1
|
Kergaravat B, Plener L, Castan M, Grizard D, Chabrière É, Daudé D. Enzymes, Proteins, and Peptides as Promising Biosolutions for Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11546-11555. [PMID: 40310649 DOI: 10.1021/acs.jafc.5c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The development of environmentally friendly alternatives to plant protection products is essential for sustainable agriculture. In this context, natural compounds, such as enzymes, proteins, and peptides, represent a promising reservoir of bioactive molecules. Although little represented on the market, their potential as fertilizers, biostimulants, and biopesticides is highlighted by numerous reports and patents, which the present review aims to bring together. While fertilization and biostimulation are primarily aimed at improving plant yield and health, biopesticides can be used to target a wide range of microbial plant pathogens and pests. The nature and effects of proteinaceous molecules are discussed in light of restrictive regulations.
Collapse
Affiliation(s)
- Baptiste Kergaravat
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13284 Marseille, France
- Gene&GreenTK, 13005 Marseille, France
| | | | - Magali Castan
- Efika, ZA Sainte-Anne, 85600 La Boissière-de-Montaigu, France
| | - Damien Grizard
- Gene&GreenTK, 13005 Marseille, France
- Efika, ZA Sainte-Anne, 85600 La Boissière-de-Montaigu, France
| | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13284 Marseille, France
| | | |
Collapse
|
2
|
Palma L, Frizzo L, Kaiser S, Berry C, Caballero P, Bode HB, Del Valle EE. Genome Sequence Analysis of Native Xenorhabdus Strains Isolated from Entomopathogenic Nematodes in Argentina. Toxins (Basel) 2024; 16:108. [PMID: 38393187 PMCID: PMC10892061 DOI: 10.3390/toxins16020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Entomopathogenic nematodes from the genus Steinernema (Nematoda: Steinernematidae) are capable of causing the rapid killing of insect hosts, facilitated by their association with symbiotic Gram-negative bacteria in the genus Xenorhabdus (Enterobacterales: Morganellaceae), positioning them as interesting candidate tools for the control of insect pests. In spite of this, only a limited number of species from this bacterial genus have been identified from their nematode hosts and their insecticidal properties documented. This study aimed to perform the genome sequence analysis of fourteen Xenorhabdus strains that were isolated from Steinernema nematodes in Argentina. All of the strains were found to be able of killing 7th instar larvae of Galleria mellonella (L.) (Lepidoptera: Pyralidae). Their sequenced genomes harbour 110 putative insecticidal proteins including Tc, Txp, Mcf, Pra/Prb and App homologs, plus other virulence factors such as putative nematocidal proteins, chitinases and secondary metabolite gene clusters for the synthesis of different bioactive compounds. Maximum-likelihood phylogenetic analysis plus average nucleotide identity calculations strongly suggested that three strains should be considered novel species. The species name for strains PSL and Reich (same species according to % ANI) is proposed as Xenorhabdus littoralis sp. nov., whereas strain 12 is proposed as Xenorhabdus santafensis sp. nov. In this work, we present a dual insight into the biocidal potential and diversity of the Xenorhabdus genus, demonstrated by different numbers of putative insecticidal genes and biosynthetic gene clusters, along with a fresh exploration of the species within this genus.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, 46100 Burjassot, Spain
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María 1555, Argentina
| | - Laureano Frizzo
- ICIVET Litoral, CONICET-UNL, Departamento de Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza S3080, Argentina;
| | - Sebastian Kaiser
- Department of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany; (S.K.); (H.B.B.)
- Evolutionary Biochemistry Group, Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK;
| | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Spain;
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Polígono Industrial Mocholi Plaza Cein 5, Nave A14, 31110 Noain, Spain
| | - Helge B. Bode
- Department of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany; (S.K.); (H.B.B.)
- Molecular Biotechnology, Department of Biosciences, Goethe Universität Frankfurt, 60438 Frankfurt, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043 Marburg, Germany
- Department of Chemistry, Phillips University Marburg, 35043 Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt, Germany
| | - Eleodoro Eduardo Del Valle
- ICiagro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza S3080, Argentina
| |
Collapse
|
3
|
Kang Z, Martinson VG, Wang Y, Coon KL, Valzania L, Strand MR. Increased environmental microbial diversity reduces the disease risk of a mosquitocidal pathogen. mBio 2024; 15:e0272623. [PMID: 38055338 PMCID: PMC10790785 DOI: 10.1128/mbio.02726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE The host-specific microbiotas of animals can both reduce and increase disease risks from pathogens. In contrast, how environmental microbial communities affect pathogens is largely unexplored. Aquatic habitats are of interest because water enables environmental microbes to readily interact with animal pathogens. Here, we focused on mosquitoes, which are important disease vectors as terrestrial adults but are strictly aquatic as larvae. We identified a pathogen of mosquito larvae from the field as a strain of Chromobacterium haemolyticum. Comparative genomic analyses and functional assays indicate this strain and other Chromobacterium are mosquitocidal but are also opportunistic pathogens of other animals. We also identify a critical role for diversity of the environmental microbiota in disease risk. Our study characterizes both the virulence mechanisms of a pathogen and the role of the environmental microbiota in disease risk to an aquatic animal of significant importance to human health.
