1
|
Aktürk Dizman Y. Codon usage bias analysis of the gene encoding NAD +-dependent DNA ligase protein of Invertebrate iridescent virus 6. Arch Microbiol 2023; 205:352. [PMID: 37812231 DOI: 10.1007/s00203-023-03688-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
The genome of Invertebrate iridescent virus 6 (IIV6) contains a sequence that shows similarity to eubacterial NAD+-dependent DNA ligases. The 615-amino acid open reading frame (ORF 205R) consists of several domains, including an N-terminal domain Ia, followed by an adenylation domain, an OB-fold domain, a helix-hairpin-helix (HhH) domain, and a BRCT domain. Notably, the zinc finger domain, typically present in NAD+-dependent DNA ligases, is absent in ORF 205R. Since the protein encoded by ORF 205R (IIV6 DNA ligase gene) is involved in critical functions such as DNA replication, modification, and repair, it is crucial to comprehend the codon usage associated with this gene. In this paper, the codon usage bias (CUB) in DNA ligase gene of IIV6 and 11 reference iridoviruses was analyzed by comparing the nucleotide contents, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), relative abundance of dinucleotides and other indices. Both the base content and the RCSU analysis indicated that the A- and T-ending codons were mostly favored in the DNA ligase gene of IIV6. The ENC value of 35.64 implied a high CUB in the IIV6 DNA ligase gene. The ENC plot, neutrality plot, parity rule 2 plot, correspondence analysis revealed that mutation pressure and natural selection had an impact on the CUB of the IIVs DNA ligase genes. Additionally, the analysis of codon adaptation index demonstrated that the IIV6 DNA ligase gene is strongly adapted to its host. These findings will improve our comprehension of the CUB of IIV6 DNA ligase and reference genes, which may provide the required information for a fundamental evolutionary analysis of these genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| |
Collapse
|
2
|
Rahman SU, Rehman HU, Rahman IU, Khan MA, Rahim F, Ali H, Chen D, Ma W. Evolution of codon usage in Taenia saginata genomes and its impact on the host. Front Vet Sci 2023; 9:1021440. [PMID: 36713873 PMCID: PMC9875090 DOI: 10.3389/fvets.2022.1021440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023] Open
Abstract
The beef tapeworm, also known as Taenia saginata, is a zoonotic tapeworm from the genus Taenia in the order Cyclophyllidea. Taenia saginata is a food-borne zoonotic parasite with a worldwide distribution. It poses serious health risks to the host and has a considerable negative socioeconomic impact. Previous studies have explained the population structure of T. saginata within the evolutionary time scale and adaptive evolution. However, it is still unknown how synonymous codons are used by T. saginata. In this study, we used 90 T. saginata strains, applying the codon usage bias (CUB). Both base content and relative synonymous codon usage (RSCU) analysis revealed that AT-ended codons were more frequently used in the genome of T. saginata. Further low CUB was observed from the effective number of codons (ENC) value. The neutrality plot analysis suggested that the dominant factor of natural selection was involved in the structuring of CUB in T. saginata. Further analysis showed that T. saginata has adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts (Bos taurus and Homo sapiens). Generally, both natural selection and mutational pressure have an impact on the codon usage patterns of the protein-coding genes in T. saginata. This study is important because it characterized the codon usage pattern in the T. saginata genomes and provided the necessary data for a basic evolutionary study on them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Hassan Ur Rehman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Inayat Ur Rahman
- Department of Botany, Khushal Khan Khattak University, Karak, Pakistan
| | - Muazzam Ali Khan
- Department of Botany, Bacha Khan University, Charsadda, KP, Pakistan
| | - Fazli Rahim
- Department of Botany, Bacha Khan University, Charsadda, KP, Pakistan
| | - Hamid Ali
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China,*Correspondence: Wentao Ma ✉
| |
Collapse
|
3
|
Rahman SU, Rehman HU, Rahman IU, Rauf A, Alshammari A, Alharbi M, Haq NU, Suleria HAR, Raza SHA. Analysis of codon usage bias of lumpy skin disease virus causing livestock infection. Front Vet Sci 2022; 9:1071097. [PMID: 36544551 PMCID: PMC9762553 DOI: 10.3389/fvets.2022.1071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/10/2022] [Indexed: 12/07/2022] Open
Abstract
