1
|
Slowik AR, Hesketh H, Sait SM, De Fine Licht HH. Thermal ecology shapes disease outcomes of entomopathogenic fungi infecting warm-adapted insects. J Invertebr Pathol 2024; 204:108106. [PMID: 38621520 DOI: 10.1016/j.jip.2024.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
The thermal environment is a critical determinant of outcomes in host-pathogen interactions, yet the complexities of this relationship remain underexplored in many ecological systems. We examined the Thermal Mismatch Hypothesis (TMH) by measuring phenotypic variation in individual thermal performance profiles using a model system of two species of entomopathogenic fungi (EPF) that differ in their ecological niche, Metarhizium brunneum and M. flavoviride, and a warm-adapted model host, the mealworm Tenebrio molitor. We conducted experiments across ecologically relevant temperatures to determine the thermal performance curves for growth and virulence, measured as % survival, identify critical thresholds for these measures, and elucidate interactive host-pathogen effects. Both EPF species and the host exhibited a shared growth optima at 28 °C, while the host's growth response was moderated in sublethal pathogen infections that depended on fungus identity and temperature. However, variances in virulence patterns were different between pathogens. The fungus M. brunneum exhibited a broader optimal temperature range (23-28 °C) for virulence than M. flavoviride, which displayed a multiphasic virulence-temperature relationship with distinct peaks at 18 and 28 °C. Contrary to predictions of the TMH, both EPF displayed peak virulence at the host's optimal temperature (28 °C). The thermal profile for M. brunneum aligned more closely with that of T. molitor than that for M. flavoviride. Moreover, the individual thermal profile of M. flavoviride closely paralleled its virulence thermal profile, whereas the virulence thermal profile of M. brunneum did not track with its individual thermal performance. This suggests an indirect, midrange (23 °C) effect, where M. brunneum virulence exceeded growth. These findings suggest that the evolutionary histories and ecological adaptations of these EPF species have produced distinct thermal niches during the host interaction. This study contributes to our understanding of thermal ecology in host-pathogen interactions, underpinning the ecological and evolutionary factors that shape infection outcomes in entomopathogenic fungi. The study has ecological implications for insect population dynamics in the face of a changing climate, as well as practically for the use of these organisms in biological control.
Collapse
Affiliation(s)
- Anna R Slowik
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg C., Denmark; UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, United Kingdom; School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Helen Hesketh
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, United Kingdom.
| | - Steven M Sait
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Henrik H De Fine Licht
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg C., Denmark.
| |
Collapse
|
2
|
Prince M, McKinnon AC, Leemon D, Sawbridge T, Cunningham JP. Metarhizium spp. isolates effective against Queensland fruit fly juvenile life stages in soil. PLoS One 2024; 19:e0297341. [PMID: 38236905 PMCID: PMC10796031 DOI: 10.1371/journal.pone.0297341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024] Open
Abstract
Queensland fruit fly, Bactrocera tryoni, Froggatt (Diptera: Tephritidae) is Australia's primary fruit fly pest species. Integrated Pest Management (IPM) has been adopted to sustainably manage this polyphagous species with a reduced reliance on chemical pesticides. At present, control measures are aimed at the adult stages of the fly, with no IPM tools available to target larvae once they exit the fruit and pupate in the soil. The use of entomopathogenic fungi may provide a biologically-based control method for these soil-dwelling life stages. The effectiveness of fungal isolates of Metarhizium and Beauveria species were screened under laboratory conditions against Queensland fruit fly. In bioassays, 16 isolates were screened for pathogenicity following exposure of third-instar larvae to inoculum-treated vermiculite used as a pupation substrate. The best performing Metarhizium sp. isolate achieved an average percentage mortality of 93%, whereas the best performing Beauveria isolate was less efficient, with an average mortality of 36%. Susceptibility to infection during different development stages was investigated using selected fungal isolates, with the aim of assessing all soil-dwelling life stages from third-instar larvae to final pupal stages and emerging adults. Overall, the third larval instar was the most susceptible stage, with average mortalities between 51-98% depending on the isolate tested. Moreover, adult mortality was significantly higher when exposed to inoculum during pupal eclosion, with mortalities between 56-76% observed within the first nine days post-emergence. The effect of temperature and inoculum concentration on insect mortality were assessed independently with candidate isolates to determine the optimum temperature range for fungal biological control activity and the rate required for application in field conditions. Metarhizium spp. are highly efficacious at killing Queensland fruit fly and have potential for use as biopesticides to target soil-dwelling and other life stages of B. tryoni.