Collapse
Affiliation(s)
- Zhiwei Kang
- Hebei University, College of Life Sciences, Baoding, Hebei, China
| | - Vincent G. Martinson
- Department of Entomology, University of Georgia, Athens, Georgia, USA
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Yin Wang
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Kerri L. Coon
- Department of Entomology, University of Georgia, Athens, Georgia, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luca Valzania
- Department of Entomology, University of Georgia, Athens, Georgia, USA
- Institut Curie, Paris, France
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
IPD072Aa from Pseudomonas chlororaphis Targets Midgut Epithelial Cells in Killing Western Corn Rootworm ( Diabrotica virgifera virgifera). Appl Environ Microbiol 2023; 89:e0162222. [PMID: 36847510 PMCID: PMC10057879 DOI: 10.1128/aem.01622-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
IPD072Aa from Pseudomonas chlororaphis is a new insecticidal protein that has been shown to have high activity against western corn rootworm (WCR). IPD072 has no sequence signatures or predicted structural motifs with any known protein revealing little insight into its mode of action using bioinformatic tools. As many bacterially derived insecticidal proteins are known to act through mechanisms that lead to death of midgut cells, we evaluated whether IPD072Aa also acts by targeting the cells of WCR midgut. IPD072Aa exhibits specific binding to brush border membrane vesicles (BBMVs) prepared from WCR guts. The binding was found to occur at binding sites that are different than those recognized by Cry3A or Cry34Ab1/Cry35Ab1, proteins expressed by current maize traits that target WCR. Using fluorescence confocal microscopy, immuno-detection of IPD072Aa in longitudinal sections from whole WCR larvae that were fed IPD072Aa revealed the association of the protein with the cells that line the gut. High-resolution scanning electron microscopy of similar whole larval sections revealed the disruption of the gut lining resulting from cell death caused by IPD072Aa exposure. These data show that the insecticidal activity of IPD072Aa results from specific targeting and killing of rootworm midgut cells. IMPORTANCE Transgenic traits targeting WCR based on insecticidal proteins from Bacillus thuringiensis have proven effective in protecting maize yield in North America. High adoption has led to WCR populations that are resistant to the trait proteins. Four proteins have been developed into commercial traits, but they represent only two modes of action due to cross-resistance among three. New proteins suited for trait development are needed. IPD072Aa, identified from the bacterium Pseudomonas chlororaphis, was shown to be effective in protecting transgenic maize against WCR. To be useful, IPD072Aa must work through binding to different receptors than those utilized by current traits to reduce risk of cross-resistance and understanding its mechanism of toxicity could aid in countering resistance development. Our results show that IPD072Aa binds to receptors in WCR gut that are different than those utilized by current commercial traits and its targeted killing of midgut cells results in larval death.
Collapse
|
5
|
Jabeur R, Guyon V, Toth S, Pereira AE, Huynh MP, Selmani Z, Boland E, Bosio M, Beuf L, Clark P, Vallenet D, Achouak W, Audiffrin C, Torney F, Paul W, Heulin T, Hibbard BE, Toepfer S, Sallaud C. A novel binary pesticidal protein from Chryseobacterium arthrosphaerae controls western corn rootworm by a different mode of action to existing commercial pesticidal proteins. PLoS One 2023; 18:e0267220. [PMID: 36800363 PMCID: PMC9937505 DOI: 10.1371/journal.pone.0267220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/04/2022] [Indexed: 02/18/2023] Open
Abstract
The western corn rootworm (WCR) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) remains one of the economically most important pests of maize (Zea mays) due to its adaptive capabilities to pest management options. This includes the ability to develop resistance to some of the commercial pesticidal proteins originating from different strains of Bacillus thuringiensis. Although urgently needed, the discovery of new, environmentally safe agents with new modes of action is a challenge. In this study we report the discovery of a new family of binary pesticidal proteins isolated from several Chryseobacterium species. These novel binary proteins, referred to as GDI0005A and GDI0006A, produced as recombinant proteins, prevent growth and increase mortality of WCR larvae, as does the bacteria. These effects were found both in susceptible and resistant WCR colonies to Cry3Bb1 and Cry34Ab1/Cry35Ab1 (reassigned Gpp34Ab1/Tpp35Ab1). This suggests GDI0005A and GDI0006A may not share the same binding sites as those commercially deployed proteins and thereby possess a new mode of action. This paves the way towards the development of novel biological or biotechnological management solutions urgently needed against rootworms.