Lumpy skin disease virus (LSDV) causes lumpy skin disease (LSD) in livestock, which is a double-stranded DNA virus that belongs to the genus Capripoxvirus of the family Poxviridae. LSDV is an important poxvirus that has spread out far and wide to become distributed worldwide. It poses serious health risks to the host and causes considerable negative socioeconomic impact on farmers financially and on cattle by causing ruminant-related diseases. Previous studies explained the population structure of the LSDV within the evolutionary time scale and adaptive evolution. However, it is still unknown and remains enigmatic as to how synonymous codons are used by the LSDV. Here, we used 53 LSDV strains and applied the codon usage bias (CUB) analysis to them. Both the base content and the relative synonymous codon usage (RSCU) analysis revealed that the AT-ended codons were more frequently used in the genome of LSDV. Further low codon usage bias was calculated from the effective number of codons (ENC) value. The neutrality plot analysis suggested that the dominant factor of natural selection played a role in the structuring of CUB in LSDV. Additionally, the results from a comparative analysis suggested that the LSDV has adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts (Bos taurus and Homo sapiens). Both natural selection and mutational pressure have an impact on the codon usage patterns of the protein-coding genes in LSDV. This study is important because it has characterized the codon usage pattern in the LSDV genomes and has provided the necessary data for a basic evolutionary study on them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Hassan Ur Rehman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Inayat Ur Rahman
- Department of Botany, Khushal Khan Khattak University, Karak, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Noor ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Hafiz Ansar Rasul Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, Australia
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Postnikova OA, Uppal S, Huang W, Kane MA, Villasmil R, Rogozin IB, Poliakov E, Redmond TM. The Functional Consequences of the Novel Ribosomal Pausing Site in SARS-CoV-2 Spike Glycoprotein RNA. Int J Mol Sci 2021; 22:6490. [PMID: 34204305 PMCID: PMC8235447 DOI: 10.3390/ijms22126490] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
The SARS-CoV-2 Spike glycoprotein (S protein) acquired a unique new 4 amino acid -PRRA- insertion sequence at amino acid residues (aa) 681-684 that forms a new furin cleavage site in S protein as well as several new glycosylation sites. We studied various statistical properties of the -PRRA- insertion at the RNA level (CCUCGGCGGGCA). The nucleotide composition and codon usage of this sequence are different from the rest of the SARS-CoV-2 genome. One of such features is two tandem CGG codons, although the CGG codon is the rarest codon in the SARS-CoV-2 genome. This suggests that the insertion sequence could cause ribosome pausing as the result of these rare codons. Due to population variants, the Nextstrain divergence measure of the CCU codon is extremely large. We cannot exclude that this divergence might affect host immune responses/effectiveness of SARS-CoV-2 vaccines, possibilities awaiting further investigation. Our experimental studies show that the expression level of original RNA sequence "wildtype" spike protein is much lower than for codon-optimized spike protein in all studied cell lines. Interestingly, the original spike sequence produces a higher titer of pseudoviral particles and a higher level of infection. Further mutagenesis experiments suggest that this dual-effect insert, comprised of a combination of overlapping translation pausing and furin sites, has allowed SARS-CoV-2 to infect its new host (human) more readily. This underlines the importance of ribosome pausing to allow efficient regulation of protein expression and also of cotranslational subdomain folding.
Collapse
Affiliation(s)
- Olga A. Postnikova
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.A.P.); (S.U.)
| | - Sheetal Uppal
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.A.P.); (S.U.)
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy Mass Spectrometry Center, University of Maryland, Baltimore, MD 21201, USA; (W.H.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy Mass Spectrometry Center, University of Maryland, Baltimore, MD 21201, USA; (W.H.); (M.A.K.)
| | - Rafael Villasmil
- Flow Cytometry Core Facility, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.A.P.); (S.U.)
| | - T. Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.A.P.); (S.U.)
