1
|
Rahman MA, Shanjana Y, Cronmiller S, Zong D, Davis R, Ernest J, Nguyen J, Rawa A, Thomas MR, Islam MR. Risk Evaluation and Mitigation Strategies for Potential Outbreaks of Nipah Virus Infection: Evidenced by the Recent Incidences in Southeast Asian Countries. Health Sci Rep 2024; 7:e70239. [PMID: 39633840 PMCID: PMC11615790 DOI: 10.1002/hsr2.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/21/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Background The importance of studying Nipah virus (NiV) stems from its high fatality rates and potential for causing widespread outbreaks. Recent incidences in Southeast Asian countries highlight the urgent need for effective risk evaluation and mitigation strategies. Justification Studying NiV in Southeast Asia is crucial due to the geographic and epidemiological significance that makes this region predominantly susceptible to the virus. Objectives This study aims to identify the risk factors of NiV, evaluate current mitigation strategies, and suggest improvements against this virus. Methods This review incorporates articles from the PubMed database related to available NiV treatments, vaccines, mitigation strategies, transmission data, and mortality to comprise an extensive analysis of pertinent information. Findings NiV warrants international attention, due to the high mortality rate and the rising number of human-to-human transmission vectors. NiV is difficult to diagnose early on in the infection due to its generic symptoms, and the two strains of NiV (B and M), pose significant challenges to healthcare institutions. Vaccines, such as the VSV-stored, virus-like particle-based, and mRNA-based NiV show promising results in both animal and human studies. Synthetic medicines, like Ribavirin, and favipiravir showed promising results in NiV-infected patients. Therapeutic infectious particles increased survival from 10% to roughly 70%-80% in animals. Phytochemicals, like serpentine and neoandrographolide are alternatives to NiV-G ligands. Griffithsin, an algae derivative has also shown efficacy in treating NiV infections. Artificial intelligence determines the NiV infection with an accuracy of 88.3%. Conclusions The strategies to control NiV must be one of a One Health approach, incorporating environmental and social factors. Extensive research on vaccines that showed promising results in animals needs to be tested for humans on a large scale. The major mitigation strategy available is the public awareness during the outbreak about NiV transmission vectors, quarantine protocol, and food hygiene.
Collapse
Affiliation(s)
| | - Yeasna Shanjana
- Department of Environmental SciencesNorth South UniversityBashundharaBangladesh
| | - Sydney Cronmiller
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Donovan Zong
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Rob Davis
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Julianne Ernest
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Jonah Nguyen
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Amanda Rawa
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Marie Roke Thomas
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | | |
Collapse
|
2
|
Wang L, Lu D, Yang M, Chai S, Du H, Jiang H. Nipah virus: epidemiology, pathogenesis, treatment, and prevention. Front Med 2024; 18:969-987. [PMID: 39417975 DOI: 10.1007/s11684-024-1078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.
Collapse
Affiliation(s)
- Limei Wang
- Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Maosen Yang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Shiqi Chai
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Du
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
3
|
Shaikh SS, Ahmed I, Sangah AB, Khalid MZ. Securing the borders: preventive measures against Nipah virus outbreak in Pakistan. Ann Med Surg (Lond) 2024; 86:6366-6368. [PMID: 39525747 PMCID: PMC11543178 DOI: 10.1097/ms9.0000000000002503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Shazia S. Shaikh
- Department of Internal Medicine, Liaquat National Hospital and Medical College
| | - Ikhlas Ahmed
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Abdul B. Sangah
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | | |
Collapse
|
4
|
Vasudevan SS, Subash A, Mehta F, Kandrikar TY, Desai R, Khan K, Khanduja S, Pitliya A, Raavi L, Kanagala SG, Gondaliya P. Global and regional mortality statistics of nipah virus from 1994 to 2023: a comprehensive systematic review and meta-analysis. Pathog Glob Health 2024; 118:471-480. [PMID: 39030703 PMCID: PMC11441053 DOI: 10.1080/20477724.2024.2380131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