Collapse
Affiliation(s)
- Rania Jabeur
- Limagrain Europe, Centre de recherche, Chappes, France
| | | | - Szabolcs Toth
- Integrated Pest Management Department, Hungarian University of Agriculture and Life Sciences—MATE, Godollo, Hungary
- CABI Switzerland, c/o Plant Protection and Soil Conservation Directorate, Hodmezovasarhely, Hungary
| | - Adriano E. Pereira
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, United States of America
| | - Man P. Huynh
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, United States of America
| | - Zakia Selmani
- Laboratoire de Biologie et Physiologie des Organismes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediène, USTHB, Alger, Algérie
| | - Erin Boland
- Genective USA Corp, Champaign, IL, United States of America
| | - Mickael Bosio
- Limagrain Europe, Centre de recherche, Chappes, France
| | - Laurent Beuf
- Limagrain Europe, Centre de recherche, Chappes, France
| | - Pete Clark
- Genective USA Corp, Champaign, IL, United States of America
| | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Evry, Université Paris-Saclay, CNRS, Evry, France
| | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Saint Paul-Lez-Durance, France
| | | | | | - Wyatt Paul
- Limagrain Europe, Centre de recherche, Chappes, France
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Saint Paul-Lez-Durance, France
| | - Bruce E. Hibbard
- USDA-ARS, Plant Genetics Research Unit, Univ. Missouri, Columbia, MO, United States of America
| | - Stefan Toepfer
- CABI Switzerland, c/o Plant Protection and Soil Conservation Directorate, Hodmezovasarhely, Hungary
| | | |
Collapse
|
6
|
Chromobacterium Csp_P biopesticide is toxic to larvae of three Diabrotica species including strains resistant to Bacillus thuringiensis. Sci Rep 2022; 12:17858. [PMID: 36284199 PMCID: PMC9596699 DOI: 10.1038/s41598-022-22229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 01/20/2023] Open
Abstract
The development of new biopesticides to control the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is urgent due to resistance evolution to various control methods. We tested an air-dried non-live preparation of Chromobacterium species Panama (Csp_P), against multiple corn rootworm species, including Bt-resistant and -susceptible WCR strains, northern (NCR, D. barberi Smith & Lawrence), and southern corn rootworm (SCR, D. undecimpunctata howardi Barber), in diet toxicity assays. Our results documented that Csp_P was toxic to all three corn rootworms species based on lethal (LC50), effective (EC50), and molt inhibition concentration (MIC50). In general, toxicity of Csp_P was similar among all WCR strains and ~ 3-fold less toxic to NCR and SCR strains. Effective concentration (EC50) was also similar among WCR and SCR strains, and 5-7-fold higher in NCR strains. Molt inhibition (MIC50) was similar among all corn rootworm strains except NCR diapause strain that was 2.5-6-fold higher when compared to all other strains. There was no apparent cross-resistance between Csp_P and any of the currently available Bt proteins. Our results indicate that Csp_P formulation was effective at killing multiple corn rootworm strains including Bt-resistant WCR and could be developed as a potential new management tool for WCR control.
Collapse
|
7
|
O'Hara-Hanley K, Harrison A, Soby SD. Chromobacterium alticapitis sp. nov. and Chromobacterium sinusclupearum sp. nov. isolated from wild cranberry bogs in the Cape Cod National Seashore, USA. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two non-pigmented strains in the genus
Chromobacterium
, MWU14-2602T and MWU13-2610T, were isolated from wild cranberry bogs in the Cape Cod National Seashore, USA. The isolates were characterized by genomic and phenotypic analyses, the results of which indicated that they represent two novel species. Based on total genome sequences, the closest relatives were in the
Chromobacterium amazonense
group, which includes the recently described
Chromobacterium paludis
. Whole genome sequences were compared by genome blast distance phylogeny, digital DNA–DNA hybridization and average nucleotide identity analyses with each other and with the type strains of their nearest species. MWU14-2602T and MWU13-2610T fell well below the accepted cutoff values for species relatedness, clearly indicating that they represent novel species. Although little is known about these organisms in situ, under laboratory conditions, MWU13-2610T produced a modest amount of HCN and was strongly positive for exoprotease activity, whereas MWU14-2602T did not produce HCN or exoproteases. The predominant fatty acids for both isolates were summed C16 : 1ω7cis/C16 : 1ω6cis. Both isolates produced siderophores and pyomelanin pigment on rich media, and neither was haemolytic on sheep blood agar. We propose the names Chromobacterium alticapitis sp. nov. (type strain MWU14-2602T=ATCC TSD 260T=CCOS 1979T) and Chromobacterium sinusclupearum sp. nov. (type strain MWU13-2610T=ATCC TSD-259T=CCOS 1981T) for these taxa.
