1
|
Su H, Dai Q, Teng F, Li Z, Qi Y, Lu Y. Expression profiles analysis and roles in immunity of transient receptor potential (TRP) channel genes in Spodoptera frugiperda. BMC Genomics 2025; 26:401. [PMID: 40275159 PMCID: PMC12023399 DOI: 10.1186/s12864-025-11599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Transient receptor potential (TRP) ion channels play crucial roles in mediating responses to environmental stimuli, as well as regulating homeostasis and developmental processes in insects. Several members of the TRP superfamily are potential molecular targets for insecticides or repellents, indicating their research value in pest control. This study focuses on Spodoptera frugiperda, an important invasive pest in China known for its wide host range and strong reproductive capacity. Currently, there is a lack of molecular research on the TRP channels of the invasive pest S. frugiperda. RESULTS In this study, we identified 15 TRP family genes in S. frugiperda, which were classified into six subfamilies. The TRPP subfamily gene was not identified, whereas the TRPA subfamily contained the highest number of members in this insect. Real-time quantitative polymerase chain reaction (RT-qPCR) experiments revealed widespread expression of TRP channel genes across various developmental stages of S. frugiperda. However, TRPM and TRPML were highly expressed only in eggs. Transcripts of TRP channel genes were detected in the sensory organs of mature adults, including the mouthparts, antennae, compound eyes, legs, wings, harpagones, and ovipositors, as well as in tissues of 5th instar larvae (hemocytes, central nervous system, midgut, fat body, and Malpighian tubules). To explore the potential role of TRP channels in immunity, we detected their levels in larvae 24 h after infection with Serratia marcescens. The expression levels of TRPML, TRPL, and the Pain genes were significantly up-regulated, suggesting their important roles in immune responses to S. marcescens. CONCLUSIONS The results of this study extend our knowledge of these critical sensory channels in S. frugiperda. This knowledge provides a basis for the future development of insecticides that target these channels, thereby promoting the safe and effective control of this key pest.
Collapse
Affiliation(s)
- Hongai Su
- Department of Entomology, College of Plant Protection, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Qianxuan Dai
- Department of Entomology, College of Plant Protection, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Feiyue Teng
- Department of Entomology, College of Plant Protection, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Ziyuan Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Yixiang Qi
- Department of Entomology, College of Plant Protection, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Yongyue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Izu T, Uchida N, Takasu R, Nakabachi A. Antibacterial spectrum of diaphorin, a polyketide produced by a bacterial symbiont of the Asian citrus psyllid. J Invertebr Pathol 2025; 211:108309. [PMID: 40086789 DOI: 10.1016/j.jip.2025.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Diaphorin is a polyketide synthesized by "Candidatus Profftella armatura" (Betaproteobacteria: Burkholderiales), an obligate symbiont of a devastating agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Previous studies showed that physiological concentrations of diaphorin, which is present in D. citri at 2-20 mM, are inhibitory to various eukaryotes and Bacillus subtilis (Firmicutes: Bacilli) but promote the growth and metabolic activity of Escherichia coli (Gammaproteobacteria: Enterobacterales). However, bacteria examined for diaphorin activity were limited to these two model species, and little was known about the activity spectrum of diaphorin, which is essential for understanding its effects on the D. citri microbiota. As a first step to address this issue, this study investigated the effects of diaphorin on six bacterial species: Arsenophonus nasoniae, Photorhabdus luminescens, Serratia entomophila, Serratia symbiotica (all Gammaproteobacteria: Enterobacterales), and Micrococcus luteus and Kocuria rhizophila (both Actinobacteria: Micrococcales). The results revealed that five milimolar diaphorin promotes the growth of M. luteus but inhibits the growth of other bacterial species, showing that the spectrum of diaphorin is complex and not simply determined by the taxonomic group or the cell envelope composition of the target bacteria. To further assess whether differences in the susceptibility to diaphorin affect the suitability as a potential biopesticide, we analyzed the mortality of D. citri after treatment with these bacteria. This revealed that only S. entomophila significantly increases D. citri mortality, implying that when diaphorin is not inhibitory enough on bacteria, the innate bacterial growth speed and susceptibility to the D. citri immune system have a more significant impact on controlling D. citri.