| |
Collapse
|
5
|
Iwanowicz DD, Wu-Smart JY, Olgun T, Smart AH, Otto CRV, Lopez D, Evans JD, Cornman R. An updated genetic marker for detection of Lake Sinai Virus and metagenetic applications. PeerJ 2020; 8:e9424. [PMID: 32742773 PMCID: PMC7370930 DOI: 10.7717/peerj.9424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022] Open
Abstract
Background Lake Sinai Viruses (LSV) are common RNA viruses of honey bees (Apis mellifera) that frequently reach high abundance but are not linked to overt disease. LSVs are genetically heterogeneous and collectively widespread, but despite frequent detection in surveys, the ecological and geographic factors structuring their distribution in A. mellifera are not understood. Even less is known about their distribution in other species. Better understanding of LSV prevalence and ecology have been hampered by high sequence diversity within the LSV clade. Methods Here we report a new polymerase chain reaction (PCR) assay that is compatible with currently known lineages with minimal primer degeneracy, producing an expected 365 bp amplicon suitable for end-point PCR and metagenetic sequencing. Using the Illumina MiSeq platform, we performed pilot metagenetic assessments of three sample sets, each representing a distinct variable that might structure LSV diversity (geography, tissue, and species). Results The first sample set in our pilot assessment compared cDNA pools from managed A. mellifera hives in California (n = 8) and Maryland (n = 6) that had previously been evaluated for LSV2, confirming that the primers co-amplify divergent lineages in real-world samples. The second sample set included cDNA pools derived from different tissues (thorax vs. abdomen, n = 24 paired samples), collected from managed A. mellifera hives in North Dakota. End-point detection of LSV frequently differed between the two tissue types; LSV metagenetic composition was similar in one pair of sequenced samples but divergent in a second pair. Overall, LSV1 and intermediate lineages were common in these samples whereas variants clustering with LSV2 were rare. The third sample set included cDNA from individual pollinator specimens collected from diverse landscapes in the vicinity of Lincoln, Nebraska. We detected LSV in the bee Halictus ligatus (four of 63 specimens tested, 6.3%) at a similar rate as A. mellifera (nine of 115 specimens, 7.8%), but only one H. ligatus sequencing library yielded sufficient data for compositional analysis. Sequenced samples often contained multiple divergent LSV lineages, including individual specimens. While these studies were exploratory rather than statistically powerful tests of hypotheses, they illustrate the utility of high-throughput sequencing for understanding LSV transmission within and among species.
Collapse
Affiliation(s)
- Deborah D Iwanowicz
- Leetown Science Center, U.S. Geological Survey, Kearneysville, WV, United States of America
| | - Judy Y Wu-Smart
- Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Tugce Olgun
- Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Autumn H Smart
- Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Clint R V Otto
- Northern Prairie Wildlife Research Center, U.S. Geological Survey, Jamestown, ND, United States of America
| | - Dawn Lopez
- Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States of America
| | - Jay D Evans
- Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States of America
| | - Robert Cornman
- Fort Collins Science Center, United States Geological Survey, Fort Collins, CO, United States of America
| |
Collapse
|
6
|
Wu Y, Liu Q, Weiss B, Kaltenpoth M, Kadowaki T. Honey Bee Suppresses the Parasitic Mite Vitellogenin by Antimicrobial Peptide. Front Microbiol 2020; 11:1037. [PMID: 32523577 PMCID: PMC7261897 DOI: 10.3389/fmicb.2020.01037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 01/04/2023] Open
Abstract
The negative effects of honey bee parasitic mites and deformed wing virus (DWV) on honey bee and colony health have been well characterized. However, the relationship between DWV and mites, particularly viral replication inside the mites, remains unclear. Furthermore, the physiological outcomes of honey bee immune responses stimulated by DWV and the mite to the host (honey bee) and perhaps the pathogen/parasite (DWV/mite) are not yet understood. To answer these questions, we studied the tripartite interactions between the honey bee, Tropilaelaps mercedesae, and DWV as the model. T. mercedesae functioned as a vector for DWV without supporting active viral replication. Thus, DWV negligibly affected mite fitness. Mite infestation induced mRNA expression of antimicrobial peptides (AMPs), Defensin-1 and Hymenoptaecin, which correlated with DWV copy number in honey bee pupae and mite feeding, respectively. Feeding T. mercedesae with fruit fly S2 cells heterologously expressing honey bee Hymenoptaecin significantly downregulated mite Vitellogenin expression, indicating that the honey bee AMP manipulates mite reproduction upon feeding on bee. Our results provide insights into the mechanism of DWV transmission by the honey bee parasitic mite to the host, and the novel role of AMP in defending against mite infestation.
Collapse
Affiliation(s)
- Yunfei Wu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Qiushi Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Benjamin Weiss
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
7
|
Sheikh A, Al-Taher A, Al-Nazawi M, Al-Mubarak AI, Kandeel M. Analysis of preferred codon usage in the coronavirus N genes and their implications for genome evolution and vaccine design. J Virol Methods 2020; 277:113806. [PMID: 31911390 PMCID: PMC7119019 DOI: 10.1016/j.jviromet.2019.113806] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023]
Abstract
The nucleotide variations among the N genes of 13 different coronaviruses (CoVs) were interpreted. Overall, 18 amino acids observed with varying preferred codons. The effective number of codon values ranged from 40.43 to 53.85, revealing a slight codon bias. A highly significant correlation between GC3s and ENc values was observed in porcine epidemic diarrhea CoV, followed by Middle East respiratory syndrome CoV.