Collapse
Affiliation(s)
- Kory O'Hara-Hanley
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Alisha Harrison
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Scott D. Soby
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
8
|
Yamamoto T. Engineering of Bacillus thuringiensis insecticidal proteins. JOURNAL OF PESTICIDE SCIENCE 2022; 47:47-58. [PMID: 35800392 PMCID: PMC9184247 DOI: 10.1584/jpestics.d22-016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 05/12/2023]
Abstract
Bacillus thuringiensis (Bt) has been used as sprayable pesticides for many decades. Bt strains utilized in these products produce multiple insecticidal proteins to complement a narrow insect specificity of each protein. In the late 1990s, genes encoding Bt insecticidal proteins were expressed in crop plants such as cotton and corn to protect these crops from insect damage. The first Bt protein used in transgenic cotton was Cry1Ac to control Heliothis virescens (tobacco budworm). Cry1Ab was applied to corn to control Ostrinia nubilalis (European corn borer). Since these insects have developed resistance to Cry1Ac and Cry1Ab, new Bt proteins are required to overcome the resistance. In order to protect corn furthermore, it is desired to control Diabrotica virgifera (Western corn rootworm), Helicoverpa zea (corn earworm) and Spodoptera frugiperda (fall armyworm). Recently, many new Bt insecticidal proteins have been discovered, but most of them require protein engineering to meet the high activity standard for commercialization. The engineering process for higher activity necessary for Bt crops is called optimization. The seed industry has been optimizing Bt insecticidal proteins to improve their insecticidal activity. In this review, several optimization projects, which have led to substantial activity increases of Bt insecticidal proteins, are described.
Collapse
Affiliation(s)
- Takashi Yamamoto
- Bacillus Tech LLC, Dublin, California 94568, U.S.A
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Moar WJ, Giddings KS, Narva KE, Nelson ME. Enhancing global food security by using bacterial proteins with improved safety profiles to control insect pests. J Invertebr Pathol 2021; 187:107704. [PMID: 34896129 DOI: 10.1016/j.jip.2021.107704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- William J Moar
- Bayer Crop Science, 700 Chesterfield Parkway, Chesterfield, MO 63017, USA.
| | - Kara S Giddings
- Bayer Crop Science, 700 Chesterfield Parkway, Chesterfield, MO 63017, USA
| | - Kenneth E Narva
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA 50131, USA
| | - Mark E Nelson
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA 50131, USA
| |
Collapse
|
10
|
Pereira AE, Huynh MP, Carlson AR, Haase A, Kennedy RM, Shelby KS, Coudron TA, Hibbard BE. Assessing the Single and Combined Toxicity of the Bioinsecticide Spear and Cry3Bb1 Protein Against Susceptible and Resistant Western Corn Rootworm Larvae (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2220-2228. [PMID: 34453170 DOI: 10.1093/jee/toab160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 06/13/2023]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), poses a serious threat to maize (Zea mays L.) growers in the U.S. Corn Belt. Transgenic corn expressing Bacillus thuringiensis (Bt) Berliner is the major management tactic along with crop rotation. Bt crops targeting WCR populations have been widely planted throughout the Corn Belt. Rootworms have developed resistance to nearly all management strategies including Bt corn. Therefore, there is a need for new products that are not cross-resistant with the current Bt proteins. In this study, we evaluated the susceptibility of WCR strains resistant and susceptible to Cry3Bb1 to the biological insecticide Spear-T (GS-omega/kappa-Hexatoxin-Hv1a) alone and combined with Cry3Bb1 protein. The activity of Hv1a alone was similar between Cry3Bb1-resistant and susceptible strains (LC50s = 0.95 mg/cm2 and 1.50 mg/cm2, respectively), suggesting that there is no cross-resistance with Cry3Bb1 protein. Effective concentration (EC50), molt inhibition concentration (MIC50), and inhibition concentration (IC50) values of Hv1a alone were also similar between both strains, based on non-overlapping confidence intervals. Increased mortality (64%) was observed on resistant larvae exposed to Hv1a (0.6 mg/cm2) + Cry3Bb1 protein (170.8 µg/cm2) compared to 0% mortality when exposed to Cry3Bb1 alone and 34% mortality to Hv1a alone (0.3 mg/cm2). The time of larval death was not significantly different between Hv1a alone (3.79 mg/cm2) and Hv1a (0.6 mg/cm2) + Cry3Bb1 (170.8 µg/cm2). New control strategies that are not cross-resistant with current insecticides and Bt proteins are needed to better manage the WCR, and Hv1a together with Cry3Bb1 may fit this role.
