypti females to various low humidity conditions and measured different components of vectorial capacity such as survival, blood-feeding rates, and changes in infection and dissemination of Zika virus. Survival decreased as the humidity level decreased, while infection rates increased as the humidity level decreased. Alternatively, blood feeding rates and dissemination rates peaked at the intermediate humidity level, but returned to the levels of the control at the lowest humidity treatment. These results provide empirical evidence that Ae. aegypti exposure to low humidity can enhance Zika virus infection in the mosquito, which has important implications in predicting how climate change will impact mosquito-borne viruses.
Collapse
|
10
|
Kelley M, Holmes CJ, Herbert C, Rayhan A, Joves J, Uhran M, Frigard R, Singh K, Limbach PA, Addepalli B, Benoit JB. Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569187. [PMID: 38076852 PMCID: PMC10705485 DOI: 10.1101/2023.11.29.569187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA (mRNA) codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codons' decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we identified that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | | | - Cassandra Herbert
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45211
| | - Asif Rayhan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45211
| | - Judd Joves
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Melissa Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Ronja Frigard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Khwahish Singh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | | | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| |
Collapse
|
11
|
Holmes CJ, Brown ES, Sharma D, Warden M, Pathak A, Payton B, Nguyen Q, Spangler A, Sivakumar J, Hendershot JM, Benoit JB. Dehydration Alters Transcript Levels in the Mosquito Midgut, Likely Facilitating Rapid Rehydration following a Bloodmeal. INSECTS 2023; 14:274. [PMID: 36975959 PMCID: PMC10056721 DOI: 10.3390/insects14030274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The mosquito midgut is an important site for bloodmeal regulation while also acting as a primary site for pathogen exposure within the mosquito. Recent studies show that exposure to dehydrating conditions alters mosquito bloodfeeding behaviors as well as post-feeding regulation, likely altering how pathogens interact with the mosquito. Unfortunately, few studies have explored the underlying dynamics between dehydration and bloodmeal utilization, and the overall impact on disease transmission dynamics remains veiled. In this study, we find that dehydration-based feeding in the yellow fever mosquito, Aedes aegypti, prompts alterations to midgut gene expression, as well as subsequent physiological factors involving water control and post-bloodfeeding (pbf) regulation. Altered expression of ion transporter genes and aquaporin 2 (AQP2) in the midgut of dehydrated mosquitoes as well as the rapid reequilibration of hemolymph osmolality after a bloodmeal indicate an ability to expedite fluid and ion processing. These alterations ultimately indicate that female A. aegypti employ mechanisms to ameliorate the detriments of dehydration by imbibing a bloodmeal, providing an effective avenue for rehydration. Continued research into bloodmeal utilization and the resulting effects on arthropod-borne transmission dynamics becomes increasingly important as drought prevalence is increased by climate change.
Collapse
|
12
|
Conway MJ, Haslitt DP, Swarts BM. Targeting Aedes aegypti Metabolism with Next-Generation Insecticides. Viruses 2023; 15:469. [PMID: 36851683 PMCID: PMC9964334 DOI: 10.3390/v15020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV), zika virus (ZIKV), and other emerging infectious diseases of concern. A key disease mitigation strategy is vector control, which relies heavily on the use of insecticides. The development of insecticide resistance poses a major threat to public health worldwide. Unfortunately, there is a limited number of chemical compounds available for vector control, and these chemicals can have off-target effects that harm invertebrate and vertebrate species. Fundamental basic science research is needed to identify novel molecular targets that can be exploited for vector control. Next-generation insecticides will have unique mechanisms of action that can be used in combination to limit selection of insecticide resistance. Further, molecular targets will be species-specific and limit off-target effects. Studies have shown that mosquitoes rely on key nutrients during multiple life cycle stages. Targeting metabolic pathways is a promising direction that can deprive mosquitoes of nutrition and interfere with development. Metabolic pathways are also important for the virus life cycle. Here, we review studies that reveal the importance of dietary and stored nutrients during mosquito development and infection and suggest strategies to identify next-generation insecticides with a focus on trehalase inhibitors.
Collapse
Affiliation(s)
- Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Douglas P. Haslitt
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
13
|
Coutinho-Abreu IV, Akbari OS. Technological advances in mosquito olfaction neurogenetics. Trends Genet 2023; 39:154-166. [PMID: 36414481 PMCID: PMC10564117 DOI: 10.1016/j.tig.2022.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022]
Abstract
Gene-editing technologies have revolutionized the field of mosquito sensory biology. These technologies have been used to knock in reporter genes in-frame with neuronal genes and tag specific mosquito neurons to detect their activities using binary expression systems. Despite these advances, novel tools still need to be developed to elucidate the transmission of olfactory signals from the periphery to the brain. Here, we propose the development of a set of tools, including novel driver lines as well as sensors of neuromodulatory activities, which can advance our knowledge of how sensory input triggers behavioral outputs. This information can change our understanding of mosquito neurobiology and lead to the development of strategies for mosquito behavioral manipulation to reduce bites and disease transmission.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- School of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar S Akbari
- School of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Benoit JB, McCluney KE, DeGennaro MJ, Dow JAT. Dehydration Dynamics in Terrestrial Arthropods: From Water Sensing to Trophic Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:129-149. [PMID: 36270273 PMCID: PMC9936378 DOI: 10.1146/annurev-ento-120120-091609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Kevin E McCluney
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA;
| | - Matthew J DeGennaro
- Department of Biological Sciences, Florida International University and Biomolecular Sciences Institute, Miami, Florida, USA;
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, United Kingdom;
| |
Collapse
|