1
|
Ben Natan M, Masasa M, Shashar N, Guttman L. Antibiotic Resistance in Vibrio Bacteria Associated with Red Spotting Disease in Sea Urchin Tripneustes gratilla (Echinodermata). Microorganisms 2024; 12:2460. [PMID: 39770663 PMCID: PMC11677654 DOI: 10.3390/microorganisms12122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
The red spotting disease harms sea urchins to the extent of mass mortality in the ocean and echinocultures, accompanied by environmental damage and economic losses. The current study emphasizes the antimicrobial resistance of three isolated bacteria, closely related to Vibrio harveyi, Vibrio owensii, and Vibrio fortis, associated with red spotting in the cultured sea urchin Tripneustes gratilla. In vitro trials examined the susceptibility of these bacterial isolates to various antibiotics. In addition, using an in silico examination, we revealed the arsenal of antimicrobial resistance genes in available genomes of various pathogenic Vibrio associated with diseases in sea urchins, fish, shellfish, and corals. These two approaches enabled the discussion of the similarities and differences between aquatic pathogenic Vibrio and their antibiotic resistance. Among them, we revealed a core resistance to tetracyclines and penams by the in vitro examined strains. At the same time, the in silico study also supported this core resistance by the presence of the adeF and CRP genes in the bacterial genomes. Nevertheless, variability and specific resistance were evident at the species and strain levels in the Vibrio bacteria and genomes. The in vitro trials highlighted the diverse resistance of the Vibrio harveyi-like isolate to all examined antibiotics, while the other two isolates were found susceptible to nitrofurantoin and sulfamethoxazole. The resistance of the Vibrio harveyi-like isolate could not have been obtained in the genome of the proposed relative of Vibrio harveyi VHJR7 that lacks the oqxA and oqxB genes, which enables such a resistance. A unique sensitivity of the Vibrio fortis-like isolate to erythromycin is proposed when compared to other isolated Vibrio and Vibrio genomes that seem capable of resisting this drug. According to the results, we propose nitrofurantoin or sulfamethoxazole for treating two of the red-spotting-associated isolates (Vibrio fortis and Vibrio owensii-like), but not Vibrio harveyi-like. We assume that a shared resistance to some antibiotics by Vibrios is gained by a horizontal gene transfer while previous exposures of a bacterial strain to a specific drug may induce the development of a unique resistance. Finally, we discuss the novel knowledge on antibiotic resistance in Vibrio from the current research in light of the potential risks when using drugs for disease control in aquaculture.
Collapse
Affiliation(s)
- Mayan Ben Natan
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel; (M.B.N.); (N.S.)
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O. Box 1212, Eilat 8811201, Israel;
| | - Matan Masasa
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O. Box 1212, Eilat 8811201, Israel;
| | - Nadav Shashar
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel; (M.B.N.); (N.S.)
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
| | - Lior Guttman
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O. Box 1212, Eilat 8811201, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
| |
Collapse
|
2
|
Fernández-Boo S, Machado A, Castro LFC, Azeredo R, Costas B. Unravelling the main immune repertoire of Paracentrotus lividus following Vibrio anguillarum bath challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109431. [PMID: 38346567 DOI: 10.1016/j.fsi.2024.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Paracentrotus lividus is the most abundant echinoid species in the North East Atlantic Ocean and Mediterranean Sea. Although there is abundant genomic information of the species, there is no deep characterisation of the genes involved in the immune response. Here, a reference transcriptome of male and female coelomocytes was produced. The generated P. lividus transcriptome assembly has 203,511 transcripts, N50 transcript length of 1079 bp, and more than 90% estimated gene completeness in Eukaryota and Metazoa BUSCO databases, respectively. Differential gene expression analyses showed 54 and 55 up-regulated genes in P. lividus female and male coelomocyte tissues, respectively. These results suggest a similar immune gene repertoire between sexes. To examine the immune response, P. lividus was challenged with Vibrio anguillarum, one of the candidate pathogens for bald disease. Immune parameters were evaluated at cell and humoral levels, as well as the expression analysis of immune related genes at an early response stage. No differences were found at cellular and humoral levels with the exception of the increase of nitric oxide in perivisceral fluid of challenged animals. At the gene expression level, a total of 2721 genes were upregulated in challenged animals, 13.6 times higher expression than control group. Our analysis revealed that four major KEGG pathways were enriched in challenged animals: Autophagy (KEGG:04140), Endocytosis (KEGG:04144), Phagosome (KEGG:04145) and Protein processing in endoplasmic reticulum (KEGG:04141). Several toll-like receptors (TLR), scavenger receptors cysteine-rich (SRCR) or nucleotide-binding oligomerisation domain like receptors (NLR) were identified as major family genes for pathogen recognition and immune defence. This study provides a valuable transcriptomic resource and unfolds the molecular basis of immune response to V. anguillarum exposure. Overall, our findings contribute to the conservation effort of the P. lividus populations, as well as its sustainable exploitation in an aquaculture context.