Collapse
Affiliation(s)
- Adriano E Pereira
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Man P Huynh
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | | | | | | | - Kent S Shelby
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO, USA
| | - Thomas A Coudron
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO, USA
| | | |
Collapse
|
11
|
Milijaš Jotić M, Panevska A, Iacovache I, Kostanjšek R, Mravinec M, Skočaj M, Zuber B, Pavšič A, Razinger J, Modic Š, Trenti F, Guella G, Sepčić K. Dissecting Out the Molecular Mechanism of Insecticidal Activity of Ostreolysin A6/Pleurotolysin B Complexes on Western Corn Rootworm. Toxins (Basel) 2021; 13:toxins13070455. [PMID: 34209983 PMCID: PMC8310357 DOI: 10.3390/toxins13070455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/04/2023] Open
Abstract
Ostreolysin A6 (OlyA6) is a protein produced by the oyster mushroom (Pleurotus ostreatus). It binds to membrane sphingomyelin/cholesterol domains, and together with its protein partner, pleurotolysin B (PlyB), it forms 13-meric transmembrane pore complexes. Further, OlyA6 binds 1000 times more strongly to the insect-specific membrane sphingolipid, ceramide phosphoethanolamine (CPE). In concert with PlyB, OlyA6 has potent and selective insecticidal activity against the western corn rootworm. We analysed the histological alterations of the midgut wall columnar epithelium of western corn rootworm larvae fed with OlyA6/PlyB, which showed vacuolisation of the cell cytoplasm, swelling of the apical cell surface into the gut lumen, and delamination of the basal lamina underlying the epithelium. Additionally, cryo-electron microscopy was used to explore the membrane interactions of the OlyA6/PlyB complex using lipid vesicles composed of artificial lipids containing CPE, and western corn rootworm brush border membrane vesicles. Multimeric transmembrane pores were formed in both vesicle preparations, similar to those described for sphingomyelin/cholesterol membranes. These results strongly suggest that the molecular mechanism of insecticidal action of OlyA6/PlyB arises from specific interactions of OlyA6 with CPE, and the consequent formation of transmembrane pores in the insect midgut.
Collapse
Affiliation(s)
- Matej Milijaš Jotić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (I.I.); (B.Z.)
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Martina Mravinec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (I.I.); (B.Z.)
| | - Ana Pavšič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Jaka Razinger
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.R.); (Š.M.)
| | - Špela Modic
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.R.); (Š.M.)
| | - Francesco Trenti
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, 38123 Trento, Italy; (F.T.); (G.G.)
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, 38123 Trento, Italy; (F.T.); (G.G.)
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
- Correspondence: ; Tel.: +386-1-320-3419
| |
Collapse
|
12
|
Pérez Ortega C, Leininger C, Barry J, Poland B, Yalpani N, Altier D, Nelson ME, Lu AL. Coordinated binding of a two-component insecticidal protein from Alcaligenes faecalis to western corn rootworm midgut tissue. J Invertebr Pathol 2021; 183:107597. [PMID: 33945817 DOI: 10.1016/j.jip.2021.107597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
AfIP-1A/1B is a two-component insecticidal protein identified from the soil bacterium Alcaligenes faecalis that has high activity against western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte). Previous results revealed that AfIP-1A/1B is cross-resistant to the binary protein from Bacillus thuringiensis (Bt), Cry34Ab1/Cry35Ab1 (also known as Gpp34Ab1/Tpp35Ab1; Crickmore et al., 2020), which was attributed to shared binding sites in WCR gut tissue (Yalpani et al., 2017). To better understand the interaction of AfIP-1A/1B with its receptor, we have systematically evaluated the binding of these proteins with WCR brush border membrane vesicles (BBMVs). Our findings show that AfIP-1A binds directly to BBMVs, while AfIP-1B does not; AfIP-1B binding only occurred in the presence of AfIP-1A which was accompanied by the presence of stable, high molecular weight oligomers of AfIP-1B observed on denaturing protein gels. Additionally, we show that AfIP-1A/1B forms pores in artificial lipid membranes. Finally, binding of AfIP-1A/1B was found to be reduced in BBMVs from Cry34Ab1/Cry35Ab1-resistant WCR where Cry34Ab1/Cry35Ab1 binding was also reduced. The reduced binding of both proteins is consistent with recognition of a shared receptor that has been altered in the resistant strain. The coordination of AfIP-1B binding by AfIP-1A, the similar structures between AfIP-1A and Cry34Ab1, along with their shared binding sites and cross-resistance, suggest a similar role for AfIP1A and Cry34Ab1 in receptor recognition and docking site for their cognate partners, AfIP-1B and Cry35Ab1, respectively.
Collapse
Affiliation(s)
| | - Chris Leininger
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| | - Jennifer Barry
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| | - Brad Poland
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| | - Nasser Yalpani
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| | - Dan Altier
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| | - Mark E Nelson
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA.
| | - Albert L Lu
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| |
Collapse
|
13
|
Paddock KJ, Robert CAM, Erb M, Hibbard BE. Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. INSECTS 2021; 12:171. [PMID: 33671118 PMCID: PMC7922318 DOI: 10.3390/insects12020171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.