Collapse
Affiliation(s)
- Madita Prince
- Agriculture Victoria, Tatura SmartFarm, Tatura, VIC, Australia
| | - Aimee C. McKinnon
- Agriculture Victoria, Agribio Centre for AgriBiosciences, Bundoora, VIC, Australia
| | | | - Tim Sawbridge
- Agriculture Victoria, Agribio Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| | - John Paul Cunningham
- Agriculture Victoria, Agribio Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Seib T, Fischer K, Sturm AM, Stephan D. Investigation on the Influence of Production and Incubation Temperature on the Growth, Virulence, Germination, and Conidial Size of Metarhizium brunneum for Granule Development. J Fungi (Basel) 2023; 9:668. [PMID: 37367604 DOI: 10.3390/jof9060668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Important for the infection of an insect with an entomopathogenic fungus and its use as a plant protection agent are its growth, conidiation, germination, and virulence, which all depend on the environmental temperature. We investigated not only the effect of environmental temperature but also that of production temperature of the fungus. For this purpose, Metarhizium brunneum JKI-BI-1450 was produced and incubated at different temperatures, and the factors mentioned as well as conidial size were determined. The temperature at which the fungus was produced affects its subsequent growth and conidiation on granule formulation, the speed of germination, and the conidial width, but not its final germination or virulence. The growth and conidiation was at its highest when the fungus was produced at 25 °C, whereas when the germination was faster, the warmer the fungus was produced. The incubation temperature optimum of JKI-BI-1450 in relation to growth, speed of germination, and survival time was 25-30 °C and for conidiation 20-25 °C. Conidial length decreased with increasing incubation temperature. Although the fungus could not be adapted to unfavorable conditions by the production temperature, it was found that the quality of a biological control agent based on entomopathogenic fungi can be positively influenced by its production temperature.
Collapse
Affiliation(s)
- Tanja Seib
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimerstraße 101, 69221 Dossenheim, Germany
| | - Katharina Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimerstraße 101, 69221 Dossenheim, Germany
| | - Anna Maria Sturm
- Technical University Darmstadt, Department Biologie, Schnittspahnstraße 4, 64287 Darmstadt, Germany
| | - Dietrich Stephan
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimerstraße 101, 69221 Dossenheim, Germany
| |
Collapse
|
4
|
Barbieri A, Rico IB, Silveira C, Feltrin C, Dall Agnol B, Schrank A, Lozina L, Klafke GM, Reck J. Field efficacy of Metarhizium anisopliae oil formulations against Rhipicephalus microplus ticks using a cattle spray race. Ticks Tick Borne Dis 2023; 14:102147. [PMID: 36893500 DOI: 10.1016/j.ttbdis.2023.102147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/13/2022] [Accepted: 02/12/2023] [Indexed: 03/09/2023]
Abstract
Rhipicephalus microplus tick is the main ectoparasite of cattle in Brazil. The exhaustive use of chemical acaricides to control this tick has favored the selection of resistant tick populations. Entomopathogenic fungi, as Metarhizium anisopliae, has been described as a potential biocontroller of ticks. Therefore, the aim of this study was to evaluate the in vivo efficacy of two oil based formulations of M. anisopliae for the control of the cattle tick R. microplus under field conditions using a cattle spray race as a method of treatment. Initially, in vitro assays were carried out with an aqueous suspension of M. anisopliae, using mineral oil and/or silicon oil. A potential synergism between oils and fungus conidia for tick control was demonstrated. Additionally, the usefulness of silicon oil in order to reduce mineral oil concentration, while improving formulation efficacy was illustrated. Based on the in vitro results, two formulations were selected for use in the field trial: MaO1 (107 conidia/mL plus 5% mineral oil) and MaO2 (107 conidia/mL plus 2.5% mineral oil and 0.01% silicon oil). The adjuvants concentrations (mineral and silicon oils) were chosen since preliminary data indicate that higher concentrations caused significant mortality in adult ticks. For this, 30 naturally infested heifers were divided into three groups based on previous tick counts. The control group did not receive treatment. The selected formulations were applied on animals using a cattle spray race. Subsequently, tick load was evaluated weekly by counting. The MaO1 treatment significantly reduced the tick count only on day +21, reaching approximately 55% efficacy. On the other hand, MaO2 showed significantly lower tick counts on days +7, +14, and +21 after treatment, with weekly efficacy achieving 66%. The results showed a substantial reduction of tick infestation, up to day +28, using a novel formulation of M. anisopliae based in the mixture of two oils. Moreover, we have shown, for the first time, the feasibility of employing formulations of M. anisopliae for large-scale treatment methods, such as a cattle spray race, which in turn, may increase the use and adhesion to biological control tools among farmers.