Collapse
Affiliation(s)
- Sergio Fernández-Boo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR). Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal.
| | - André Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR). Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR). Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Universidade Do Porto, Rua Do Campo Alegre, S/n, Edifício FC4, 4169-007, Porto, Portugal
| | - Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR). Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR). Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
3
|
Shaw CG, Pavloudi C, Crow RS, Saw JH, Smith LC. Spotting disease disrupts the microbiome of infected purple sea urchins, Strongylocentrotus purpuratus. BMC Microbiol 2024; 24:11. [PMID: 38172649 PMCID: PMC10765733 DOI: 10.1186/s12866-023-03161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Spotting disease infects a variety of sea urchin species across many different marine locations. The disease is characterized by discrete lesions on the body surface composed of discolored necrotic tissue that cause the loss of all surface appendages within the lesioned area. A similar, but separate disease of sea urchins called bald sea urchin disease (BSUD) has overlapping symptoms with spotting disease, resulting in confusions in distinguishing the two diseases. Previous studies have focus on identifying the underlying causative agent of spotting disease, which has resulted in the identification of a wide array of pathogenic bacteria that vary based on location and sea urchin species. Our aim was to investigate the spotting disease infection by characterizing the microbiomes of the animal surface and various tissues. RESULTS We collected samples of the global body surface, the lesion surface, lesioned and non-lesioned body wall, and coelomic fluid, in addition to samples from healthy sea urchins. 16S rRNA gene was amplified and sequenced from the genomic DNA. Results show that the lesions are composed mainly of Cyclobacteriaceae, Cryomorphaceae, and a few other taxa, and that the microbial composition of lesions is the same for all infected sea urchins. Spotting disease also alters the microbial composition of the non-lesioned body wall and coelomic fluid of infected sea urchins. In our closed aquarium systems, sea urchins contracted spotting disease and BSUD separately and therefore direct comparisons could be made between the microbiomes from diseased and healthy sea urchins. CONCLUSION Results show that spotting disease and BSUD are separate diseases with distinct symptoms and distinct microbial compositions.