The mortality rate of Nipah virus (NiV) can vary in different regions, and its pattern across timelines has yet to be assessed. The primary objective is to perform a comparative analysis of mortality rates across different timelines and countries. Articles reporting NiV mortality from inception to November 2023 were analyzed in PubMed, Ovid Embase, Scopus, and Web of Science databases. A meta-analysis utilizing random-effects models determined the mortality rate secondary to NiV complications. The initial search strategy yielded 1213 records, of which 36 articles met the inclusion criteria, comprising 2736 NiV patients. The Global mortality rate of the Nipah virus in the 2014-2023 decade was 80.1% (CI: 68.7-88.1%), indicating a significant 24% increase compared to the preceding decade (2004-2013) with a mortality rate of 54.1% (CI: 35.5-71.6%). Among the countries analyzed for overall mortality from 1994-2023, India experienced the highest mortality rate at 82.7% (CI: 74.6-88.6%), followed by Bangladesh at 62.1% (CI: 45.6-76.2%), Philippines at 52.9% (CI: 30-74.5%), Malaysia at 28.9% (CI: 21.4-37.9%), and Singapore at 21% (CI: 8-45%). Subgroup analysis revealed that India consistently had the highest mortality rate for the past two decades (91.7% and 89.3%). The primary complication leading to mortality was encephalitis, accounting for 95% of cases. This systematic review and meta-analysis revealed a noteworthy surge in NiV mortality rates, particularly in the current decade (2014-2023). The escalation, with India reporting a concerning level of mortality of 89.3-91.7% in the past decades, signifies a pressing public health challenge.
Collapse
Affiliation(s)
| | - Arun Subash
- Department of Academics, Dow University of Health Sciences, Karachi, Pakistan
| | - Fena Mehta
- Department of Academics, Smt. NHL Municipal Medical College, Ahmedabad, Gujarat, India
| | - Tiba Yamin Kandrikar
- Department of Dermatology and Venerology, Yerevan State Medical University, Yerevan, Armenia
| | | | - Kaif Khan
- Department of Biosciences, Jamia Millia Islamia, Delhi, India
| | - Sneha Khanduja
- Department of Academics, Dr. Baba Saheb Ambedkar Medical College and Hospital, New Delhi, India
| | - Aakanksha Pitliya
- Department of Medicine, Pamnani Hospital and Research Center, Mandsaur, MP, India
| | - Lekhya Raavi
- Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Piyush Gondaliya
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
5
|
Sun YQ, Zhang YY, Liu MC, Chen JJ, Li TT, Liu YN, Zhang LY, Wang T, Yu LJ, Che TL, Tang T, Xu Q, Lv CL, Jiang BG, Golding N, Mehlman ML, Hay SI, Fang LQ, Liu W. Mapping the distribution of Nipah virus infections: a geospatial modelling analysis. Lancet Planet Health 2024; 8:e463-e475. [PMID: 38969474 DOI: 10.1016/s2542-5196(24)00119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Nipah virus is a zoonotic paramyxovirus responsible for disease outbreaks with high fatality rates in south and southeast Asia. However, knowledge of the potential geographical extent and risk patterns of the virus is poor. We aimed to establish an integrated spatiotemporal and phylogenetic database of Nipah virus infections in humans and animals across south and southeast Asia. METHODS In this geospatial modelling analysis, we developed an integrated database containing information on the distribution of Nipah virus infections in humans and animals from 1998 to 2021. We conducted phylodynamic analysis to examine the evolution and migration pathways of the virus and meta-analyses to estimate the adjusted case-fatality rate. We used two boosted regression tree models to identify the potential ecological drivers of Nipah virus occurrences in spillover events and endemic areas, and mapped potential risk areas for Nipah virus endemicity. FINDINGS 749 people and eight bat species across nine countries were documented as being infected with Nipah virus. On the basis of 66 complete genomes of the virus, we identified two clades-the Bangladesh clade and the Malaysia clade-with the time of the most recent common ancestor estimated to be 1863. Adjusted case-fatality rates varied widely between countries and were higher for the Bangladesh clade than for the Malaysia clade. Multivariable meta-regression analysis revealed significant relationships between case-fatality rate estimates and viral clade (p=0·0021), source country (p=0·016), proportion of male patients (p=0·036), and travel time to health-care facilities (p=0·036). Temperature-related bioclimate variables and the probability of occurrence of Pteropus medius were important contributors to both the spillover and the endemic infection models. INTERPRETATION The suitable niches for Nipah virus are more extensive than previously reported. Future surveillance efforts should focus on high-risk areas informed by updated projections. Specifically, intensifying zoonotic surveillance efforts, enhancing laboratory testing capacity, and implementing public health education in projected high-risk areas where no human cases have been reported to date will be crucial. Additionally, strengthening wildlife surveillance and investigating potential modes of transmission in regions with documented human cases is needed. FUNDING The Key Research and Development Program of China.