Collapse
Affiliation(s)
- Takashi Izu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Naohiro Uchida
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Rena Takasu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan; Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan.
| |
Collapse
|
3
|
Hu W, Zhao C, Zheng R, Duan S, Lu Z, Zhang Z, Yi L, Zhang N. Serratia marcescens induces apoptosis in Diaphorina citri gut cells via reactive oxygen species-mediated oxidative stress. PEST MANAGEMENT SCIENCE 2024; 80:602-612. [PMID: 37740936 DOI: 10.1002/ps.7787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/17/2023] [Accepted: 09/23/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Asian citrus psyllid, Diaphorina citri, is a notorious pest in the citrus industry because it transmits Candidatus Liberibacter asiaticus, which causes an uncurable, devastating disease in citrus worldwide. Serratia marcescens is widely distributed in various environments that exhibits toxic effects to many insects. To develop strategies for enhancing the efficiency of pathogen-induced host mortality, a better understanding of the toxicity mechanism of Serratia marcescens on Diaphorina citri is critical. RESULTS Serratia marcescens KH-001 successfully colonized Diaphorina citri gut by feeding artificial diets, resulting in the damage of cells including nucleus, mitochondria, vesicles, and microvilli. Oral ingestion of Serratia marcescens KH-001 strongly induced apoptosis in gut cells by enhancing levels of Cyt c, p53 and caspase-1 and decreasing levels of inhibitors of apoptosis (IAP) and Bax inhibitor-1 (BI-1). The expression of dual oxidase (Duox) and nitric oxide synthase (Nos) was up-regulated by Serratia marcescens KH-001, which increased hydrogen peroxide (H2 O2 ) levels in the gut. Injection of abdomen of Diaphorina citri with H2 O2 accelerated the death of the adults and induced apoptosis in the gut cells by activating Cyt c, p53 and caspase-1 and suppressing IAP and BI-1. Pretreatment of infected Diaphorina citri with vitamin c (Vc) increased the adult survival and diminished the apoptosis-inducing effect. CONCLUSIONS The colonization of Serratia marcescens KH-001 in the guts of Diaphorina citri increased H2 O2 accumulation, leading to severe changes and apoptosis in intestinal cells, which enhanced a higher mortality level of D. citr. This study identifies the underlying virulence mechanism of Serratia marcescens KH-001 on Diaphorina citri that contributes to a widespread application in the integrated management of citrus psyllid. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Hu
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Chongfei Zhao
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Rongkun Zheng
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Shuo Duan
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Zhanjun Lu
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Long Yi
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ning Zhang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
4
|
Peng T, Yuan Y, Huang A, He J, Fu S, Duan S, Yi L, Yuan C, Yuan H, Wang X, Zhou C. Interaction between the flagellum of Candidatus Liberibacter asiaticus and the vitellogenin-like protein of Diaphorina citri significantly influences CLas titer. Front Microbiol 2023; 14:1119619. [PMID: 37143541 PMCID: PMC10152367 DOI: 10.3389/fmicb.2023.1119619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
Huanglongbing (HLB) is a global devastating citrus disease that is mainly caused by "Candidatus Liberibacter asiaticus" (CLas). It is mostly transmitted by the insect Asian citrus psyllid (ACP, Diaphorina citri) in a persistent and proliferative manner. CLas traverses multiple barriers to complete an infection cycle and is likely involved in multiple interactions with D. citri. However, the protein-protein interactions between CLas and D. citri are largely unknown. Here, we report on a vitellogenin-like protein (Vg_VWD) in D. citri that interacts with a CLas flagellum (flaA) protein. We found that Vg_VWD was upregulated in CLas-infected D. citri. Silencing of Vg_VWD in D. citri via RNAi silencing significantly increased the CLas titer, suggesting that Vg_VWD plays an important role in the CLas-D. citri interaction. Agrobacterium-mediated transient expression assays indicated that Vg_VWD inhibits BAX- and INF1-triggered necrosis and suppresses the callose deposition induced by flaA in Nicotiana benthamiana. These findings provide new insights into the molecular interaction between CLas and D. citri.
