1
|
Sun H, Yue F, Tan M, Wang Y, Yan S, Jiang D. The synergistic potential of polyethylene glycol 400 for the control of Hyphantria cunea larvae by Beauveria bassiana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106182. [PMID: 39672611 DOI: 10.1016/j.pestbp.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 12/15/2024]
Abstract
The efficacy of entomopathogenic fungi as pest control agents is constrained by both their physiological state and external environmental factors. This study identified synergists capable of enhancing the insecticidal activity of Beauveria bassiana (Bb) and investigated the underlying synergistic mechanisms. Our results found that among 6 potential synergists, polyethylene glycol 400 (PEG) and trehalose significantly improved Bb's lethality against Hyphantria cunea larvae, with PEG demonstrating the most pronounced effect. PEG treatment markedly increased Bb spore adhesion and germination rates, while spore hydrophobicity and growth rates remained unaffected. Moreover, PEG-treated spores exhibited higher thermal tolerance compared to untreated ones. In the Bb + PEG treatment group, the hemocyte count, encapsulation and melanization activities, and the expression of related regulatory genes were significantly lower than those in the Bb treatment group. Additionally, pathogen recognition, signal transduction, and humoral immunity effector genes expression were markedly suppressed in the Bb + PEG group. A significant reduction in the content of total amino acids, free fatty acids, glucose, and trehalose, alongside decreased expression of key regulatory genes in the tricarboxylic acid cycle and glycolysis pathways, was observed in the Bb + PEG treatment group. Furthermore, PEG enhanced Bb-induced apoptosis in H. cunea larvae, as evidenced by the upregulation of apoptosis-related genes. Notably, PEG alone did not significantly impact the innate immunity, energy metabolism, or apoptosis in H. cunea larvae. Overall, PEG exhibits considerable potential in amplifying Bb's insecticidal activity by directly optimizing spore performance and indirectly modulating the larvae's innate immunity, energy metabolism, and apoptosis.
Collapse
Affiliation(s)
- Heyang Sun
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Fusen Yue
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yanzi Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
2
|
Huang Q, Hu W, Meng X, Chen J, Pan G. Nosema bombycis: A remarkable unicellular parasite infecting insects. J Eukaryot Microbiol 2024; 71:e13045. [PMID: 39095558 DOI: 10.1111/jeu.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Microsporidia are opportunistic fungal-like pathogens that cause microsporidiosis, which results in significant economic losses and threatens public health. Infection of domesticated silkworms by the microsporidium Nosema bombycis causes pébrine disease, for which this species of microsporidia has received much attention. Research has been conducted extensively on this microsporidium over the past few decades to better understand its infection, transmission, host-parasite interaction, and detection. Several tools exist to study this species including the complete genome sequence of N. bombycis. In addition to the understanding of N. bombycis being important for the silkworm industry, this species has become a model organism for studying microsporidia. Research on biology of N. bombycis will contribute to the development of knowledge regarding microsporidia and potential antimicrosporidia drugs. Furthermore, this will provide insight into the molecular evolution and functioning of other fungal pathogens.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Wanying Hu
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Sukonthamarn P, Nanakorn Z, Junprung W, Supungul P, Tassanakajon A. Role of hemocytin from Litopenaeus vannamei in immune response against microsporidian, Enterocytozoon hepatopenaei. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108710. [PMID: 37004896 DOI: 10.1016/j.fsi.2023.