Collapse
Affiliation(s)
- A Barbieri
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000, Eldorado do Sul, RS 92990-000, Brazil
| | - I B Rico
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000, Eldorado do Sul, RS 92990-000, Brazil
| | | | - C Feltrin
- Fazenda Escola BIOTECH, Guaiba, RS, Brazil
| | - B Dall Agnol
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000, Eldorado do Sul, RS 92990-000, Brazil
| | - A Schrank
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste - UNNE, Corrientes, Argentina
| | - L Lozina
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - G M Klafke
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000, Eldorado do Sul, RS 92990-000, Brazil
| | - J Reck
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000, Eldorado do Sul, RS 92990-000, Brazil.
| |
Collapse
|
5
|
Velavan V, Dhanapal R, Ramkumar G, Karthi S, Senthil-Nathan S, Ndomba OA, Kweka EJ. Characterization and Evaluation of Metarhizium spp. (Metsch.) Sorokin Isolates for Their Temperature Tolerance. J Fungi (Basel) 2022; 8:68. [PMID: 35050008 PMCID: PMC8780002 DOI: 10.3390/jof8010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
A field survey was done in teak (Tectona grandis F.) forests in South India to explore the entomopathogenic effect of Metarhizium anisopliae (Ascomycota: Sordariomycetes) against teak defoliator, Hyblaea puera (Lepidoptera: Hyblaeidae). About 300 soils and infected insect samples were collected during the survey and thirty-six fungal isolates were isolated from soil and insect samples and characterized. The fungi were cultured on PDAY with dodine and antibiotics. Generally, the EPF culture was incubated at 27 °C in darkness for 15 days. Virulence of the Entomopathogenic Fungi (EPF) ability to germinate under cold and heat temperatures was assessed in a culture impregnated with conidia. In the experiment, it was found that for the first time Metarhizium quizhouense, Metarhizium robertsii, and Metarhizium majus species caused significantly higher mortality to hosts. These isolates of M. anisopliae, M. robertsii, M. majus, and M. quizhouense were all considered to be effective virulent and environmentally adaptive. The Metarhizium isolates were recommended as effective bio-control agents through the field investigation of teak defoliator Hyblaea puera from South India forest. This study paves the way to utilize the indigenous isolates of EPF for the control of teak defoliator and to combat the pests thatare resistant to insecticide.
Collapse
Affiliation(s)
- Viswakethu Velavan
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560024, India
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Bengaluru 560064, India
| | - Rajendran Dhanapal
- Adhiparasakthi Horticultural College, Tamil Nadu Agricultural University, Ranipet 632506, India
- Department of Entomology, Banaras Hindu University, Varanasi 221005, India
| | - Govindaraju Ramkumar
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Division of Bio pesticides and Environmental Toxicology, Manonmaniam Sundaranar University, Tirunelveli 627012, India; (G.R.); (S.K.)
| | - Sengodan Karthi
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Division of Bio pesticides and Environmental Toxicology, Manonmaniam Sundaranar University, Tirunelveli 627012, India; (G.R.); (S.K.)
| | - Sengottayan Senthil-Nathan
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Division of Bio pesticides and Environmental Toxicology, Manonmaniam Sundaranar University, Tirunelveli 627012, India; (G.R.); (S.K.)
| | - Osmund A. Ndomba
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha 23xxx, Tanzania; (O.A.N.); (E.J.K.)
| | - Eliningaya J. Kweka
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha 23xxx, Tanzania; (O.A.N.); (E.J.K.)
