1
|
Chapman A, McAfee A, Wrightson KLC, Magaña AA, Tarpy DR, Fine JD, Rempel Z, Peters K, Currie RW, Hoover SER, Foster LJ. Honey bee egg composition changes seasonally and after acute maternal virus infection. Sci Rep 2025; 15:10418. [PMID: 40140730 PMCID: PMC11947112 DOI: 10.1038/s41598-025-94670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Honey bee (Apis mellifera) colonies depend on the reproductive output of their queens, which in turn is contingent on the care they receive from worker bees. Viral infections in queens can compromise their reproductive output, while viral infections in workers can inhibit the successful functioning of the colony and its ability to care for the queen. Transgenerational immune priming (TGIP) occurs when queens transfer immune-related compounds or immune elicitors to their offspring, enhancing the ability of subsequent generations to resist infections. These maternal effects on offspring could positively impact colony health and resilience to viral infections, but little is currently known about TGIP for viruses in honey bees. In this study, we investigate how viral infections affect the proteomic composition of eggs laid by queens injected with a mixture of black queen cell virus and deformed wing virus B, both in controlled experimental settings and natural field conditions. Our results showed that virus-challenged queens upregulated immune effectors in their eggs and ovaries. In contrast, naturally infected queens from field surveys did not; there were no significant differences in egg protein, lipid, or metabolite composition related to maternal viral load or ovary size. However, egg collection date strongly influenced the protein, lipid, and metabolite composition of eggs, potentially reflecting seasonal variations in pollen resources. These findings suggest that while viral infections can induce transgenerational effects on egg proteomes under short-term experimental conditions, such effects are less apparent in natural settings and can be overshadowed by seasonal and other ecological factors.
Collapse
Affiliation(s)
- Abigail Chapman
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Alison McAfee
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Kenzie L C Wrightson
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Armando Alcazar Magaña
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Julia D Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA, USA
| | - Zoe Rempel
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Kira Peters
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Rob W Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Shelley E R Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Arad M, Ku K, Frey C, Hare R, McAfee A, Ghafourifar G, Foster LJ. What proteomics has taught us about honey bee (Apis mellifera) health and disease. Proteomics 2025; 25:e2400075. [PMID: 38896501 PMCID: PMC11735666 DOI: 10.1002/pmic.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The Western honey bee, Apis mellifera, is currently navigating a gauntlet of environmental pressures, including the persistent threat of parasites, pathogens, and climate change - all of which compromise the vitality of honey bee colonies. The repercussions of their declining health extend beyond the immediate concerns of apiarists, potentially imposing economic burdens on society through diminished agricultural productivity. Hence, there is an imperative to devise innovative monitoring techniques for assessing the health of honey bee populations. Proteomics, recognized for its proficiency in biomarker identification and protein-protein interactions, is poised to play a pivotal role in this regard. It offers a promising avenue for monitoring and enhancing the resilience of honey bee colonies, thereby contributing to the stability of global food supplies. This review delves into the recent proteomic studies of A. mellifera, highlighting specific proteins of interest and envisioning the potential of proteomics to improve sustainable beekeeping practices amidst the challenges of a changing planet.
Collapse
Affiliation(s)
- Maor Arad
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
- Department of Biochemistry and Molecular BiologyMichael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| | - Kenneth Ku
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
| | - Connor Frey
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
- Department of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Rhien Hare
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
- Faculty of Health SciencesSimon Fraser UniversityBurnabyBCCanada
| | - Alison McAfee
- Department of Biochemistry and Molecular BiologyMichael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of Applied EcologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Golfam Ghafourifar
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular BiologyMichael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
3
|
Oršolić N, Jazvinšćak Jembrek M. Royal Jelly: Biological Action and Health Benefits. Int J Mol Sci 2024; 25:6023. [PMID: 38892209 PMCID: PMC11172503 DOI: 10.3390/ijms25116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Royal jelly (RJ) is a highly nutritious natural product with great potential for use in medicine, cosmetics, and as a health-promoting food. This bee product is a mixture of important compounds, such as proteins, vitamins, lipids, minerals, hormones, neurotransmitters, flavonoids, and polyphenols, that underlie the remarkable biological and therapeutic activities of RJ. Various bioactive molecules like 10-hydroxy-2-decenoic acid (10-HDA), antibacterial protein, apisin, the major royal jelly proteins, and specific peptides such as apisimin, royalisin, royalactin, apidaecin, defensin-1, and jelleins are characteristic ingredients of RJ. RJ shows numerous physiological and pharmacological properties, including vasodilatory, hypotensive, antihypercholesterolaemic, antidiabetic, immunomodulatory, anti-inflammatory, antioxidant, anti-aging, neuroprotective, antimicrobial, estrogenic, anti-allergic, anti-osteoporotic, and anti-tumor effects. Moreover, RJ may reduce menopause symptoms and improve the health of the reproductive system, liver, and kidneys, and promote wound healing. This article provides an overview of the molecular mechanisms underlying the beneficial effects of RJ in various diseases, aging, and aging-related complications, with special emphasis on the bioactive components of RJ and their health-promoting properties. The data presented should be an incentive for future clinical studies that hopefully will advance our knowledge about the therapeutic potential of RJ and facilitate the development of novel RJ-based therapeutic opportunities for improving human health and well-being.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
4
|
Pérez-Delgado O, Espinoza-Culupú AO, López-López E. Antimicrobial Activity of Apis mellifera Bee Venom Collected in Northern Peru. Antibiotics (Basel) 2023; 12:antibiotics12040779. [PMID: 37107142 PMCID: PMC10135115 DOI: 10.3390/antibiotics12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Due to the emergence of microorganisms resistant to antibiotics and the failure of antibiotic therapies, there is an urgent need to search for new therapeutic options, as well as new molecules with antimicrobial potential. The objective of the present study was to evaluate the in vitro antibacterial activity of Apis mellifera venom collected in the beekeeping areas of the city of Lambayeque in northern Peru against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Bee venom extraction was performed by electrical impulses and separated using the Amicon ultra centrifugal filter. Subsequently, the fractions were quantified by spectrometric 280 nm and evaluated under denaturant conditions in SDS-PAGE. The fractions were pitted against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, and Pseudomonas aeruginosa ATCC 27853. A purified fraction (PF) of the venom of A. mellifera and three low molecular weight bands of 7 KDa, 6 KDa, and 5 KDa were identified that showed activity against E. coli with a MIC of 6.88 µg/mL, while for P. aeruginosa and S. aureus, it did not present a MIC. No hemolytic activity at a concentration lower than 15.6 µg/mL and no antioxidant activity. The venom of A. mellifera contains a potential presence of peptides and a predilection of antibacterial activity against E. coli.