Collapse
Affiliation(s)
- Kyle J. Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Christelle A. M. Robert
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Bruce E. Hibbard
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Cry75Aa (Mpp75Aa) Insecticidal Proteins for Controlling the Western Corn Rootworm, Diabrotica virgifera virgifera, (Coleoptera: Chrysomelidae), Isolated from the Insect Pathogenic Bacteria Brevibacillus laterosporus. Appl Environ Microbiol 2021; 87:AEM.02507-20. [PMID: 33310708 PMCID: PMC8090868 DOI: 10.1128/aem.02507-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This study describes three closely related proteins, cloned from Brevibacillus laterosporus strains, that are lethal upon feeding to Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR). Mpp75Aa1, Mpp75Aa2 and Mpp75Aa3 were toxic to WCR larvae when fed purified protein. Transgenic plants expressing each mMpp75Aa protein were protected from feeding damage and showed significant reduction in adult emergence from infested plants by both susceptible and Cry3Bb1 and Cry34Ab1/Cry35Ab1-resistant WCR. These results demonstrate that proteins from B. laterosporus are as efficacious as the well-known Bacillus thuringiensis (Bt) insecticidal proteins in controlling major insect pests such as WCR. The deployment of transgenic maize expressing mMpp75Aa along with other active molecules lacking cross-resistance have the potential to be a useful tool for control of WCR populations resistant to current Bt traits.IMPORTANCE Insects feeding on roots of crops can damage the plant roots resulting in yield loss due to poor water and nutrient uptake and plant lodging. In maize the western corn rootworm (WCR) can cause severe damage to the roots resulting in significant economic loss for farmers. Genetically modified (GM) expressing Bacillus thuringiensis (Bt) insect control proteins, has provided a solution for control of these pests. In recent years populations of WCR resistant to the Bt proteins in commercial GM maize have emerged. There is a need to develop new insecticidal traits for the control of WCR populations resistant to current commercial traits. New proteins with commercial level efficacy on WCR from sources other than Bt are becoming more critical. The Mpp75Aa proteins, from B. laterosporus, when expressed in maize, are efficacious against the resistant populations of WCR and have the potential to provide solutions for control of resistant WCR.
Collapse
|
15
|
Panevska A, Skočaj M, Modic Š, Razinger J, Sepčić K. Aegerolysins from the fungal genus Pleurotus - Bioinsecticidal proteins with multiple potential applications. J Invertebr Pathol 2020; 186:107474. [PMID: 32971130 DOI: 10.1016/j.jip.2020.107474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
The aegerolysin proteins ostreolysin A6, pleurotolysin A2 and erylysin A are produced by mushrooms of the genus Pleurotus. These aegerolysins can interact specifically with sphingolipid-enriched membranes. In particular, they strongly bind insect cells and to artificial lipid membranes that contain physiologically relevant concentrations of the main invertebrate-specific sphingolipid, ceramide phosphoethanolamine. Moreover, the aegerolysins permeabilise these membranes when combined with their protein partner pleurotolysin B, which contains a membrane-attack-complex/perforin domain. These aegerolysin/ pleurotolysin B complexes show strong and selective toxicity towards western corn rootworm larvae and adults and Colorado potato beetle larvae. Their insecticidal activities arise through aegerolysin binding to ceramide phosphoethanolamine in the insect midgut. This mode of membrane binding is different from those described for similar aegerolysin-based complexes of bacterial origin (e.g., Cry34Ab1/Cry35Ab1), or other Bacillus thuringiensis proteinaceous crystal toxins, which associate with protein receptors. The ability of Pleurotus aegerolysins to specifically interact with sphingolipid-enriched domains in mammalian cells can be further exploited to visualize lipid rafts in living cells, and to treat certain types of tumours and metabolic disorders. Finally, these proteins can strongly enhance fruiting initiation of P. ostreatus even when applied externally. In this review, we summarise the current knowledge of the potential biotechnological and biomedical applications of the Pleurotus aegerolysins, either alone or when complexed with pleurotolysin B, with special emphasis on their bioinsecticidal effects.
Collapse
Affiliation(s)
- Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Špela Modic
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia.
| | - Jaka Razinger
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Liu L, Schepers E, Lum A, Rice J, Yalpani N, Gerber R, Jiménez-Juárez N, Haile F, Pascual A, Barry J, Qi X, Kassa A, Heckert MJ, Xie W, Ding C, Oral J, Nguyen M, Le J, Procyk L, Diehn SH, Crane VC, Damude H, Pilcher C, Booth R, Liu L, Zhu G, Nowatzki TM, Nelson ME, Lu AL, Wu G. Identification and Evaluations of Novel Insecticidal Proteins from Plants of the Class Polypodiopsida for Crop Protection against Key Lepidopteran Pests. Toxins (Basel) 2019; 11:E383. [PMID: 31266212 PMCID: PMC6669613 DOI: 10.3390/toxins11070383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
Various lepidopteran insects are responsible for major crop losses worldwide. Although crop plant varieties developed to express Bacillus thuringiensis (Bt) proteins are effective at controlling damage from key lepidopteran pests, some insect populations have evolved to be insensitive to certain Bt proteins. Here, we report the discovery of a family of homologous proteins, two of which we have designated IPD083Aa and IPD083Cb, which are from Adiantum spp. Both proteins share no known peptide domains, sequence motifs, or signatures with other proteins. Transgenic soybean or corn plants expressing either IPD083Aa or IPD083Cb, respectively, show protection from feeding damage by several key pests under field conditions. The results from comparative studies with major Bt proteins currently deployed in transgenic crops indicate that the IPD083 proteins function by binding to different target sites. These results indicate that IPD083Aa and IPD083Cb can serve as alternatives to traditional Bt-based insect control traits with potential to counter insect resistance to Bt proteins.