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza 33xxx, Tanzania
| |
Collapse
|
6
|
Brancini GTP, Bachmann L, Braga GÚL. Timing and duration of light exposure during conidia development determine tolerance to ultraviolet radiation. FEMS Microbiol Lett 2021; 368:6402900. [PMID: 34665247 DOI: 10.1093/femsle/fnab133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Metarhizium is an important genus of soil-inhabiting fungi that are used for the biological control of insects. The efficiency of biocontrol is dependent on the maintenance of inoculum viability under adverse field conditions such as solar ultraviolet (UV) radiation. Therefore, increasing the tolerance of Metarhizium to UV radiation is necessary. It was previously established that, in mycelium, exposure to visible light increases tolerance to UV radiation. Similarly, growth under visible light for 14 days induces the production of tolerant conidia. However, a study evaluating if and how visible light affects conidia and their relationship with UV radiation was never performed. Here, we report that a relatively short and timed exposure to light around the time of conidiation is sufficient to induce the production of conidia with increased photoreactivating capacity and UV tolerance in Metarhizium acridum. Conidia produced by this method retain their characteristic higher tolerance even after many days of being transferred to the dark. Furthermore, we show that mature conidia of M. acridum and Metarhizium brunneum can still answer to light and regulate UV tolerance, suggesting that gene expression is possible even in dormant spores. Being able to respond to light in the dormant stages of development is certainly an advantage conferring improved environmental persistence to Metarhizium.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luciano Bachmann
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Gilberto Ú L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
7
|
Wang JJ, Yin YP, Song JZ, Hu SJ, Cheng W, Qiu L. A p53-like transcription factor, BbTFO1, contributes to virulence and oxidative and thermal stress tolerances in the insect pathogenic fungus, Beauveria bassiana. PLoS One 2021; 16:e0249350. [PMID: 33788872 PMCID: PMC8011754 DOI: 10.1371/journal.pone.0249350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 11/19/2022] Open
Abstract
The p53-like transcription factor (TF) NDT80 plays a vital role in the regulation of pathogenic mechanisms and meiosis in certain fungi. However, the effects of NDT80 on entomopathogenic fungi are still unknown. In this paper, the NDT80 orthologue BbTFO1 was examined in Beauveria bassiana, a filamentous entomopathogenic fungus, to explore the role of an NDT80-like protein for fungal pest control potential. Disruption of BbTFO1 resulted in impaired resistance to oxidative stress (OS) in a growth assay under OS and a 50% minimum inhibitory concentration experiment. Intriguingly, the oxidation resistance changes were accompanied by transcriptional repression of the two key antioxidant enzyme genes cat2 and cat5. ΔBbTFO1 also displayed defective conidial germination, virulence and heat resistance. The specific supplementation of BbTFO1 reversed these phenotypic changes. As revealed by this work, BbTFO1 can affect the transcription of catalase genes and play vital roles in the maintenance of phenotypes associated with the biological control ability of B. bassiana.
Collapse
Affiliation(s)
- Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
- * E-mail: (JJW); (LQ)
| | - Ya-Ping Yin
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Ji-Zheng Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Wen Cheng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- * E-mail: (JJW); (LQ)
| |
Collapse
|
8
|
da Cunha LP, Casciatori FP, Vicente IV, Garcia RL, Thoméo JC. Metarhizium anisopliae conidia production in packed-bed bioreactor using rice as substrate in successive cultivations. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Kryukov VY, Kosman E, Tomilova O, Polenogova O, Rotskaya U, Tyurin M, Alikina T, Yaroslavtseva O, Kabilov M, Glupov V. Interplay between Fungal Infection and Bacterial Associates in the Wax Moth Galleria mellonella under Different Temperature Conditions. J Fungi (Basel) 2020; 6:E170. [PMID: 32927906 PMCID: PMC7558722 DOI: 10.3390/jof6030170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Various insect bacterial associates are involved in pathogeneses caused by entomopathogenic fungi. The outcome of infection (fungal growth or decomposition) may depend on environmental factors such as temperature. The aim of this study was to analyze the bacterial communities and immune response of Galleria mellonella larvae injected with Cordyceps militaris and incubated at 15 °C and 25 °C. We examined changes in the bacterial CFUs, bacterial communities (Illumina MiSeq 16S rRNA gene sequencing) and expression of immune, apoptosis, ROS and stress-related genes (qPCR) in larval tissues in response to fungal infection at the mentioned temperatures. Increased survival of larvae after C. militaris injection was observed at 25 °C, although more frequent episodes of spontaneous bacteriosis were observed at this temperature compared to 15 °C. We revealed an increase in the abundance of enterococci and enterobacteria in the midgut and hemolymph in response to infection at 25 °C, which was not observed at 15 °C. Antifungal peptide genes showed the highest expression at 25 °C, while antibacterial peptides and inhibitor of apoptosis genes were strongly expressed at 15 °C. Cultivable bacteria significantly suppressed the growth of C. militaris. We suggest that fungi such as C. militaris may need low temperatures to avoid competition with host bacterial associates.