Collapse
Affiliation(s)
- Chloe G Shaw
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Christina Pavloudi
- Department of Biological Sciences, George Washington University, Washington, DC, USA
- European Marine Biological Resource Centre (EMBRC-ERIC), Paris, France
| | - Ryley S Crow
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jimmy H Saw
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
4
|
Hewson I, Ritchie IT, Evans JS, Altera A, Behringer D, Bowman E, Brandt M, Budd KA, Camacho RA, Cornwell TO, Countway PD, Croquer A, Delgado GA, DeRito C, Duermit-Moreau E, Francis-Floyd R, Gittens S, Henderson L, Hylkema A, Kellogg CA, Kiryu Y, Kitson-Walters KA, Kramer P, Lang JC, Lessios H, Liddy L, Marancik D, Nimrod S, Patterson JT, Pistor M, Romero IC, Sellares-Blasco R, Sevier ML, Sharp WC, Souza M, Valdez-Trinidad A, van der Laan M, Vilanova-Cuevas B, Villalpando M, Von Hoene SD, Warham M, Wijers T, Williams SM, Work TM, Yanong RP, Zambrano S, Zimmermann A, Breitbart M. A scuticociliate causes mass mortality of Diadema antillarum in the Caribbean Sea. SCIENCE ADVANCES 2023; 9:eadg3200. [PMID: 37075109 PMCID: PMC10115408 DOI: 10.1126/sciadv.adg3200] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Echinoderm mass mortality events shape marine ecosystems by altering the dynamics among major benthic groups. The sea urchin Diadema antillarum, virtually extirpated in the Caribbean in the early 1980s by an unknown cause, recently experienced another mass mortality beginning in January 2022. We investigated the cause of this mass mortality event through combined molecular biological and veterinary pathologic approaches comparing grossly normal and abnormal animals collected from 23 sites, representing locations that were either affected or unaffected at the time of sampling. Here, we report that a scuticociliate most similar to Philaster apodigitiformis was consistently associated with abnormal urchins at affected sites but was absent from unaffected sites. Experimentally challenging naïve urchins with a Philaster culture isolated from an abnormal, field-collected specimen resulted in gross signs consistent with those of the mortality event. The same ciliate was recovered from treated specimens postmortem, thus fulfilling Koch's postulates for this microorganism. We term this condition D. antillarum scuticociliatosis.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, USA
- Corresponding author.
| | - Isabella T. Ritchie
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | - James S. Evans
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | - Ashley Altera
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Donald Behringer
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Erin Bowman
- Department of Planning and Natural Resources, Virgin Islands Government, Christiansted, VI, USA
- National Coral Reef Management Fellowship, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Marilyn Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, Saint Thomas, VI, USA
| | - Kayla A. Budd
- Center for Marine and Environmental Studies, University of the Virgin Islands, Saint Thomas, VI, USA
| | - Ruleo A. Camacho
- Antigua and Barbuda National Parks Authority, Nelson’s Dockyard, Antigua and Barbuda
| | - Tomas O. Cornwell
- St Eustatius National Parks Foundation, Oranjestad, Caribbean, Netherlands
| | | | - Aldo Croquer
- Central Caribbean Program, The Nature Conservancy, Santo Domingo, Dominican Republic
| | - Gabriel A. Delgado
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Marathon, FL, USA
| | | | - Elizabeth Duermit-Moreau
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Ruth Francis-Floyd
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel Gittens
- Center for Marine and Environmental Studies, University of the Virgin Islands, Saint Thomas, VI, USA
| | - Leslie Henderson
- National Oceanic and Atmospheric Administration Office for Coastal Management, Silver Spring, MD, USA
| | - Alwin Hylkema
- Van Hall Larenstein University of Applied Sciences, Leeuwarden, Netherlands
- Marine Animal Ecology Group, Wageningen University, Wageningen, Netherlands
| | - Christina A. Kellogg
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | - Yasunari Kiryu
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA
| | - Kimani A. Kitson-Walters
- Caribbean Netherlands Science Institute, St. Eustatius, Caribbean, Netherlands
- NIOZ Royal Netherlands Institute for Sea Research, Oranjestad, Caribbean, Netherlands
| | - Patricia Kramer
- Ocean Research and Education Foundation, Atlantic and Gulf Rapid Reef Assessment, Big Pine Key, FL, USA
| | - Judith C. Lang
- Ocean Research and Education Foundation, Atlantic and Gulf Rapid Reef Assessment, Big Pine Key, FL, USA
| | - Harilaos Lessios
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | | | - David Marancik
- School of Veterinary Sciences, St. George’s University, St. George’s, Grenada
| | - Stephen Nimrod
- Department of Biology, Ecology and Conservation, St. George’s University, St. George’s, Grenada
| | - Joshua T. Patterson
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Marit Pistor