Collapse
Affiliation(s)
- Lu Liu
- Corteva Agriscience, Hayward, CA 94545, USA
| | | | - Amy Lum
- Corteva Agriscience, Hayward, CA 94545, USA
| | - Janet Rice
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | - Ryan Gerber
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | - Fikru Haile
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | | | - Xiuli Qi
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Adane Kassa
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | | | | | | | | | - James Le
- Corteva Agriscience, Hayward, CA 94545, USA
| | - Lisa Procyk
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | | | | | | | - Russ Booth
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Lu Liu
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Genhai Zhu
- Corteva Agriscience, Hayward, CA 94545, USA
| | | | | | - Albert L Lu
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Gusui Wu
- Corteva Agriscience, Hayward, CA 94545, USA
| |
Collapse
|
17
|
Panevska A, Hodnik V, Skočaj M, Novak M, Modic Š, Pavlic I, Podržaj S, Zarić M, Resnik N, Maček P, Veranič P, Razinger J, Sepčić K. Pore-forming protein complexes from Pleurotus mushrooms kill western corn rootworm and Colorado potato beetle through targeting membrane ceramide phosphoethanolamine. Sci Rep 2019; 9:5073. [PMID: 30911026 PMCID: PMC6433908 DOI: 10.1038/s41598-019-41450-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/08/2019] [Indexed: 01/13/2023] Open
Abstract
Aegerolysins ostreolysin A (OlyA) and pleurotolysin A (PlyA), and pleurotolysin B (PlyB) with the membrane-attack-complex/perforin domain are proteins from the mushroom genus Pleurotus. Upon binding to sphingomyelin/cholesterol-enriched membranes, OlyA and PlyA can recruit PlyB to form multimeric bi-component transmembrane pores. Recently, Pleurotus aegerolysins OlyA, PlyA2 and erylysin A (EryA) were demonstrated to preferentially bind to artificial lipid membranes containing 50 mol% ceramide phosphoethanolamine (CPE), the main sphingolipid in invertebrate cell membranes. In this study, we demonstrate that OlyA6, PlyA2 and EryA bind to insect cells and to artificial lipid membranes with physiologically relevant CPE concentrations. Moreover, these aegerolysins permeabilize these membranes when combined with PlyB. These aegerolysin/PlyB complexes show selective toxicity toward western corn rootworm larvae and adults and Colorado potato beetle larvae. These data strongly suggest that these aegerolysin/PlyB complexes recognize CPE as their receptor molecule in the insect midgut. This mode of binding is different from those described for similar aegerolysin-based bacterial complexes, or other Bacillus thuringiensis Cry toxins, which have protein receptors. Targeting of Pleurotus aegerolysins to CPE and formation of transmembrane pores in concert with PlyB suggest the use of aegerolysin/PlyB complexes as novel biopesticides for the control of western corn rootworm and Colorado potato beetle.
Collapse
Affiliation(s)
- Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Maruša Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Špela Modic
- Agricultural Institute of Slovenia, Hacquetova 17, 1000, Ljubljana, Slovenia
| | - Ivana Pavlic
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.,Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Sara Podržaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Miki Zarić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Jaka Razinger
- Agricultural Institute of Slovenia, Hacquetova 17, 1000, Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Pereira AE, Coudron TA, Shelby K, French BW, Bernklau EJ, Bjostad LB, Hibbard BE. Comparative Susceptibility of Western Corn Rootworm (Coleoptera: Chrysomelidae) Neonates to Selected Insecticides and Bt Proteins in the Presence and Absence of Feeding Stimulants. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:842-851. [PMID: 30668732 DOI: 10.1093/jee/toy415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 06/09/2023]
Abstract
The susceptibility of western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae to nine insecticides from five different classes and to Bt proteins eCry3.1Ab and mCry3A in the presence or absence of feeding stimulants, was estimated in filter paper and diet toxicity assays, respectively. The use of a synthetic feeding stimulant blend of the sugars glucose, sucrose, and fructose plus linoleic acid at a ratio of 30:4:4:0.3 mg/ml of distilled water was evaluated to determine whether they increase the efficacy of insecticides and Bt proteins. The efficacy of thiamethoxam diluted in solutions with feeding stimulants was significantly increased when compared to thiamethoxam dilutions in water (>60-fold). Differences in the efficacy of the other insecticide classes when diluted in feeding stimulant solutions were no greater than fivefold when compared to the insecticides diluted in water. The presence of corn root juice as a natural feeding stimulant diminished toxicity of the insecticides, except for thiamethoxam, even though larval fresh weight was higher when fed on root juice compared to feeding stimulant or water. The use of feeding stimulants in diet toxicity assays did not enhance efficacy of eCry3.1Ab nor mCry3A proteins. Feeding stimulants can be recommended in combination with thiamethoxam to increase larval mortality. These results are discussed in terms of applicability of feeding stimulants to improve susceptibility of western corn rootworm larvae to pesticides in general.