The nucleocapsid (N) protein of a coronavirus plays a crucial role in virus assembly and in its RNA transcription. It is important to characterize a virus at the nucleotide level to discover the virus’s genomic sequence variations and similarities relative to other viruses that could have an impact on the functions of its genes and proteins. This entails a comprehensive and comparative analysis of the viral genomes of interest for preferred nucleotides, codon bias, nucleotide changes at the 3rd position (NT3s), synonymous codon usage and relative synonymous codon usage. In this study, the variations in the N proteins among 13 different coronaviruses (CoVs) were analysed at the nucleotide and amino acid levels in an attempt to reveal how these viruses adapt to their hosts relative to their preferred codon usage in the N genes. The results revealed that, overall, eighteen amino acids had different preferred codons and eight of these were over-biased. The N genes had a higher AT% over GC% and the values of their effective number of codons ranged from 40.43 to 53.85, indicating a slight codon bias. Neutrality plots and correlation analyses showed a very high level of GC3s/GC correlation in porcine epidemic diarrhea CoV (pedCoV), followed by Middle East respiratory syndrome-CoV (MERS CoV), porcine delta CoV (dCoV), bat CoV (bCoV) and feline CoV (fCoV) with r values 0.81, 0.68, -0.47, 0.98 and 0.58, respectively. These data implied a high rate of evolution of the CoV genomes and a strong influence of mutation on evolutionary selection in the CoV N genes. This type of genetic analysis would be useful for evaluating a virus’s host adaptation, evolution and is thus of value to vaccine design strategies.
Collapse
Affiliation(s)
- Abdullah Sheikh
- The Camel Research Center, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Abdulla Al-Taher
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Mohammed Al-Nazawi
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Abdullah I Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
8
|
Miller JB, McKinnon LM, Whiting MF, Ridge PG. CAM: an alignment-free method to recover phylogenies using codon aversion motifs. PeerJ 2019; 7:e6984. [PMID: 31198636 PMCID: PMC6555396 DOI: 10.7717/peerj.6984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Common phylogenomic approaches for recovering phylogenies are often time-consuming and require annotations for orthologous gene relationships that are not always available. In contrast, alignment-free phylogenomic approaches typically use structure and oligomer frequencies to calculate pairwise distances between species. We have developed an approach to quickly calculate distances between species based on codon aversion. METHODS Utilizing a novel alignment-free character state, we present CAM, an alignment-free approach to recover phylogenies by comparing differences in codon aversion motifs (i.e., the set of unused codons within each gene) across all genes within a species. Synonymous codon usage is non-random and differs between organisms, between genes, and even within a single gene, and many genes do not use all possible codons. We report a comprehensive analysis of codon aversion within 229,742,339 genes from 23,428 species across all kingdoms of life, and we provide an alignment-free framework for its use in a phylogenetic construct. For each species, we first construct a set of codon aversion motifs spanning all genes within that species. We define the pairwise distance between two species, A and B, as one minus the number of shared codon aversion motifs divided by the total codon aversion motifs of the species, A or B, containing the fewest motifs. This approach allows us to calculate pairwise distances even when substantial differences in the number of genes or a high rate of divergence between species exists. Finally, we use neighbor-joining to recover phylogenies. RESULTS Using the Open Tree of Life and NCBI Taxonomy Database as expected phylogenies, our approach compares well, recovering phylogenies that largely match expected trees and are comparable to trees recovered using maximum likelihood and other alignment-free approaches. Our technique is much faster than maximum likelihood and similar in accuracy to other alignment-free approaches. Therefore, we propose that codon aversion be considered a phylogenetically conserved character that may be used in future phylogenomic studies. AVAILABILITY CAM, documentation, and test files are freely available on GitHub at https://github.com/ridgelab/cam.