- St Eustatius National Parks Foundation, Oranjestad, Caribbean, Netherlands
| | - Isabel C. Romero
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | | | - Moriah L. B. Sevier
- Center for Marine and Environmental Studies, University of the Virgin Islands, Saint Thomas, VI, USA
| | - William C. Sharp
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Marathon, FL, USA
| | - Matthew Souza
- Center for Marine and Environmental Studies, University of the Virgin Islands, Saint Thomas, VI, USA
| | | | | | | | - Maria Villalpando
- Fundación Dominicana de Estudios Marinos, Bayahibe, Dominican Republic
| | - Sarah D. Von Hoene
- Center for Marine and Environmental Studies, University of the Virgin Islands, Saint Thomas, VI, USA
| | - Matthew Warham
- Department of Planning and Natural Resources, Virgin Islands Government, Christiansted, VI, USA
| | - Tom Wijers
- Van Hall Larenstein University of Applied Sciences, Leeuwarden, Netherlands
- Marine Animal Ecology Group, Wageningen University, Wageningen, Netherlands
| | | | - Thierry M. Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, USA
| | - Roy P. Yanong
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | | | - Alizee Zimmermann
- Turks and Caicos Reef Fund, Providenciales, Turks and Caicos Islands
| | - Mya Breitbart
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| |
Collapse
|
6
|
Shaw CG, Pavloudi C, Barela Hudgell MA, Crow RS, Saw JH, Pyron RA, Smith LC. Bald sea urchin disease shifts the surface microbiome on purple sea urchins in an aquarium. Pathog Dis 2023; 81:ftad025. [PMID: 37715299 PMCID: PMC10550250 DOI: 10.1093/femspd/ftad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Bald sea urchin disease (BSUD) is most likely a bacterial infection that occurs in a wide range of sea urchin species and causes the loss of surface appendages. The disease has a variety of additional symptoms, which may be the result of the many bacteria that are associated with BSUD. Previous studies have investigated causative agents of BSUD, however, there are few reports on the surface microbiome associated with the infection. Here, we report changes to the surface microbiome on purple sea urchins in a closed marine aquarium that contracted and then recovered from BSUD in addition to the microbiome of healthy sea urchins in a separate aquarium. 16S rRNA gene sequencing shows that microhabitats of different aquaria are characterized by different microbial compositions, and that diseased, recovered, and healthy sea urchins have distinct microbial compositions, which indicates that there is a correlation between microbial shifts and recovery from disease.
Collapse
Affiliation(s)
- Chloe G Shaw
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - Christina Pavloudi
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - Megan A Barela Hudgell
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - Ryley S Crow
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - Jimmy H Saw
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - R Alexander Pyron
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - L Courtney Smith
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| |
Collapse
|
7
|
Raguso C, Grech D, Becchi A, Ubaldi PG, Lasagni M, Guala I, Saliu F. Detection of microplastics and phthalic acid esters in sea urchins from Sardinia (Western Mediterranean Sea). MARINE POLLUTION BULLETIN 2022; 185:114328. [PMID: 36368079 DOI: 10.1016/j.marpolbul.2022.114328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of microplastics (MPs) and phthalic acid esters (PAEs) in wild purple sea urchins (Paracentrotus lividus) of Sardinia (Italy, Western Mediterranean Sea) was surveyed. Specifically, MPs were analyzed in the digestive tract by μFTIR and PAEs in the gonads by SPME-LC-MS/MS. 9 out of 22 specimens resulted contaminated with MPs and 20 displayed levels of PAEs over the quantification limit. A total of 23 MPs were detected with a maximum concentration of 4 microplastics/individual in the commercially undersized specimens. PAEs displayed average concentration of 32 ng/g, σ = 5.3 with maximum value of 77 ng/g. The most abundant congeners were DEHP (17 ng/g, σ = 4.3) and DBP (10 ng/g, σ = 2.5). Statistical analysis showed correlation between DEHP and fiber concentrations and among the concentration of MEP, DEP, DBP and BBzP. Due to local use of sea urchin gonads as gourmet delicacy, the potential human exposition to MPs and PAEs by consumption is also discussed.
Collapse
Affiliation(s)
- Clarissa Raguso
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Daniele Grech
- IMC - International Marine Centre, 09170 Loc.tà Sa Mardini, Torregrande, Oristano, Italy
| | - Alessandro Becchi
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paolo Giuseppe Ubaldi
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marina Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Ivan Guala
- IMC - International Marine Centre, 09170 Loc.tà Sa Mardini, Torregrande, Oristano, Italy
| | - Francesco Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| |
Collapse
|