Collapse
Affiliation(s)
- Tao Peng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Yingzhe Yuan
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Aijun Huang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Jun He
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Shimin Fu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Shuo Duan
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Long Yi
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Chenyang Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Huizhu Yuan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Huizhu Yuan, ; Xuefeng Wang, ; Changyong Zhou,
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
- *Correspondence: Huizhu Yuan, ; Xuefeng Wang, ; Changyong Zhou,
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
- *Correspondence: Huizhu Yuan, ; Xuefeng Wang, ; Changyong Zhou,
| |
Collapse
|
5
|
Sarkar P, Ghanim M. Interaction of Liberibacter Solanacearum with Host Psyllid Vitellogenin and Its Association with Autophagy. Microbiol Spectr 2022; 10:e0157722. [PMID: 35863005 PMCID: PMC9430699 DOI: 10.1128/spectrum.01577-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 12/28/2022] Open
Abstract
Candidatus Liberibacter solanacearum (CLso) haplotype D, transmitted by the carrot psyllid Bactericera trigonica, is a major constraint for carrot production in Israel. Unveiling the molecular interactions between the psyllid vector and CLso can facilitate the development of nonchemical approaches for controlling the disease caused by CLso. Bacterial surface proteins are often known to be involved in adhesion and virulence; however, interactions of CLso with carrot psyllid proteins that have a role in the transmission process has remained unexplored. In this study, we used CLso outer membrane protein (OmpA) and flagellin as baits to screen for psyllid interacting proteins in a yeast two-hybrid system assay. We identified psyllid vitellogenin (Vg) to interact with both OmpA and flagellin of CLso. As Vg and autophagy are often tightly linked, we also studied the expression of autophagy-related genes to further elucidate this interaction. We used the juvenile hormone (JH-III) to induce the expression of Vg, thapsigargin for suppressing autophagy, and rapamycin for inducing autophagy. The results revealed that Vg negatively regulates autophagy. Induced Vg expression significantly suppressed autophagy-related gene expression and the levels of CLso significantly increased, resulting in a significant mortality of the insect. Although the specific role of Vg remains obscure, the findings presented here identify Vg as an important component in the insect immune responses against CLso and may help in understanding the initial molecular response in the vector against Liberibacter. IMPORTANCE Pathogen transmission by vectors involves multiple levels of interactions, and for the transmission of liberibacter species by psyllid vectors, much of these interactions are yet to be explored. Candidatus Liberibacter solanacearum (CLso) haplotype D inflicts severe economic losses to the carrot industry. Understanding the specific interactions at different stages of infection is hence fundamental and could lead to the development of better management strategies to disrupt the transmission of the bacteria to new host plants. Here, we show that two liberibacter membrane proteins interact with psyllid vitellogenin and also induce autophagy. Altering vitellogenin expression directly influences autophagy and CLso abundance in the psyllid vector. Although the exact mechanism underlying this interaction remains unclear, this study highlights the importance of immune responses in the transmission of this disease agent.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
6
|
Rashidi M, Killiny N. In Silico Characterization and Gene Expression Analysis of Toll Signaling Pathway-Related Genes in Diaphorina citri. INSECTS 2022; 13:783. [PMID: 36135484 PMCID: PMC9500897 DOI: 10.3390/insects13090783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri is the main vector of citrus greening disease, also known as Huanglongbing (HLB). Currently, mitigating HLB depends on the control of D. citri using insecticides. To design innovative control strategies, we should investigate various biological aspects of D. citri at the molecular level. Herein we explored the Toll signaling system-related proteins in D. citri using in silico analyzes. Additionally, the transcripts of the identified genes were determined in all life stages from eggs to adults. Our findings reveal that D. citri genome possesses Toll signaling pathway-related genes similar to the insect model, Drosophila melanogaster, with slight differences. These genes include cact, TI, Myd88, Dif/DI, pll, tub, and spz encoding Cactus, Toll, Myeloid differentiation factor 88, Dorsal related immunity factor/Dorsal, Pelle, Tube, and Spaetzle, respectively. Unlike D. melanogaster, in D. citri Dorsal, immunity factor and Dorsal are the same protein. In addition, in D. citri, Pelle protein possesses a kinase domain, which is absent in Pelle of D. melanogaster. Gene expression analysis showed the transcript for cact, TI, Myd88, pll, tub, and spz are maximum in adults, suggesting the immunity increases with maturity. Instead, Dif/DI transcripts were maximal in eggs and adults and minimal in nymphal stages, indicating its role in embryonic development. The overall findings will help in designing pioneering control strategies of D. citri based on repressing its immunity by RNAi or CRISPR and combining that with biological control.
Collapse
|
7
|
Diaphorin, a Polyketide Produced by a Bacterial Symbiont of the Asian Citrus Psyllid, Inhibits the Growth and Cell Division of Bacillus subtilis but Promotes the Growth and Metabolic Activity of Escherichia coli. Microbiol Spectr 2022; 10:e0175722. [PMID: 35894614 PMCID: PMC9430481 DOI: 10.1128/spectrum.01757-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diaphorin is a polyketide produced by “Candidatus Profftella armatura” (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a notorious agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Diaphorin belongs to the pederin family of bioactive agents found in various host-symbiont systems, including beetles, lichens, and sponges, harboring phylogenetically diverse bacterial producers. Previous studies showed that diaphorin, which is present in D. citri at concentrations of 2 to 20 mM, has inhibitory effects on various eukaryotes, including the natural enemies of D. citri. However, little is known about its effects on prokaryotic organisms. To address this issue, the present study assessed the biological activities of diaphorin on two model prokaryotes, Escherichia coli (Gammaproteobacteria: Enterobacterales) and Bacillus subtilis (Firmicutes: Bacilli). Their growth and morphological features were analyzed using spectrophotometry, optical microscopy followed by image analysis, and transmission electron microscopy. The metabolic activity of E. coli was further assessed using the β-galactosidase assay. The results revealed that physiological concentrations of diaphorin inhibit the growth and cell division of B. subtilis but promote the growth and metabolic activity of E. coli. This finding implies that diaphorin functions as a defensive agent of the holobiont (host plus symbionts) against some bacterial lineages but is metabolically beneficial for others, which potentially include obligate symbionts of D. citri. IMPORTANCE Certain secondary metabolites, including antibiotics, evolve to mediate interactions among organisms. These molecules have distinct spectra for microorganisms and are often more effective against Gram-positive bacteria than Gram-negative ones. However, it is rare that a single molecule has completely opposite activities on distinct bacterial lineages. The present study revealed that a secondary metabolite synthesized by an organelle-like bacterial symbiont of psyllids inhibits the growth of Gram-positive Bacillus subtilis but promotes the growth of Gram-negative Escherichia coli. This finding not only provides insights into the evolution of microbiomes in animal hosts but also may potentially be exploited to promote the effectiveness of industrial material production by microorganisms.