Collapse
Affiliation(s)
- Orlando Pérez-Delgado
- Health Science Research Laboratory, Universidad Señor de Sipán, Chiclayo 14001, Peru
| | | | - Elmer López-López
- Faculty of Health Sciences, Universidad Señor de Sipán, Chiclayo 14001, Peru
| |
Collapse
|
5
|
Bournonville L, Askri D, Arafah K, Voisin SN, Bocquet M, Bulet P. Unraveling the Bombus terrestris Hemolymph, an Indicator of the Immune Response to Microbial Infections, through Complementary Mass Spectrometry Approaches. Int J Mol Sci 2023; 24:ijms24054658. [PMID: 36902086 PMCID: PMC10003634 DOI: 10.3390/ijms24054658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Pollinators, including Bombus terrestris, are crucial for maintaining biodiversity in ecosystems and for agriculture. Deciphering their immune response under stress conditions is a key issue for protecting these populations. To assess this metric, we analyzed the B. terrestris hemolymph as an indicator of their immune status. Hemolymph analysis was carried out using mass spectrometry, MALDI molecular mass fingerprinting was used for its effectiveness in assessing the immune status, and high-resolution mass spectrometry was used to measure the impact of experimental bacterial infections on the "hemoproteome". By infecting with three different types of bacteria, we observed that B. terrestris reacts in a specific way to bacterial attacks. Indeed, bacteria impact survival and stimulate an immune response in infected individuals, visible through changes in the molecular composition of their hemolymph. The characterization and label-free quantification of proteins involved in specific signaling pathways in bumble bees by bottom-up proteomics revealed differences in protein expression between the non-experimentally infected and the infected bees. Our results highlight the alteration of pathways involved in immune and defense reactions, stress, and energetic metabolism. Lastly, we developed molecular signatures reflecting the health status of B. terrestris to pave the way for diagnosis/prognosis tools in response to environmental stress.
Collapse
Affiliation(s)
- Lorène Bournonville
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Department of Molecular and Cellular Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Dalel Askri
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
| | - Karim Arafah
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
| | - Sébastien N. Voisin
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Phylogene S.A. 62 RN113, 30620 Bernis, France
| | - Michel Bocquet
- Michel Bocquet, Apimedia, 82 Route de Proméry, Pringy, 74370 Annecy, France
| | - Philippe Bulet
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France
- Correspondence: ; Tel.: +33-4-50-43-25-21
| |
Collapse
|
6
|
Kim BY, Kim YH, Choi YS, Lee MY, Lee KS, Jin BR. Antimicrobial Activity of Apidermin 2 from the Honeybee Apis mellifera. INSECTS 2022; 13:insects13100958. [PMID: 36292906 PMCID: PMC9604307 DOI: 10.3390/insects13100958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 05/15/2023]
Abstract
Apidermins (APDs) are known as structural cuticular proteins in insects, but their additional roles are poorly understood. In this study, we characterized the honeybee, Apis mellifera, APD 2 (AmAPD 2), which displays activity suggesting antimicrobial properties. In A. mellifera worker bees, the AmAPD 2 gene is transcribed in the epidermis, hypopharyngeal glands, and fat body, and induced upon microbial ingestion. Particularly in the epidermis of A. mellifera worker bees, the AmAPD 2 gene showed high expression and responded strongly to microbial challenge. Using a recombinant AmAPD 2 peptide, which was produced in baculovirus-infected insect cells, we showed that AmAPD 2 is heat-stable and binds to live bacteria and fungi as well as carbohydrates of microbial cell wall molecules. This binding action ultimately induced structural damage to microbial cell walls, which resulted in microbicidal activity. These findings demonstrate the antimicrobial role of AmAPD 2 in honeybees.
Collapse
Affiliation(s)
- Bo-Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Yun-Hui Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Yong-Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea
| | - Man-Young Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea
| | - Kwang-Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
- Correspondence: (K.-S.L.); (B.-R.J.)
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
- Correspondence: (K.-S.L.); (B.-R.J.)
| |
Collapse
|