Collapse
Affiliation(s)
- Justin B. Miller
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| | - Lauren M. McKinnon
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| | - Michael F. Whiting
- Department of Biology, Brigham Young University, Provo, UT, United States of America
- Brigham Young University, M.L. Bean Museum, Provo, UT, United States of America
| | - Perry G. Ridge
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
9
|
Cornman RS. Relative abundance and molecular evolution of Lake Sinai Virus (Sinaivirus) clades. PeerJ 2019; 7:e6305. [PMID: 30923646 PMCID: PMC6431542 DOI: 10.7717/peerj.6305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
Lake Sinai Viruses (Sinaivirus) are commonly detected in honey bees (Apis mellifera) but no disease phenotypes or fitness consequences have yet been demonstrated. This viral group is genetically diverse, lacks obvious geographic structure, and multiple lineages can co-infect individual bees. While phylogenetic analyses have been performed, the molecular evolution of LSV has not been studied extensively. Here, I use LSV isolates from GenBank as well as contigs assembled from honey bee Sequence Read Archive (SRA) accessions to better understand the evolutionary history of these viruses. For each ORF, substitution rate variation, codon usage, and tests of positive selection were evaluated. Outlier regions of high or low diversity were sought with sliding window analysis and the role of recombination in creating LSV diversity was explored. Phylogenetic analysis consistently identified two large clusters of sequences that correspond to the current LSV1 and LSV2 nomenclature, however lineages sister to LSV1 were the most frequently detected in honey bee SRA accessions. Different expression levels among ORFs suggested the occurrence of subgenomic transcripts. ORF1 and RNA-dependent RNA polymerase had higher evolutionary rates than the capsid and ORF4. A hypervariable region of the ORF1 protein-coding sequence was identified that had reduced selective constraint, but a site-based model of positive selection was not significantly more likely than a neutral model for any ORF. The only significant recombination signals detected between LSV1 and LSV2 initiated within this hypervariable region, but assumptions of the test (single-frame coding and independence of substitution rate by site) were violated. LSV codon usage differed strikingly from that of honey bees and other common honey-bee viruses, suggesting LSV is not strongly co-evolved with that host. LSV codon usage was significantly correlated with that of Varroa destructor, however, despite the relatively weak codon bias exhibited by the latter. While codon usage between the LSV1 and LSV2 clusters was similar for three ORFs, ORF4 codon usage was uncorrelated between these clades, implying rapid divergence of codon use for this ORF only. Phylogenetic placement and relative abundance of LSV isolates reconstructed from SRA accessions suggest that detection biases may be over-representing LSV1 and LSV2 in public databases relative to their sister lineages.
Collapse
Affiliation(s)
- Robert S. Cornman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| |
Collapse
|
10
|
Brandão PE. Could human coronavirus OC43 have co-evolved with early humans? Genet Mol Biol 2018; 41:692-698. [PMID: 30004106 PMCID: PMC6136381 DOI: 10.1590/1678-4685-gmb-2017-0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/05/2018] [Indexed: 12/24/2022] Open
Abstract
This paper reports on an investigation of the role of codon usage evolution on the suggested bovine-to-human spillover of Bovine coronavirus (BCoV), an enteric/respiratory virus of cattle, resulting in the emergence of the exclusively respiratory Human coronavirus OC43 (HCoV-OC43). Analyses based on full genomes of BCoV and HCoV-OC43 and on both human and bovine mRNAs sequences of cholecystokinin (CCK) and surfactant protein 1 A (SFTP1-A), representing the enteric and respiratory tract codon usage, respectively, have shown natural selection leading to optimization or deoptimization of viral codon usage to the human enteric and respiratory tracts depending on the virus genes under consideration. A higher correlation was found for the nucleotide distance at the 3rd nucleotide position of codons and codon usage optimization to the human respiratory tract when BCoV and HCoV-OC43 were compared. An MCC tree based on relative synonymous codon usage (RSCU) data integrating data from both viruses and hosts into a same analysis indicated three putative host/virus contact dates ranging from 1.54E8 to 2.44E5 years ago, suggesting that an ancestor coronavirus might have followed human evolution.