Collapse
|
8
|
Killiny N. Made for Each Other: Vector-Pathogen Interfaces in the Huanglongbing Pathosystem. PHYTOPATHOLOGY 2022; 112:26-43. [PMID: 34096774 DOI: 10.1094/phyto-05-21-0182-fi] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Citrus greening, or huanglongbing (HLB), currently is the most destructive disease of citrus. HLB disease is putatively caused by the phloem-restricted α-proteobacterium 'Candidatus Liberibacter asiaticus'. This bacterium is transmitted primarily by the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae). Most animal pathogens are considered pathogenic to their insect vectors, whereas the relationships between plant pathogens and their insect vectors are variable. Lately, the relationship of 'Ca. L. asiaticus' with its insect vector, D. citri, has been well investigated at the molecular, biochemical, and biological levels in many studies. Herein, the findings concerning this relationship are discussed and molecular features of the acquisition of 'Ca. L. asiaticus' from the plant host and its growth and circulation within D. citri, as well as its transmission to plants, are presented. In addition, the effects of 'Ca. L. asiaticus' on the energy metabolism (respiration, tricarboxylic acid cycle, and adenosine triphosphate production), metabolic pathways, immune system, endosymbionts, and detoxification enzymes of D. citri are discussed together with other impacts such as shorter lifespan, altered feeding behavior, and higher fecundity. Overall, although 'Ca. L. asiaticus' has significant negative effects on its insect vector, it increases its vector fitness, indicating that it develops a mutualistic relationship with its vector. This review will help in understanding the specific interactions between 'Ca. L. asiaticus' and its psyllid vector in order to design innovative management strategies.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
9
|
Hosseinzadeh S, Higgins SA, Ramsey J, Howe K, Griggs M, Castrillo L, Heck M. Proteomic Polyphenism in Color Morphotypes of Diaphorina citri, Insect Vector of Citrus Greening Disease. J Proteome Res 2021; 20:2851-2866. [PMID: 33890474 DOI: 10.1021/acs.jproteome.1c00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diaphorina citri is a vector of "Candidatus Liberibacter asiaticus" (CLas), associated with citrus greening disease. D. citri exhibit at least two color morphotypes, blue and non-blue, the latter including gray and yellow morphs. Blue morphs have a greater capacity for long-distance flight and transmit CLas less efficiently as compared to non-blue morphs. Differences in physiology and immunity between color morphs of the insect vector may influence disease epidemiology and biological control strategies. We evaluated the effect of CLas infection on color morph and sex-specific proteomic profiles of D. citri. Immunity-associated proteins were more abundant in blue morphs as compared to non-blue morphs but were upregulated at a higher magnitude in response to CLas infection in non-blue insects. To test for differences in color morph immunity, we measured two phenotypes: (1) survival of D. citri when challenged with the entomopathogenic fungus Beauveria bassiana and (2) microbial load of the surface and internal microbial communities. Non-blue color morphs showed higher mortality at four doses of B. bassinana, but no differences in microbial load were observed. Thus, color morph polyphenism is associated with two distinct proteomic immunity phenotypes in D. citri that may impact transmission of CLas and resistance to B. bassiana under some conditions.