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Hemocytin, a multidomain hemostasis-related protein, is a homologous protein of hemolectin in Drosophila melanogaster and von Willebrand factor (vWF) in humans. The vWF type D (VWD) domain in hemocytin is thought to be a major mediator of hemocyte aggregation and the prophenoloxidase (proPO) activation system. Here, we report for the first time the role of hemocytin from Litopenaeus vannamei (LvHCT) against Enterocytozoon hepatopenaei (EHP), the pathogenic microsporidian causing hepatopancreatic microsporidiosis in Pacific white shrimp (L. vannamei). The LvHCT gene contains 58,366 base pairs consisting of 84 exons encoding for 4267 amino acids. Multiple sequence alignment and phylogenetic analysis revealed that LvHCT was clustered with crustacean hemocytins. Gene expression analysis by quantitative real-time RT-PCR showed that LvHCT in hemocytes was significantly upregulated at 9 and 11 days post-EHP cohabitation, which was consistent with EHP copy numbers in the infected shrimp. To further investigate the biological function of LvHCT in EHP infection, a recombinant protein containing an LvHCT-specific VWD domain (rLvVWD) was expressed in Escherichia coli. In vitro agglutination assays showed that rLvVWD was functionally representative of LvHCT and induced aggregation of pathogens, including Gram-negative and -positive bacteria, fungi, and EHP spore. LvHCT suppression resulted in higher EHP copy numbers and proliferation due to the lack of hemocytin-mediated EHP spore aggregation in LvHCT-silenced shrimp. Moreover, immune-related genes in the proPO-activating cascade and Toll, IMD and JAK/STAT signaling pathways were upregulated to eliminate the over-controlled EHP in LvHCT-silenced shrimp. Furthermore, the impaired phenoloxidase activity due to LvLGBP suppression was recovered after rLvVWD injection, suggesting that LvHCT may be directly involved in phenoloxidase activation. In conclusion, a novel LvHCT is involved in shrimp immunity against EHP via EHP spore aggregation and possible activation of the proPO-activating cascade.
Collapse
Affiliation(s)
- Pongsakorn Sukonthamarn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zittipong Nanakorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Transgenic Silkworms Overexpressing Relish and Expressing Drosomycin Confer Enhanced Immunity to Multiple Pathogens. Mol Biotechnol 2022; 64:711-724. [DOI: 10.1007/s12033-021-00438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
|
5
|
Tang X, Zhang Y, Zhou Y, Liu R, Shen Z. Quantitative proteomic analysis of ovaries from Nosema bombycis-infected silkworm (Bombyx mori). J Invertebr Pathol 2020; 172:107355. [DOI: 10.1016/j.jip.2020.107355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/30/2022]
|
6
|
Dong Z, Long J, Huang L, Hu Z, Chen P, Hu N, Zheng N, Huang X, Lu C, Pan M. Construction and application of an HSP70 promoter-inducible genome editing system in transgenic silkworm to induce resistance to Nosema bombycis. Appl Microbiol Biotechnol 2019; 103:9583-9592. [DOI: 10.1007/s00253-019-10135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
|
7
|
Pan G, Bao J, Ma Z, Song Y, Han B, Ran M, Li C, Zhou Z. Invertebrate host responses to microsporidia infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:104-113. [PMID: 29428490 DOI: 10.1016/j.dci.2018.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 05/06/2023]
Abstract
Microsporidia are a group of fungi-like intracellular and unicellular parasites, which infect nearly all animals. As "master parasites", over 1400 microsporidian species have been described to date. Microsporidia infections in economical invertebrates (e.g., silkworm, shrimp) cause huge financial losses, while other microsporidia infections in daphnia, nematode, locust, honeybee and mosquito play important roles in the regulation of their population size. Research investigating invertebrate host responses following microsporidia infections has yielded numerous interesting results, especially pertaining to the innate immune response to these pathogens. In this review, we comparatively summarize the invertebrate host responses to various microsporidia infections. We discuss numerous critical events in host responses including ubiquitin-mediated resistance, production of reactive oxygen species, melanization and innate immune pathways, and the increased basic metabolism and the accumulation of juvenile hormone in infected hosts. Recent studies progressing our understanding of microsporidia infection are also highlighted. Collectively, these advances shed more light on general rules of invertebrate host immune responses and pathogenesis mechanisms of microsporidia, and concurrently offer valuable clues for further research on the crosstalk between hosts and intracellular pathogens.
Collapse
Affiliation(s)
- Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zhengang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yue Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Bing Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|