Collapse
Affiliation(s)
- Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Elena Kosman
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Oksana Tomilova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Olga Polenogova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Ulyana Rotskaya
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Maksim Tyurin
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (T.A.); (M.K.)
| | - Olga Yaroslavtseva
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (T.A.); (M.K.)
| | - Viktor Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| |
Collapse
|
10
|
Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides. Appl Microbiol Biotechnol 2020; 104:5711-5724. [PMID: 32405755 DOI: 10.1007/s00253-020-10659-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/25/2022]
Abstract
Formulated conidia of insect-pathogenic fungi, such as Beauveria and Metarhizium, serve as the active ingredients of fungal insecticides but are highly sensitive to persistent high temperatures (32-35 °C) that can be beyond their upper thermal limits especially in tropical areas and during summer months. Fungal heat tolerance and inter- or intra-specific variability are critical factors and limitations to field applications of fungal pesticides during seasons favoring outbreaks of pest populations. The past decades have witnessed tremendous advances in improving fungal pesticides through selection of heat-tolerant strains from natural isolates, improvements and innovations in terms of solid-state fermentation technologies for the production of more heat-tolerant conidia, and the use of genetic engineering of candidate strains for enhancing heat tolerance. More recently, with the entry into a post-genomic era, a large number of signaling and effector genes have been characterized as important sustainers of heat tolerance in both Beauveria and Metarhizium, which represent the main species used as fungal pesticides worldwide. This review focuses on recent advances and provides an overview into the broad molecular basis of fungal heat tolerance and its multiple regulatory pathways. Emphases are placed on approaches for screening of heat-tolerant strains, methods for optimizing conidial quality linked to virulence and heat tolerance particularly involving cell wall architecture and optimized trehalose/mannitol contents, and how molecular determinants can be exploited for genetic improvement of heat tolerance and pest-control potential. Examples of fungal pesticides with different host spectra and their appropriateness for use in apiculture are given. KEY POINTS: • Heat tolerance is critical for field stability and efficacy of fungal insecticides. • Inter- and intra-specific variability exists in insect-pathogenic fungi. • Optimized production technology and biotechnology can improve heat tolerance. • Fungal heat tolerance is orchestrated by multiple molecular pathways.
Collapse
|
11
|
da Cunha LP, Casciatori FP, de Cenço Lopes I, Thoméo JC. Production of conidia of the entomopathogenic fungus Metarhizium anisopliae ICB 425 in a tray bioreactor. Bioprocess Biosyst Eng 2019; 42:1757-1768. [PMID: 31327074 DOI: 10.1007/s00449-019-02172-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/09/2019] [Indexed: 11/26/2022]
Abstract
The use of Metarhizium anisopliae as a bioinsecticide is steeply increasing worldwide. However, to reduce the production costs, it is necessary to develop sophisticated techniques for conidia production. This work aimed to use a tray bioreactor to produce conidia of M. anisopliae ICB-425 in long rice and find the limiting bed depth in which the production is still viable. Experiments have been carried out to assess the influence of the air temperature and relative humidity on the spore concentration in order to determine the limiting temperature. Two scales of bioreactors in plastic packages have been used, containing 10 and 500 g of rice, and the results were similar. In the tray bioreactor, the bed depths of 2, 4 and 6 cm have been used, corresponding to the dry rice weights of 1, 2 and 3 kg, respectively, and the results were similar to the ones in plastic packages. A one-phase heat transfer model has been used to foresee the maximum temperature within the bed and the results agreed fairly well with the experimental ones. Using the model, a bed depth of 7 cm was found to be the limit for the tray bioreactor. The results obtained are very promising for the mass production of conidia of M. anisopliae at lower costs and with more effective control.