Collapse
Affiliation(s)
- Yan-Qun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Nanjing Municipal Center for Disease Control and Prevention, Affiliated Nanjing Center for Disease Control and Prevention of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mei-Chen Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ting-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yan-Ning Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ling-Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin-Jie Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tian-Le Che
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tian Tang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nick Golding
- Telethon Kids Institute, Nedlands, WA, Australia; School of Population Health, Curtin University, Bentley, WA, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Max L Mehlman
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; The First Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Mishra G, Prajapat V, Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology 2024; 171:155-169. [PMID: 37712243 DOI: 10.1111/imm.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.
Collapse
Affiliation(s)
- Gayatree Mishra
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishal Prajapat
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Debasis Nayak
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
7
|
Muhammad SA, Guo J, Noor K, Mustafa A, Amjad A, Bai B. Pangenomic and immunoinformatics based analysis of Nipah virus revealed CD4 + and CD8 + T-Cell epitopes as potential vaccine candidates. Front Pharmacol 2023; 14:1290436. [PMID: 38035008 PMCID: PMC10682379 DOI: 10.3389/fphar.2023.1290436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Nipah (NiV) is the zoonotic deadly bat-borne virus that causes neurological and respiratory infections which ultimately lead to death. There are 706 infected cases reported up till now especially in Asia, out of which 409 patients died. There is no vaccine and effective treatment available for NiV infections and we have to timely design such strategies as world could not bear another pandemic situation. Methods: In this study, we screened viral proteins of NiV strains based on pangenomics analysis, antigenicity, molecular weight, and sub-cellular localization. The immunoproteomics based approach was used to predict T-cell epitopes of MHC class-I and II as potential vaccine candidates. These epitopes are capable to activate CD4+, CD8+, and T-cell dependent B-lymphocytes. Results: The two surface proteins including fusion glycoprotein (F) and attachment glycoprotein (G) are antigenic with molecular weights of 60 kDa and 67 kDa respectively. Three epitopes of F protein (VNYNSEGIA, PNFILVRNT, and IKMIPNVSN) were ranked and selected based on the binding affinity with MHC class-I, and 3 epitopes (VILNKRYYS, ILVRNTLIS, and VKLQETAEK) with MHC-II molecules. Similarly, for G protein, 3 epitopes each for MHC-I (GKYDKVMPY, ILKPKLISY, and KNKIWCISL) and MHC-II (LRNIEKGKY, FLIDRINWI, and FLLKNKIWC) with substantial binding energies were predicted. Based on the physicochemical properties, all these epitopes are non-toxic, hydrophilic, and stable. Conclusion: Our vaccinomics and system-level investigation could help to trigger the host immune system to prevent NiV infection.