Collapse
Affiliation(s)
- Paulo Eduardo Brandão
- Departmento de Medicina Veterinaria Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Goldberg TL, Bennett AJ, Kityo R, Kuhn JH, Chapman CA. Kanyawara Virus: A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies Infesting Previously Unknown Pteropodid Bats in Uganda. Sci Rep 2017; 7:5287. [PMID: 28706276 PMCID: PMC5509700 DOI: 10.1038/s41598-017-05236-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/25/2017] [Indexed: 12/21/2022] Open
Abstract
Bats are natural reservoir hosts of highly virulent pathogens such as Marburg virus, Nipah virus, and SARS coronavirus. However, little is known about the role of bat ectoparasites in transmitting and maintaining such viruses. The intricate relationship between bats and their ectoparasites suggests that ectoparasites might serve as viral vectors, but evidence to date is scant. Bat flies, in particular, are highly specialized obligate hematophagous ectoparasites that incidentally bite humans. Using next-generation sequencing, we discovered a novel ledantevirus (mononegaviral family Rhabdoviridae, genus Ledantevirus) in nycteribiid bat flies infesting pteropodid bats in western Uganda. Mitochondrial DNA analyses revealed that both the bat flies and their bat hosts belong to putative new species. The coding-complete genome of the new virus, named Kanyawara virus (KYAV), is only distantly related to that of its closest known relative, Mount Elgon bat virus, and was found at high titers in bat flies but not in blood or on mucosal surfaces of host bats. Viral genome analysis indicates unusually low CpG dinucleotide depletion in KYAV compared to other ledanteviruses and rhabdovirus groups, with KYAV displaying values similar to rhabdoviruses of arthropods. Our findings highlight the possibility of a yet-to-be-discovered diversity of potentially pathogenic viruses in bat ectoparasites.
Collapse
Affiliation(s)
- Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
- Global Health Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
- Department of Zoology, Makerere University, Kampala, Uganda.
| | - Andrew J Bennett
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Robert Kityo
- Department of Zoology, Makerere University, Kampala, Uganda
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Colin A Chapman
- Department of Zoology, Makerere University, Kampala, Uganda
- Department of Anthropology and School of Environment, McGill University, Montreal, Quebec, H3A 2T7, Canada
| |
Collapse
|
12
|
Shi SL, Jiang YR, Yang RS, Wang Y, Qin L. Codon usage in Alphabaculovirus and Betabaculovirus hosted by the same insect species is weak, selection dominated and exhibits no more similar patterns than expected. INFECTION GENETICS AND EVOLUTION 2016; 44:412-417. [PMID: 27484795 PMCID: PMC7106102 DOI: 10.1016/j.meegid.2016.07.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 11/26/2022]
Abstract
Mutations shape synonymous codon usage bias in certain organism genomes, while selection shapes it in others. Lepidopteran-specific Alphabaculovirus and Betabaculovirus are two large genera in the family of Baculoviridae. In this study, we analyzed the codon usage patterns in 17 baculoviruses, including 10 alphabaculoviruses and 7 betabaculoviruses, which were isolated from seven insect species, and we characterized the codon usage patterns between Alphabaculovirus and Betabaculovirus. Our results show that all the baculoviruses possessed a general weak trend of codon bias. The differences of ENc (effective number of codons) values, nucleotide contents and the impacts of nucleotide content on ENc value within alpha-/betabaculovirus pairs were independent of whether the host species are the same or different. Furthermore, the majority of amino acid sequences adopted codons unequally in all viruses, but the numbers of common preferred codons between alpha- and betabaculoviruses hosted by the same insect species were not significantly different from the differences observed between alpha- and betabaculoviruses hosted by different insect species. In addition, the amino acids that adopt the same synonymous codon composition between alpha- and betabaculoviruses hosted by the same insect species were statistically as few as those between alpha- and betabaculoviruses hosted by different insect species. Correspondence analysis revealed that no major factors resulted in the codon bias in these baculoviruses, implying multiple minor influential factors exist. Neutrality plot analysis indicated that selection pressure dominated mutations in shaping the codon usage. However, the levels of selection pressure were not significantly different among viruses hosted by the same insect species. We expect that evolution would cause the alpha- and betabaculoviruses hosted by the same insect species to share more patterns, but this effect was not observed.
Collapse
Affiliation(s)
- Sheng-Lin Shi
- Insect Resource Engineering Research Center of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yi-Ren Jiang
- Insect Resource Engineering Research Center of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
| | - Rui-Sheng Yang
- Insect Resource Engineering Research Center of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yong Wang
- Insect Resource Engineering Research Center of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
| | - Li Qin
- Insect Resource Engineering Research Center of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
13
|
Tang Q, Song Y, Shi M, Cheng Y, Zhang W, Xia XQ. Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition. Sci Rep 2015; 5:17155. [PMID: 26607834 PMCID: PMC4660426 DOI: 10.1038/srep17155] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Many coronaviruses are capable of interspecies transmission. Some of them have caused
worldwide panic as emerging human pathogens in recent years, e.g., severe acute
respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome
coronavirus (MERS-CoV). In order to assess their threat to humans, we explored to
infer the potential hosts of coronaviruses using a dual-model approach based on
nineteen parameters computed from spike genes of coronaviruses. Both the support
vector machine (SVM) model and the Mahalanobis distance (MD) discriminant model
achieved high accuracies in leave-one-out cross-validation of training data
consisting of 730 representative coronaviruses (99.86% and 98.08% respectively).