Collapse
Affiliation(s)
- Saeed Hosseinzadeh
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Boyce Thompson Institute, Ithaca, New York 14853, United States
| | - Steven A Higgins
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - John Ramsey
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Kevin Howe
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Michael Griggs
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Louela Castrillo
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Michelle Heck
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Boyce Thompson Institute, Ithaca, New York 14853, United States.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Rispe C, Legeai F, Nabity PD, Fernández R, Arora AK, Baa-Puyoulet P, Banfill CR, Bao L, Barberà M, Bouallègue M, Bretaudeau A, Brisson JA, Calevro F, Capy P, Catrice O, Chertemps T, Couture C, Delière L, Douglas AE, Dufault-Thompson K, Escuer P, Feng H, Forneck A, Gabaldón T, Guigó R, Hilliou F, Hinojosa-Alvarez S, Hsiao YM, Hudaverdian S, Jacquin-Joly E, James EB, Johnston S, Joubard B, Le Goff G, Le Trionnaire G, Librado P, Liu S, Lombaert E, Lu HL, Maïbèche M, Makni M, Marcet-Houben M, Martínez-Torres D, Meslin C, Montagné N, Moran NA, Papura D, Parisot N, Rahbé Y, Lopes MR, Ripoll-Cladellas A, Robin S, Roques C, Roux P, Rozas J, Sánchez-Gracia A, Sánchez-Herrero JF, Santesmasses D, Scatoni I, Serre RF, Tang M, Tian W, Umina PA, van Munster M, Vincent-Monégat C, Wemmer J, Wilson ACC, Zhang Y, Zhao C, Zhao J, Zhao S, Zhou X, Delmotte F, Tagu D. The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest. BMC Biol 2020; 18:90. [PMID: 32698880 PMCID: PMC7376646 DOI: 10.1186/s12915-020-00820-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/22/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. RESULTS Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. CONCLUSIONS The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.
Collapse
Affiliation(s)
| | - Fabrice Legeai
- BIPAA, IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| | - Paul D. Nabity
- Department of Botany and Plant Sciences, University of California, Riverside, USA
| | - Rosa Fernández
- Bioinformatics and Genomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003 Barcelona, Spain
- Present address: Institute of Evolutionary Biology (CSIC-UPF), Passeig marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Arinder K. Arora
- Department of Entomology, Cornell University, Ithaca, NY 14853 USA
| | | | | | | | - Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València Spain
| | - Maryem Bouallègue
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR01ES05 Biochimie et Biotechnologie, 2092 Tunis, Tunisia
| | - Anthony Bretaudeau
- BIPAA, IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| | | | - Federica Calevro
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Pierre Capy
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Univ. Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Catrice
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Thomas Chertemps
- Sorbonne Université, UPEC, Université Paris 7, INRAE, CNRS, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Carole Couture
- SAVE, INRAE, Bordeaux Sciences Agro, Villenave d’Ornon, France
| | - Laurent Delière
- SAVE, INRAE, Bordeaux Sciences Agro, Villenave d’Ornon, France
| | - Angela E. Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853 USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Keith Dufault-Thompson
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI USA
| | - Paula Escuer
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Honglin Feng
- Department of Biology, University of Miami, Coral Gables, USA
- Current affiliation: Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, USA
| | | | - Toni Gabaldón
- Bioinformatics and Genomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Frédérique Hilliou
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Silvia Hinojosa-Alvarez
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Yi-min Hsiao
- Institute of Biotechnology and Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Present affiliation: Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sylvie Hudaverdian
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| | | | - Edward B. James
- Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| | - Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843 USA
| | | | - Gaëlle Le Goff
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Gaël Le Trionnaire
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| | - Pablo Librado
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Shanlin Liu
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083 Guangdong Province People’s Republic of China
- BGI-Shenzhen, Shenzhen, 518083 Guangdong Province People’s Republic of China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Eric Lombaert
- Université Côte d’Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Hsiao-ling Lu
- Department of Post-Modern Agriculture, MingDao University, Changhua, Taiwan
| | - Martine Maïbèche
- Sorbonne Université, UPEC, Université Paris 7, INRAE, CNRS, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Mohamed Makni
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR01ES05 Biochimie et Biotechnologie, 2092 Tunis, Tunisia
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València Spain
| | - Camille Meslin
- INRAE, Institute of Ecology and Environmental Sciences, Versailles, France
| | - Nicolas Montagné
- Sorbonne Université, Institute of Ecology and Environmental Sciences, Paris, France
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, USA
| | - Daciana Papura
- SAVE, INRAE, Bordeaux Sciences Agro, Villenave d’Ornon, France
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Yvan Rahbé