Collapse
Affiliation(s)
- Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jinlei Guo
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Komal Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Aymen Mustafa
- University of Health Sciences Lahore, Lahore, Pakistan
| | - Anam Amjad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Baogang Bai
- School of Information and Technology, Wenzhou Business College, Wenzhou, China
- Zhejiang Province Engineering Research Center of Intelligent Medicine, Wenzhou, China
- The 1st School of Medical, School of Information and Engineering, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Garbuglia AR, Lapa D, Pauciullo S, Raoul H, Pannetier D. Nipah Virus: An Overview of the Current Status of Diagnostics and Their Role in Preparedness in Endemic Countries. Viruses 2023; 15:2062. [PMID: 37896839 PMCID: PMC10612039 DOI: 10.3390/v15102062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Nipah virus (NiV) is a paramyxovirus responsible for a high mortality rate zoonosis. As a result, it has been included in the list of Blueprint priority pathogens. Bats are the main reservoirs of the virus, and different clinical courses have been described in humans. The Bangladesh strain (NiV-B) is often associated with severe respiratory disease, whereas the Malaysian strain (NiV-M) is often associated with severe encephalitis. An early diagnosis of NiV infection is crucial to limit the outbreak and to provide appropriate care to the patient. Due to high specificity and sensitivity, qRT-PCR is currently considered to be the optimum method in acute NiV infection assessment. Nasal swabs, cerebrospinal fluid, urine, and blood are used for RT-PCR testing. N gene represents the main target used in molecular assays. Different sensitivities have been observed depending on the platform used: real-time PCR showed a sensitivity of about 103 equivalent copies/reaction, SYBRGREEN technology's sensitivity was about 20 equivalent copies/reaction, and in multiple pathogen card arrays, the lowest limit of detection (LOD) was estimated to be 54 equivalent copies/reaction. An international standard for NiV is yet to be established, making it difficult to compare the sensitivity of the different methods. Serological assays are for the most part used in seroprevalence studies owing to their lower sensitivity in acute infection. Due to the high epidemic and pandemic potential of this virus, the diagnosis of NiV should be included in a more global One Health approach to improve surveillance and preparedness for the benefit of public health. Some steps need to be conducted in the diagnostic field in order to become more efficient in epidemic management, such as development of point-of-care (PoC) assays for the rapid diagnosis of NiV.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Hervé Raoul
- French National Agency for Research on AIDS—Emerging Infectious Diseases (ANRS MIE), Maladies Infectieuses Émergentes, 75015 Paris, France;
| | - Delphine Pannetier
- Institut National de la Santé et de la Recherche Médicale, Jean Mérieux BSL4 Laboratory, 69002 Lyon, France;
| |
Collapse
|
9
|
Joshi J, Shah Y, Pandey K, Ojha RP, Joshi CR, Bhatt LR, Dumre SP, Acharya PR, Joshi HR, Rimal S, Shahi R, Pokharel D, Khadka KS, Dahal B, Nepal S, Dhami RS, Pant KP, Basnet R, Pandey BD. Possible high risk of transmission of the Nipah virus in South and South East Asia: a review. Trop Med Health 2023; 51:44. [PMID: 37559114 PMCID: PMC10413696 DOI: 10.1186/s41182-023-00535-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/29/2023] [Indexed: 08/11/2023] Open
Abstract
Nipah virus (NiV) is a zoonotic, single-stranded RNA virus from the family Paramyxoviridae, genus Henipavirus. NiV is a biosafety-level-4 pathogen that is mostly spread by Pteropus species, which serve as its natural reservoir host. NiV is one of the major public health challenges in South and South East Asia. However, few molecular studies have been conducted to characterise NiV in a specific region. The main objective of this review is to understand the epidemiology, pathogenesis, molecular surveillance, transmission dynamics, genetic diversity, reservoir host, clinical characteristics, and phylogenetics of NiV. South and South East Asian nations have experienced NiV outbreaks. Phylogenetic analysis confirmed that two primary clades of NiV are in circulation. In humans, NiV causes severe respiratory illness and/or deadly encephalitis. NiV is mainly diagnosed by ELISA along with PCR. Therefore, we recommend that the governments of the region support the One Health approach to reducing the risk of zoonotic disease transmission in their respective countries.
Collapse
Affiliation(s)
- Jagadish Joshi
- Health Directorate, Doti, Rajpur, Sudurpaschim Province, Nepal.
| | - Yogendra Shah
- Province Public Health Laboratory, Rajpur, Kailali, Nepal.
| | - Kishor Pandey
- Everest International Clinic and Research Center, Kathmandu, Nepal
- Central Department of Zoology, Tribhuvan University, Kirtipur, Nepal
| | | | - Chet Raj Joshi
- Ministry of Social Development, Kailali, Dhangadhi, Sudaurpaschim Province, Nepal
| | - Lok Raj Bhatt
- Province Public Health Laboratory, Rajpur, Kailali, Nepal
| | | | - Pushpa Raj Acharya
- Central Campus of Science and Technology, Faculty of Science, Mid-West, University, Surkhet, Nepal
| | - Hem Raj Joshi
- Health Directorate, Doti, Rajpur, Sudurpaschim Province, Nepal
| | - Shikha Rimal
- Himalayan College of Agricultural Sciences and Technology (HICAST), Kirtipur, Nepal
| | - Ramesh Shahi
- Seti Provincial Hospital, Kailali, Dhangadhi, Nepal
| | - Deepak Pokharel
- Everest International Clinic and Research Center, Kathmandu, Nepal
| | - Kamal Singh Khadka
- Department of Microbiology, Janapriya Multiple Campus, Kaski, Pokhara, Nepal
| | - Bimal Dahal
- Department of Microbiology, Trichandra Multiple Campus, Kathmandu, Nepal
| | - Saroj Nepal
- Everest International Clinic and Research Center, Kathmandu, Nepal
| | - Ram Singh Dhami
- Everest International Clinic and Research Center, Kathmandu, Nepal
| | | | - Rajdip Basnet
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Nepal
| | - Basu Dev Pandey
- Everest International Clinic and Research Center, Kathmandu, Nepal.