Collapse
Affiliation(s)
- Lucas Portilho da Cunha
- Food Engineering and Technology Department, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265, Jardim Nazareth, São José Do Rio Preto, SP, 15054-000, Brazil.
| | - Fernanda Perpétua Casciatori
- Chemical Engineering Department, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, km 235, SP 310, Bairro Monjolinho, São Carlos, SP, 13565-905, Brazil
| | - Isabella de Cenço Lopes
- Food Engineering and Technology Department, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265, Jardim Nazareth, São José Do Rio Preto, SP, 15054-000, Brazil
| | - João Cláudio Thoméo
- Food Engineering and Technology Department, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265, Jardim Nazareth, São José Do Rio Preto, SP, 15054-000, Brazil
| |
Collapse
|
12
|
Temperature adaptations of Cordyceps militaris, impact of host thermal biology and immunity on mycosis development. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Dias LP, Araújo CA, Pupin B, Ferreira PC, Braga GÚ, Rangel DE. The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation. Fungal Biol 2018; 122:592-601. [DOI: 10.1016/j.funbio.2018.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 11/28/2022]
|
14
|
Brancini GTP, Tonani L, Rangel DEN, Roberts DW, Braga GUL. Species of the Metarhizium anisopliae complex with diverse ecological niches display different susceptibilities to antifungal agents. Fungal Biol 2017; 122:563-569. [PMID: 29801801 DOI: 10.1016/j.funbio.2017.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/07/2023]
Abstract
Species of the Metarhizium anisopliae complex are globally ubiquitous soil-inhabiting and predominantly insect-pathogenic fungi. The Metarhizium genus contains species ranging from specialists, such as Metarhizium acridum that only infects acridids, to generalists, such as M. anisopliae, Metarhizium brunneum, and Metarhizium robertsii that infect a broad range of insects and can also colonize plant roots. There is little information available about the susceptibility of Metarhizium species to clinical and non-clinical antifungal agents. We determined the susceptibility of 16 isolates comprising four Metarhizium species with different ecological niches to seven clinical (amphotericin B, ciclopirox olamine, fluconazole, griseofulvin, itraconazole, tebinafine, and voriconazole) and one non-clinical (benomyl) antifungal agents. All isolates of the specialist M. acridum were clearly more susceptible to most antifungals than the isolates of the generalists M. anisopliae sensu lato, M. brunneum, and M. robertsii. All isolates of M. anisopliae, M. brunneum, and M. robertsii were resistant to fluconazole and some were also resistant to amphotericin B. The marked differences in susceptibility between the specialist M. acridum and the generalist Metarhizium species suggest that this characteristic is associated with their different ecological niches, and may assist in devising rational antifungal treatments for the rare cases of mycoses caused by Metarhizium species.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Ludmilla Tonani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Drauzio E N Rangel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil
| | - Donald W Roberts
- Department of Biology, Utah State University, Logan, UT 84322-5305, USA
| | - Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
15
|
Integration of microbial biopesticides in greenhouse floriculture: The Canadian experience. J Invertebr Pathol 2017; 165:4-12. [PMID: 29196232 DOI: 10.1016/j.jip.2017.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 11/23/2022]
Abstract
Historically, greenhouse floriculture has relied on synthetic insecticides to meet its pest control needs. But, growers are increasingly faced with the loss or failure of synthetic chemical pesticides, declining access to new chemistries, stricter environmental/health and safety regulations, and the need to produce plants in a manner that meets the 'sustainability' demands of a consumer driven market. In Canada, reports of thrips resistance to spinosad (Success™) within 6-12 months of its registration prompted a radical change in pest management philosophy and approach. Faced with a lack of registered chemical alternatives, growers turned to biological control out of necessity. Biological control now forms the foundation for pest management programs in Canadian floriculture greenhouses. Success in a biocontrol program is rarely achieved through the use of a single agent, though. Rather, it is realized through the concurrent use of biological, cultural and other strategies within an integrated plant production system. Microbial insecticides can play a critical supporting role in biologically-based integrated pest management (IPM) programs. They have unique modes of action and are active against a range of challenging pests. As commercial microbial insecticides have come to market, research to generate efficacy data has assisted their registration in Canada, and the development and adaptation of integrated programs has promoted uptake by floriculture growers. This review documents some of the work done to integrate microbial insecticides into chrysanthemum and poinsettia production systems, outlines current use practices, and identifies opportunities to improve efficacy in Canadian floriculture crops.