- Univ Lyon, INRAE, INSA-Lyon, CNRS, UCBL, UMR5240 MAP, F-69622 Villeurbanne, France
| | | | - Aida Ripoll-Cladellas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stéphanie Robin
- BIPAA IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| | - Céline Roques
- Plateforme Génomique GeT-PlaGe, Centre INRAE de Toulouse Midi-Pyrénées, 24 Chemin de Borde Rouge, Auzeville, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Pascale Roux
- SAVE, INRAE, Bordeaux Sciences Agro, Villenave d’Ornon, France
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jose F. Sánchez-Herrero
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Didac Santesmasses
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | - Rémy-Félix Serre
- Plateforme Génomique GeT-PlaGe, Centre INRAE de Toulouse Midi-Pyrénées, 24 Chemin de Borde Rouge, Auzeville, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Ming Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Wenhua Tian
- Department of Botany and Plant Sciences, University of California, Riverside, USA
| | - Paul A. Umina
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Manuella van Munster
- BGPI, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Joshua Wemmer
- Department of Botany and Plant Sciences, University of California, Riverside, USA
| | - Alex C. C. Wilson
- Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI USA
| | - Chaoyang Zhao
- Department of Botany and Plant Sciences, University of California, Riverside, USA
| | - Jing Zhao
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083 Guangdong Province People’s Republic of China
- BGI-Shenzhen, Shenzhen, 518083 Guangdong Province People’s Republic of China
| | - Serena Zhao
- Department of Integrative Biology, University of Texas at Austin, Austin, USA
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| | | | - Denis Tagu
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650 Le Rheu, France
| |
Collapse
|
11
|
Ebert TA, Rogers ME. Probing Behavior of Diaphorina citri (Hemiptera: Liviidae) on Valencia Orange Influenced by Sex, Color, and Size. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5816648. [PMID: 32252064 PMCID: PMC7136007 DOI: 10.1093/jisesa/ieaa016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Indexed: 05/09/2023]
Abstract
Candidatus Liberibacter asiaticus Jagoueix, Bové, and Garnier (Rhizobiales: Rhizobiaceae) is transmitted by the psyllid Diaphorina citri Kuwayama and putatively causes Huanglongbing disease in citrus. Huanglongbing has reduced yields by 68% relative to pre-disease yields in Florida. Disease management is partly through vector control. Understanding vector biology is essential in this endeavor. Our goal was to document differences in probing behavior linked to sex. Based on both a literature review and our results, we conclude that there is either no effect of sex or that identifying such an effect requires a sample size at least four times larger than standard methodologies. Including both color and sex in statistical models did not improve model performance. Both sex and color are correlated with body size, and body size has not been considered in previous studies on sex in D. citri in terms of probing behavior. An effect of body size was found wherein larger psyllids took longer to reach ingestion behaviors and larger individuals spent more time-ingesting phloem, but these relationships explained little of the variability in these data. We suggest that the effects of sex can be ignored when running EPG experiments on healthy psyllids.
Collapse
Affiliation(s)
- Timothy A Ebert
- Department of Entomology and Nematology, University of Florida, Lake Alfred, FL
- Corresponding author, e-mail:
| | - Michael E Rogers
- Department of Entomology and Nematology, University of Florida, Lake Alfred, FL
| |
Collapse
|
12
|
Andrade MO, Pang Z, Achor DS, Wang H, Yao T, Singer BH, Wang N. The flagella of 'Candidatus Liberibacter asiaticus' and its movement in planta. MOLECULAR PLANT PATHOLOGY 2020; 21:109-123. [PMID: 31721403 PMCID: PMC6913195 DOI: 10.1111/mpp.12884] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Citrus huanglongbing (HLB) is the most devastating citrus disease worldwide. 'Candidatus Liberibacter asiaticus' (Las) is the most prevalent HLB causal agent that is yet to be cultured. Here, we analysed the flagellar genes of Las and Rhizobiaceae and observed two characteristics unique to the flagellar proteins of Las: (i) a shorter primary structure of the rod capping protein FlgJ than other Rhizobiaceae bacteria and (ii) Las contains only one flagellin-encoding gene flaA (CLIBASIA_02090), whereas other Rhizobiaceae species carry at least three flagellin-encoding genes. Only flgJAtu but not flgJLas restored the swimming motility of Agrobacterium tumefaciens flgJ mutant. Pull-down assays demonstrated that FlgJLas interacts with FlgB but not with FliE. Ectopic expression of flaALas in A. tumefaciens mutants restored the swimming motility of ∆flaA mutant and ∆flaAD mutant, but not that of the null mutant ∆flaABCD. No flagellum was observed for Las in citrus and dodder. The expression of flagellar genes was higher in psyllids than in planta. In addition, western blotting using flagellin-specific antibody indicates that Las expresses flagellin protein in psyllids, but not in planta. The flagellar features of Las in planta suggest that Las movement in the phloem is not mediated by flagella. We also characterized the movement of Las after psyllid transmission into young flush. Our data support a model that Las remains inside young flush after psyllid transmission and before the flush matures. The delayed movement of Las out of young flush after psyllid transmission provides opportunities for targeted treatment of young flush for HLB control.