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
10
|
Urmi TJ, Dewan SMR, Rahman JM, Sharmin SN, Hassan MM. Development of Preventive Measures and Treatment Strategies Against Nipah Virus is a Timely Need: Bangladeshi Perspective. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231183314. [PMID: 37360520 PMCID: PMC10286195 DOI: 10.1177/2632010x231183314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Viral epidemics of variable frequency and severity have wreaked havoc and panic across the world. The Nipah virus (NiV), which has been linked to multiple outbreaks, mostly in South and Southeast Asia, is regarded as one of the deadliest in the world. In Bangladesh, seasonal outbreaks of encephalitis caused by the NiV have occurred annually since 2003. In particular, NiV has numerous characteristics that highlight its potential as a pandemic danger, such as its human-to-human transmission capability and its propensity to infect humans directly from natural reservoirs and/or from other animals. Numerous types of research investigate the pathophysiology and viral mechanisms of disease progression. The NiV and its disease have been studied thoroughly but attempts to implement preventive techniques have met cultural and social obstacles. This review highlights the NiV outbreaks, and its present status, the preventative and control measures implemented, the potential causes of the outbreaks in Bangladesh, and the precautions that must be taken by both government and nongovernment entities to contain the outbreaks and assure a future with fewer or no occurrences.
Collapse
Affiliation(s)
- Taslima Jamal Urmi
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, Bangladesh
| | | | - Jannatul Mabia Rahman
- Department of Electrical and Electronic Engineering, University of Asia Pacific, Dhaka, Bangladesh
| | - Syeda Nusrat Sharmin
- Department of Civil Engineering, Military Institute of Science and Technology (MIST), Mirpur Cantonment, Dhaka, Bangladesh
| | - Md. Mahadi Hassan
- Department of Obstetrics and Reproductive Sciences, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
11
|
Satter SM, Nazneen A, Aquib WR, Sultana S, Rahman MZ, Klena JD, Montgomery JM, Shirin T. Vertical Transfer of Humoral Immunity against Nipah Virus: A Novel Evidence from Bangladesh. Trop Med Infect Dis 2022; 8:16. [PMID: 36668923 PMCID: PMC9866109 DOI: 10.3390/tropicalmed8010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
A major obstacle to in-depth investigation of the immune response against Nipah virus (NiV) infection is its rapid progression and high mortality rate. This paper described novel information on the vertical transfer of immune properties. In January 2020, a female aged below five years and her mother from Faridpur district of Bangladesh were infected. Both had a history of raw date palm sap consumption and were diagnosed as confirmed NiV cases. The daughter passed away, and the mother survived with significant residual neurological impairment. She conceived one and a half year later and was under thorough antenatal follow-up by the surveillance authority. A healthy male baby was born. As part of routine survivor follow-up, specimens were collected from the newborn and tested for NiV infection at the reference laboratory to exclude vertical transmission. Although testing negative for anti-Nipah IgM and PCR for NiV, a high titre of anti-Nipah IgG was observed. The transfer of humoral immunity against NiV from mother to neonate was confirmed for the first time. The article will serve as a reference for further exploration regarding NiV-specific antibodies that are transferred through the placenta, their potential to protect newborns, and how this may influence vaccine recommendations.