Collapse
|
16
|
Li G, Fan A, Peng G, Keyhani NO, Xin J, Cao Y, Xia Y. A bifunctional catalase-peroxidase,MakatG1, contributes to virulence ofMetarhizium acridumby overcoming oxidative stress on the host insect cuticle. Environ Microbiol 2017; 19:4365-4378. [DOI: 10.1111/1462-2920.13932] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 09/14/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Guohong Li
- School of Life Sciences; Chongqing University; Chongqing China
- Chongqing Engineering Research Center for Fungal Insecticides; Chongqing China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission; Chongqing China
| | - Anni Fan
- School of Life Sciences; Chongqing University; Chongqing China
- Chongqing Engineering Research Center for Fungal Insecticides; Chongqing China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission; Chongqing China
| | - Guoxiong Peng
- School of Life Sciences; Chongqing University; Chongqing China
- Chongqing Engineering Research Center for Fungal Insecticides; Chongqing China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission; Chongqing China
| | - Nemat O. Keyhani
- School of Life Sciences; Chongqing University; Chongqing China
- Department of Microbiology and Cell Science; University of Florida; Gainesville FL USA
| | - Jiankang Xin
- School of Life Sciences; Chongqing University; Chongqing China
- Chongqing Engineering Research Center for Fungal Insecticides; Chongqing China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission; Chongqing China
| | - Yueqing Cao
- School of Life Sciences; Chongqing University; Chongqing China
- Chongqing Engineering Research Center for Fungal Insecticides; Chongqing China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission; Chongqing China
| | - Yuxian Xia
- School of Life Sciences; Chongqing University; Chongqing China
- Chongqing Engineering Research Center for Fungal Insecticides; Chongqing China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission; Chongqing China
| |
Collapse
|
17
|
Chandra Teja KNP, Rahman SJ. Characterisation and evaluation of Metarhizium anisopliae (Metsch.) Sorokin strains for their temperature tolerance. Mycology 2016; 7:171-179. [PMID: 30123629 PMCID: PMC6059133 DOI: 10.1080/21501203.2016.1247116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/03/2016] [Indexed: 10/26/2022] Open
Abstract
Entomopathogenic fungal species from the genera Beauveria, Metarhizium and Lecanicillium are important components in biological control of insect pests. However, temperature, humidity and UV radiation are among the important abiotic factors, which limit their effective usage. In this study, four local isolates of Metarhizium were isolated from different crop rhiospheres of Telangana and Andhra Pradesh states of India, identified and tested for their temperature tolerance in terms of radial growth, conidial yield per 10 mm disc and rate of conidial germination at different incubation temperatures. The results revealed that strains LaMa1 and MaAICRP performed well in terms of radial growth, conidial yield and rate of conidial germination, even at 35°C temperature. The role of such temperature tolerant strains in agriculture is discussed.
Collapse
Affiliation(s)
- K N P Chandra Teja
- Department of Microbiology, Agri Biotech Foundation, Hyderabad, India.,Department of Environmental Sciences, Jawaharlal Nehru Technological University, Hyderabad, India
| | - S J Rahman
- AICRP on Biological Control of Crop Pests and Weeds, PJTSAU, Hyderabad, India
| |
Collapse
|
18
|
Heat-stressed Metarhizium anisopliae: viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus. Parasitol Res 2016; 116:111-121. [PMID: 27704216 DOI: 10.1007/s00436-016-5267-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022]
Abstract
The current study investigated the thermotolerance of Metarhizium anisopliae s.l. conidia from the commercial products Metarril® SP Organic and Metarril® WP. The efficacy of these M. anisopliae formulations against the tick Rhipicephalus sanguineus s.l. was studied in laboratory under optimum or heat-stress conditions. The products were prepared in water [Tween® 80, 0.01 % (v/v)] or pure mineral oil. Conidia from Metarril® SP Organic suspended in water presented markedly delayed germination after heating to constant 40 °C (for 2, 4, or 6 h) compared to conidia suspended in mineral oil. Metarril® SP Organic suspended in oil and exposed to daily cycles of heat-stress (40 °C for 4 h and 25 °C for 19 h for 5 consecutive days) presented relative germination of conidia ranging from 92.8 to 87.2 % from day 1 to day 5, respectively. Conversely, germination of conidia prepared in water ranged from 79.3 to 39.1 % from day 1 to day 5, respectively. Culturability of Metarril® WP decreased from 96 % when conidia were cultured for 30 min prior to heat exposure (40 °C for 4 h) to 9 % when conidia were cultured for 8 h. Tick percent control was distinctly higher when engorged females were treated with oil suspensions rather than water suspensions, even when treated ticks were exposed to heat-stress regimen. Oil-based applications protected fungal conidia against heat-stress. Although Metarril® is not registered for tick control, it may be useful for controlling R. sanguineus, especially if it is prepared in mineral oil.