Collapse
Affiliation(s)
| | - Thomas A Coudron
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO
| | - Kent Shelby
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO
| | - B Wade French
- North Central Agricultural Research Laboratory, USDA/ARS, Brookings, SD
| | - Elisa J Bernklau
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO
| | - Louis B Bjostad
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO
| | | |
Collapse
|
19
|
Zaitseva J, Vaknin D, Krebs C, Doroghazi J, Milam SL, Balasubramanian D, Duck NB, Freigang J. Structure-function characterization of an insecticidal protein GNIP1Aa, a member of an MACPF and β-tripod families. Proc Natl Acad Sci U S A 2019; 116:2897-2906. [PMID: 30728296 PMCID: PMC6386698 DOI: 10.1073/pnas.1815547116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The crystal structure of the Gram-negative insecticidal protein, GNIP1Aa, has been solved at 2.5-Å resolution. The protein consists of two structurally distinct domains, a MACPF (membrane attack complex/PerForin) and a previously uncharacterized type of domain. GNIP1Aa is unique in being a prokaryotic MACPF member to have both its structure and function identified. It was isolated from a Chromobacterium piscinae strain and is specifically toxic to Diabrotica virgifera virgifera larvae upon feeding. In members of the MACPF family, the MACPF domain has been shown to be important for protein oligomerization and formation of transmembrane pores, while accompanying domains define the specificity of the target of the toxicity. In GNIP1Aa the accompanying C-terminal domain has a unique fold composed of three pseudosymmetric subdomains with shared sequence similarity, a feature not obvious from the initial sequence examination. Our analysis places this domain into a protein family, named here β-tripod. Using mutagenesis, we identified functionally important regions in the β-tripod domain, which may be involved in target recognition.
Collapse
Affiliation(s)
| | | | | | | | - Sara L Milam
- Agricultural Solutions, BASF, Morrisville, NC 27560
| | | | | | | |
Collapse
|
20
|
Wei J, O'Rear J, Schellenberger U, Rosen BA, Park Y, McDonald MJ, Zhu G, Xie W, Kassa A, Procyk L, Perez Ortega C, Zhao J, Yalpani N, Crane VC, Diehn SH, Sandahl GA, Nelson ME, Lu AL, Wu G, Liu L. A selective insecticidal protein from Pseudomonas mosselii for corn rootworm control. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:649-659. [PMID: 28796437 PMCID: PMC5787824 DOI: 10.1111/pbi.12806] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/22/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The coleopteran insect western corn rootworm (WCR, Diabrotica virgifera virgifera) is an economically important pest in North America and Europe. Transgenic corn plants producing Bacillus thuringiensis (Bt) insecticidal proteins have been useful against this devastating pest, but evolution of resistance has reduced their efficacy. Here, we report the discovery of a novel insecticidal protein, PIP-47Aa, from an isolate of Pseudomonas mosselii. PIP-47Aa sequence shows no shared motifs, domains or signatures with other known proteins. Recombinant PIP-47Aa kills WCR, two other corn rootworm pests (Diabrotica barberi and Diabrotica undecimpunctata howardi) and two other beetle species (Diabrotica speciosa and Phyllotreta cruciferae), but it was not toxic to the spotted lady beetle (Coleomegilla maculata) or seven species of Lepidoptera and Hemiptera. Transgenic corn plants expressing PIP-47Aa show significant protection from root damage by WCR. PIP-47Aa kills a WCR strain resistant to mCry3A and does not share rootworm midgut binding sites with mCry3A or AfIP-1A/1B from Alcaligenes that acts like Cry34Ab1/Cry35Ab1. Our results indicate that PIP-47Aa is a novel insecticidal protein for controlling the corn rootworm pests.
Collapse
Affiliation(s)
| | | | - Ute Schellenberger
- DuPont PioneerHaywardCAUSA
- Present address:
TeneoBio Inc.1490 O'Brien DriveMenlo ParkCA94025USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lu Liu
- DuPont PioneerHaywardCAUSA
| |
Collapse
|
21
|
Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 2017; 35:926-935. [DOI: 10.1038/nbt.3974] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
|