Predictions on 47 additional coronaviruses precisely conformed to conclusions or
speculations by other researchers. Our approach is implemented as a web server that
can be accessed at http://bioinfo.ihb.ac.cn/seq2hosts.
Collapse
Affiliation(s)
- Qin Tang
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Song
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mijuan Shi
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China
| | - Yingyin Cheng
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China
| | - Wanting Zhang
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qin Xia
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
14
|
Mendoza-Cano F, Sánchez-Paz A. Development and validation of a quantitative real-time polymerase chain assay for universal detection of the White Spot Syndrome Virus in marine crustaceans. Virol J 2013; 10:186. [PMID: 23758658 PMCID: PMC3685563 DOI: 10.1186/1743-422x-10-186] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/28/2013] [Indexed: 11/23/2022] Open
Abstract
Background The White Spot Syndrome Virus (WSSV), the sole member of the family Whispoviridae, is the etiological agent that causes severe mortality events in wild and farmed shrimp globally. Given its adverse effects, the WSSV has been included in the list of notifiable diseases of the Office of International Epizootic (OIE) since 1997. To date there are no known therapeutic treatments available against this lethal virus, and a surveillance program in brood-stock and larvae, based on appropriate diagnostic tests, has been strongly recommended. However, some currently used procedures intended for diagnosis of WSSV may be particularly susceptible to generate spurious results harmfully impacting the shrimp farming industry. Methods In this study, a sensitive one-step SYBR green-based real-time PCR (qPCR) for the detection and quantitation of WSSV was developed. The method was tested against several WSSV infected crustacean species and on samples that were previously diagnosed as being positive for WSSV from different geographical locations. Results A universal primer set for targeting the WSSV VP28 gene was designed. This method demonstrated its specificity and sensitivity for detection of WSSV, with detection limits of 12 copies per sample, comparable with the results obtained by other protocols. Furthermore, the primers designed in the present study were shown to exclusively amplify the targeted WSSV VP28 fragment, and successfully detected the virus in different samples regardless of their geographical origin. In addition, the presence of WSSV in several species of crustaceans, including both naturally and experimentally infected, were successfully detected by this method. Conclusion The designed qPCR assay here is highly specific and displayed high sensitivity. Furthermore, this assay is universal as it allows the detection of WSSV from different geographic locations and in several crustacean species that may serve as potential vectors. Clearly, in many low-income import-dependent nations, where the growth of shrimp farming industries has been impressive, there is a demand for cost-effective diagnostic tools. This study may become an alternative molecular tool for a less expensive, rapid and efficient detection of WSSV.
Collapse
Affiliation(s)
- Fernando Mendoza-Cano
- Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Centro de Investigaciones Biológicas del Noroeste S. C.-CIBNOR, Calle Hermosa 101, Col. Los Ángeles, Hermosillo Son C.P. 83106, México
| | | |
Collapse
|
15
|
Shi SL, Jiang YR, Liu YQ, Xia RX, Qin L. Selective pressure dominates the synonymous codon usage in parvoviridae. Virus Genes 2012; 46:10-9. [PMID: 22996735 DOI: 10.1007/s11262-012-0818-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022]
Abstract
Parvoviridae is a family of small non-enveloped viruses and divided into two subfamilies. The family members infect a wide range of organisms from insects to humans and some of the members (e.g., nonpathogenic adeno-associated viruses) are effective gene therapy delivery vectors. We detailed the synonymous codon usage pattern of Parvoviridae family from the available 58 sequenced genomes through multivariate statistical methods. Our results revealed that nine viruses showed some degree of strong codon bias, and the others possessed a general weak trend of codon bias. ENc-plot and neutrality plot results showed that selective pressure dominated over mutation in shapes coding sequence's composition. The overall GC content and GC content at the third synonymous codon position were the principal determinants behind the variations within the codon usage patterns, as they both significantly correlated with the first axis of correspondence analysis. In addition, gene length had no direct influence on the codon usage pattern. Densovirinae subfamily and Parvovirinae subfamily possessed nine identical preferred codons, though most of the two subfamilies codon usage frequencies were significantly different. The result of cluster analysis based on synonymous codon usage was discordant with that of taxonomic classification. Adeno-associated viruses formed a separated clade far from other Parvoviridae members in the dendrogram. Thus, we concluded that natural selection rather than mutation pressure accounts for the main factor that affects the codon bias in Parvoviridae family.