Collapse
Affiliation(s)
- Maxuel O. Andrade
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Zhiqian Pang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Diann S. Achor
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Han Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Tingshan Yao
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest UniversityChongqing400712People’s Republic of China
| | - Burton H. Singer
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
| | - Nian Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| |
Collapse
|
13
|
Immune Functional Analysis of Chitin Deacetylase 3 from the Asian Citrus Psyllid Diaphorina citri. Int J Mol Sci 2019; 21:ijms21010064. [PMID: 31861829 PMCID: PMC6981819 DOI: 10.3390/ijms21010064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Chitin deacetylase (CDA) is a chitin degradation enzyme that strictly catalyzes the deacetylation of chitin to form chitosan, which plays an important role in regulating growth and development, as well as the immune response. In this study, a chitin deacetylase 3 gene (CDA3) was identified with a complete open reading frame (ORF) of 1362 bp from the genome database of Diaphorina citri, encoding a protein of 453 amino acids. Spatiotemporal expression analysis suggested that D. citri CDA3 (DcCDA3) had the highest expression level in the integument and third-instar nymph stage. Furthermore, DcCDA3 expression level can be induced by 20-hydroxyecdysone (20E). Injection of Escherichia coli and Staphylococcus aureus induced the upregulation of DcCDA3 in the midgut, while DcCDA3 was downregulated in the fat body. After silencing DcCDA3 by RNA interference, there was no influence on the D. citri phenotype. In addition, bactericidal tests showed that recombinant DcCDA3 inhibited gram-positive bacteria, including S. aureus and Bacillus subtilis (B. subtilis). In conclusion, our results suggest that DcCDA3 might play an important role in the immune response of D. citri.
Collapse
|
14
|
Abstract
Oxya chinensis is one of the most widespread grasshopper species found in China and one of the most common pests against rice. In view of the importance of haemocytes in insect immunity in general, and the lack of information on the haemocytes of O. chinensis, we examined the haemocytes of this species in detail. We challenged the cellular response of this grasshopper with the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis Haemocyte morphology was observed using light, scanning electron and transmission electron microscopy, which revealed distinct morphological varieties of haemocytes. Granulocytes and plasmatocytes responded to the bacterial challenge by phagocytosis. Histochemical staining indicated the presence of acid phosphatase in plasmatocytes and granulocytes. We also observed non-phagocytic prohemocytes and vermicytes, but their functions in the circulation are unclear. Insect haemocytes play a crucial role in cellular immunity, and further research is needed for a comprehensive understanding.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Keshi Zhang
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
15
|
Wang R, Yang H, Luo W, Wang M, Lu X, Huang T, Zhao J, Li Q. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model. PeerJ 2019; 7:e7323. [PMID: 31341749 PMCID: PMC6637924 DOI: 10.7717/peerj.7323] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/18/2019] [Indexed: 11/22/2022] Open
Abstract
Background Citrus huanglongbing (HLB) is a destructive disease of citrus and a major threat to the citrus industry around the world. This disease accounts for substantial economic losses in China every year. Diaphorina citri Kuwayama is one of the major vectors by which citrus HLB is spread under natural conditions in China. Research is needed to identify the geographic distribution of D. citri and its major areas of occurrence and to formulate measures for early warning, monitoring, and control of this pest and citrus HLB. Methods In this study, the ecological niche modelling software MaxEnt (maximum entropy model) was combined with ArcGIS (a geographic information system) to predict the potential geographic distribution of D. citri in China. Key environmental factors and the appropriate ranges of their values were also investigated. Results Our results show that the training data provided a good forecast (AUCmean = 0.988). The highly suitable areas for D. citri in China are mainly concentrated to the south of the Yangtze River, and the total area is 139.83 × 104 km2. The area of the moderately suitable areas is 27.71 × 104 km2, with a narrower distribution than that of the highly suitable area. The important environmental factors affecting the distribution of D. citri were min temperature of coldest month, mean temperature of coldest quarter, precipitation of wettest quarter, mean temperature of warmest quarter, precipitation of warmest quarter, max temperature of warmest month, and temperature seasonality. These results provide a valuable theoretical basis for risk assessments and control of D. citri. Discussion The predicted results showed that there were highly suitable areas for D. citri in Chongqing, Hubei, Anhui, and Jiangsu. Therefore, the possibility exists for the further spread of D. citri in China in the future. Extreme temperature variables, especially the min temperature of the coldest month, play an important role in the distribution of D. citri and are most closely related to the distribution of D. citri.