Collapse
|
19
|
Zhao J, Yao R, Wei Y, Huang S, Keyhani NO, Huang Z. Screening of Metarhizium anisopliae UV-induced mutants for faster growth yields a hyper-virulent isolate with greater UV and thermal tolerances. Appl Microbiol Biotechnol 2016; 100:9217-9228. [DOI: 10.1007/s00253-016-7746-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023]
|
20
|
Effect of heat stress and oil formulation on conidial germination of Metarhizium anisopliae s.s. on tick cuticle and artificial medium. J Invertebr Pathol 2016; 138:94-103. [PMID: 27317831 DOI: 10.1016/j.jip.2016.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022]
Abstract
The effect of heat stress (45°C) versus non-heat stress (27°C) on germination of Metarhizium anisopliae sensu stricto (s.s.) isolate IP 119 was examined with conidia formulated (suspended) in pure mineral oil or in water (Tween 80, 0.01%), and then applied onto the cuticle of Rhipicephalus sanguineus sensu lato (s.l.) engorged females or onto culture medium (PDAY). In addition, bioassays were performed to investigate the effect of conidia heated while formulated in oil, then applied to blood-engorged adult R. sanguineus females. Conidia suspended in water then exposed to 45°C, in comparison to conidia formulated in mineral oil and exposed to the same temperature, germinated less and more slowly when incubated on either PDAY medium or tick cuticle. Also, conidial germination on tick cuticle was delayed in comparison to germination on artificial culture medium; for example, germination was 13% on tick cuticle 72h after inoculation, in contrast to 61.5% on PDAY medium. Unheated (27°C) conidia suspended in either water or oil and applied to tick cuticle developed appressoria 36h after treatment; whereas only heat-stressed conidia formulated in oil developed appressoria on tick cuticle. In comparison to conidia heated in mineral oil, there was a strong negative effect of heat on germination of conidia heated in water before being applied to arthropod cuticle. Nevertheless, bioassays [based primarily on egg production (quantity) and egg hatchability] exhibited high percentages of tick control regardless of the type of conidial suspension; i.e., water- or oil-formulated conidia, and whether or not conidia were previously exposed to heat. In comparison to aqueous conidial preparations, however, conidia formulated in oil reduced egg hatchability irrespective of heat or no-heat exposure. In conclusion, mineral-oil formulation protected conidia against heat-induced delay of both germination and appressorium production when applied to the cuticle of R. sanguineus.
Collapse
|
21
|
Clifton EH, Jaronski ST, Hodgson EW, Gassmann AJ. Abundance of Soil-Borne Entomopathogenic Fungi in Organic and Conventional Fields in the Midwestern USA with an Emphasis on the Effect of Herbicides and Fungicides on Fungal Persistence. PLoS One 2015; 10:e0133613. [PMID: 26191815 PMCID: PMC4507996 DOI: 10.1371/journal.pone.0133613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/30/2015] [Indexed: 11/19/2022] Open
Abstract
Entomopathogenic fungi (EPF) are widespread in agricultural fields and help suppress crop pests. These natural enemies may be hindered by certain agronomic practices associated with conventional agriculture including the use of pesticides. We tested whether the abundance of EPF differed between organic and conventional fields, and whether specific cropping practices and soil properties were correlated with their abundance. In one year of the survey, soil from organic fields and accompanying margins had significantly more EPF than conventional fields and accompanying margins. Regression analysis revealed that the percentage of silt and the application of organic fertilizer were positively correlated with EPF abundance; but nitrogen concentration, tillage, conventional fields, and margins of conventional fields were negatively correlated with EPF abundance. A greenhouse experiment in which fungicides and herbicides were applied to the soil surface showed no significant effect on EPF. Though organic fields were perceived to be more suitable environments for EPF, abiotic factors and cropping practices such as tillage may have greater impacts on the abundance of EPF. Also, fungicides and herbicides may not be as toxic to soil-borne EPF as originally thought.
Collapse
Affiliation(s)
- Eric H. Clifton
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Stefan T. Jaronski
- USDA, Northern Plains Agricultural Research Lab, Sidney, Montana, United States of America
| | - Erin W. Hodgson
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Aaron J. Gassmann
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
22
|
The International Symposium on Fungal Stress: ISFUS. Curr Genet 2015; 61:479-87. [DOI: 10.1007/s00294-015-0501-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/25/2023]
|
23
|
Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr Genet 2015; 61:383-404. [PMID: 25791499 DOI: 10.1007/s00294-015-0477-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/07/2023]
Abstract
The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.
Collapse
|