Collapse
Affiliation(s)
- Sheng-Lin Shi
- Postdoctoral Station of Plant Protection, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, P.R.China.
| | | | | | | | | |
Collapse
|
16
|
Xi Z, Bradley RK, Wurdack KJ, Wong K, Sugumaran M, Bomblies K, Rest JS, Davis CC. Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics 2012; 13:227. [PMID: 22681756 PMCID: PMC3460754 DOI: 10.1186/1471-2164-13-227] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies have shown that plant genomes have potentially undergone rampant horizontal gene transfer (HGT). In plant parasitic systems HGT appears to be facilitated by the intimate physical association between the parasite and its host. HGT in these systems has been invoked when a DNA sequence obtained from a parasite is placed phylogenetically very near to its host rather than with its closest relatives. Studies of HGT in parasitic plants have relied largely on the fortuitous discovery of gene phylogenies that indicate HGT, and no broad systematic search for HGT has been undertaken in parasitic systems where it is most expected to occur. RESULTS We analyzed the transcriptomes of the holoparasite Rafflesia cantleyi Solms-Laubach and its obligate host Tetrastigma rafflesiae Miq. using phylogenomic approaches. Our analyses show that several dozen actively transcribed genes, most of which appear to be encoded in the nuclear genome, are likely of host origin. We also find that hundreds of vertically inherited genes (VGT) in this parasitic plant exhibit codon usage properties that are more similar to its host than to its closest relatives. CONCLUSIONS Our results establish for the first time a substantive number of HGTs in a plant host-parasite system. The elevated rate of unidirectional host-to- parasite gene transfer raises the possibility that HGTs may provide a fitness benefit to Rafflesia for maintaining these genes. Finally, a similar convergence in codon usage of VGTs has been shown in microbes with high HGT rates, which may help to explain the increase of HGTs in these parasitic plants.
Collapse
Affiliation(s)
- Zhenxiang Xi
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Level of gene expression is a major determinant of protein evolution in the viral order Mononegavirales. J Virol 2012; 86:5253-63. [PMID: 22345453 DOI: 10.1128/jvi.06050-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although the rate at which proteins change is a key parameter in molecular evolution, its determinants are poorly understood in viruses. A variety of factors, including gene length, codon usage bias, protein abundance, protein function, and gene expression level, have been shown to affect the rate of protein evolution in a diverse array of organisms. However, the role of these factors in viral evolution has yet to be addressed. The polar 3'-5' stepwise attenuation of transcription in the Mononegavirales, a group of single-strand negative-sense RNA viruses, provides a unique system to explore the determinants of protein evolution in viruses. We analyzed the relative importance of a variety of factors in shaping patterns of sequence variation in full-length genomes from 13 Mononegavirales species. Our analysis suggests that the level of gene expression, and by extension the relative genomic position of each gene, is a key determinant of the protein evolution in these viruses. This appears to be the consequence of selection for translational robustness, but not for translational accuracy, in highly expressed genes. The small genome size and number of proteins encoded by these viruses allowed us to identify other protein-specific factors that may also play a role in virus evolution, such as host-virus interactions and functional constraints. Finally, we explored the evolutionary pressures acting on noncoding regions in Mononegavirales genomes and observed that, despite being less constrained than coding regions, their evolutionary rates are also associated with genomic position.
Collapse
|
18
|
Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses. J Virol 2010; 84:10322-8. [PMID: 20668077 DOI: 10.1128/jvi.00601-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly complete genome sequences of three novel RNA viruses were acquired from the stool of an Afghan child. Phylogenetic analysis indicated that these viruses belong to the picorna-like virus superfamily. Because of their unique genomic organization and deep phylogenetic roots, we propose these viruses, provisionally named calhevirus, tetnovirus-1, and tetnovirus-2, as prototypes of new viral families. A newly developed nucleotide composition analysis (NCA) method was used to compare mononucleotide and dinucleotide frequencies for RNA viruses infecting mammals, plants, or insects. Using a large training data set of 284 representative picornavirus-like genomic sequences with defined host origins, NCA correctly identified the kingdom or phylum of the viral host for >95% of picorna-like viruses. NCA predicted an insect host origin for the 3 novel picorna-like viruses. Their presence in human stool therefore likely reflects ingestion of insect-contaminated food. As metagenomic analyses of different environments and organisms continue to yield highly divergent viral genomes NCA provides a rapid and robust method to identify their likely cellular hosts.
Collapse
|