Collapse
Affiliation(s)
- Rulin Wang
- Sichuan Agricultural University, College of Agronomy, Chengdu, Sichuan, China.,Sichuan Provincial Rural Economic Information Center, Chengdu, Sichuan, China
| | - Hua Yang
- Sichuan Agricultural University, Key Laboratory of Ecological Forestry Engineering of Sichuan Province/College of Forestry, Chengdu, Sichuan, China
| | - Wei Luo
- Zigong Bureau of Meteorology, Zigong, Sichuan, China
| | - Mingtian Wang
- Sichuan Meteorological Observatory, Chengdu, Sichuan, China.,Water-Saving Agriculture in Southern Hill Area Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xingli Lu
- Sichuan Provincial Rural Economic Information Center, Chengdu, Sichuan, China
| | - Tingting Huang
- Sichuan Agricultural University, College of Agronomy, Chengdu, Sichuan, China
| | - Jinpeng Zhao
- Sichuan Provincial Rural Economic Information Center, Chengdu, Sichuan, China
| | - Qing Li
- Sichuan Agricultural University, College of Agronomy, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Martini X, Rivera M, Hoyte A, Sétamou M, Stelinski L. Effects of Wind, Temperature, and Barometric Pressure on Asian Citrus Psyllid (Hemiptera: Liviidae) flight behavior. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2570-2577. [PMID: 30137351 DOI: 10.1093/jee/toy241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 06/08/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is the vector of the bacterium responsible for huanglongbing, a deadly plant disease affecting citrus worldwide. We investigated the effects of wind direction and speed on flight duration and direction of D. citri, as well as the effects of temperature and barometric pressure on sustained flight duration of D. citri. Experiments were performed with laboratory flight mills and wind tunnels. Flight activity of D. citri increased with increasing temperature. Of the few insects that flew at 18°C, most performed short duration flights (<60 s). When exposed to temperatures between 21 and 28°C, D. citri performed long duration flights (>60 s). In addition, the distance covered increased with temperature. Interestingly, males were more sensitive to cold temperature and flew significantly shorter distances than females at 21 and 25°C. Barometric pressure recorded before and during the flight mill experiment suggested that decreasing pressure reduced distance flown by D. citri. Flight direction was strongly influenced by wind. In wind tunnel experiments where psyllids were challenged to reach citrus leaf flush positioned either downwind or upwind, most D. citri moved downwind when exposed to continuous airflow. In a subsequent experiment, we challenged psyllids to pulsed wind blowing at higher speeds. In this case, most psyllids progressed upwind, suggesting upwind movement by psyllids during pauses within pulsed airflow. Collectively, the results indicate that D. citri are able to modify their flight behavior in response to abiotic factors.
Collapse
Affiliation(s)
- Xavier Martini
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL
| | - Monique Rivera
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL
| | - Angelique Hoyte
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL
| | - Mamoudou Sétamou
- Department of Agriculture, Agribusiness, and Environmental Sciences, Kingsville Citrus Center, University of Texas A&M Kingsville, Weslaco, TX
| | - Lukasz Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL
| |
Collapse
|
17
|
Hu W, Kuang F, Lu Z, Zhang N, Chen T. Killing Effects of an Isolated Serratia marcescens KH-001 on Diaphorina citri via Lowering the Endosymbiont Numbers. Front Microbiol 2018; 9:860. [PMID: 29765368 PMCID: PMC5938409 DOI: 10.3389/fmicb.2018.00860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Huanglongbing (HLB) is the most devastating citrus disease worldwide, and suppression of the Asian citrus psyllid (Diaphorina citri) is regarded as an effective method to inhibit the spread of HLB. In this study, we isolated a strain named as Serratia marcescens KH-001 from D. citri nymphs suffering from disease, and evaluated its killing effect on D. citri via toxicity test and effect on microbial community in D. citri using high-throughput sequencing. Our results indicated that S. marcescens KH-001 could effectively kill 83% of D. citri nymphs, while the fermentation products of S. marcescens KH-001 only killed 40% of the D. citrinymphs. High-throughput sequencing results indicated that the S. marcescens KH-001 increased the OTU numbers from 62.5 (PBS buffer) to 81.5, while significantly lowered the Shannon index compared with Escherichia coli DH5α (group E) (p < 0.05). OTU analysis showed that the S. marcescens KH-001 had significantly reduced the relative abundance of endosymbionts Wolbachia, Profftella, and Carsonella in group S compared with that in other groups (p < 0.05). Therefore, the direct killing effect of the fermentation products of S. marcescens KH-001 and the indirect effect via reducing the numbers of endosymbionts (Wolbachia, Profftella, and Carsonella) of D. citri endow S. marcescens KH-001 a sound killing effect on D. citri. Further work need to do before this strain is used as a sound biological control agents.
Collapse
Affiliation(s)
- Wei Hu
- National Navel Orange Engineering Research Center, College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Fan Kuang
- National Navel Orange Engineering Research Center, College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Zhanjun Lu
- National Navel Orange Engineering Research Center, College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Ning Zhang
- National Navel Orange Engineering Research Center, College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|