Collapse
Affiliation(s)
- Syed Moinuddin Satter
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Arifa Nazneen
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Wasik Rahman Aquib
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Sharmin Sultana
- Institute of Epidemiology, Disease Control & Research, 44 Mohakhali, Dhaka 1212, Bangladesh
| | - Mohammed Ziaur Rahman
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - John D. Klena
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control & Research, 44 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
12
|
Wan L, Ma J, Yi J, Dong Y, Niu R, Su Y, Li Q, Dan Zhu, Chao J, Su S, Fan C, Wang L, Wan Y. CRISPR-empowered hybridization chain reaction amplification for an attomolar electrochemical sensor. Chem Commun (Camb) 2022; 58:8826-8829. [PMID: 35848536 DOI: 10.1039/d2cc01155g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid pathogen screening holds the key against certain viral infections, especially in an overwhelming pandemic. Herein, a CRISPR-empowered electrochemical biosensor was designed for the ultrasensitive detection of the avian influenza A (H7N9) virus gene sequence. Combining the CRISPR/Cas system, a signal-amplification strategy and a high-conductivity sensing substrate, the developed biosensor showed an ultrawide dynamic range, an ultralow detection limit, and excellent selectivity for H7N9 detection, providing a potential sensing platform for the simple, fast, sensitive, and on-site detection of infectious diseases.
Collapse
Affiliation(s)
- Ling Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jianfeng Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jiasheng Yi
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yan Dong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Renjie Niu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yan Su
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
Jagadesh S, Combe M, Gozlan RE. Human-Altered Landscapes and Climate to Predict Human Infectious Disease Hotspots. Trop Med Infect Dis 2022; 7:tropicalmed7070124. [PMID: 35878136 PMCID: PMC9325272 DOI: 10.3390/tropicalmed7070124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Zoonotic diseases account for more than 70% of emerging infectious diseases (EIDs). Due to their increasing incidence and impact on global health and the economy, the emergence of zoonoses is a major public health challenge. Here, we use a biogeographic approach to predict future hotspots and determine the factors influencing disease emergence. We have focused on the following three viral disease groups of concern: Filoviridae, Coronaviridae, and Henipaviruses. Methods: We modelled presence–absence data in spatially explicit binomial and zero-inflation binomial logistic regressions with and without autoregression. Presence data were extracted from published studies for the three EID groups. Various environmental and demographical rasters were used to explain the distribution of the EIDs. True Skill Statistic and deviance parameters were used to compare the accuracy of the different models. Results: For each group of viruses, we were able to identify and map areas at high risk of disease emergence based on the spatial distribution of the disease reservoirs and hosts of the three viral groups. Common influencing factors of disease emergence were climatic covariates (minimum temperature and rainfall) and human-induced land modifications. Conclusions: Using topographical, climatic, and previous disease outbreak reports, we can identify and predict future high-risk areas for disease emergence and their specific underlying human and environmental drivers. We suggest that such a predictive approach to EIDs should be carefully considered in the development of active surveillance systems for pathogen emergence and epidemics at local and global scales.
Collapse
Affiliation(s)
- Soushieta Jagadesh
- Heath Geography and Policy, ETH Zurich, Sonneggstrasse 33, 8092 Zurich, Switzerland
- Correspondence:
| | - Marine Combe
- ISEM, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France; (M.C.); (R.E.G.)
| | - Rodolphe Elie Gozlan
- ISEM, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France; (M.C.); (R.E.G.)
| |
Collapse
|
14
|
Asif Z, Chen Z, Stranges S, Zhao X, Sadiq R, Olea-Popelka F, Peng C, Haghighat F, Yu T. Dynamics of SARS-CoV-2 spreading under the influence of environmental factors and strategies to tackle the pandemic: A systematic review. SUSTAINABLE CITIES AND SOCIETY 2022; 81:103840. [PMID: 35317188 PMCID: PMC8925199 DOI: 10.1016/j.scs.2022.103840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 05/05/2023]
Abstract
COVID-19 is deemed as the most critical world health calamity of the 21st century, leading to dramatic life loss. There is a pressing need to understand the multi-stage dynamics, including transmission routes of the virus and environmental conditions due to the possibility of multiple waves of COVID-19 in the future. In this paper, a systematic examination of the literature is conducted associating the virus-laden-aerosol and transmission of these microparticles into the multimedia environment, including built environments. Particularly, this paper provides a critical review of state-of-the-art modelling tools apt for COVID-19 spread and transmission pathways. GIS-based, risk-based, and artificial intelligence-based tools are discussed for their application in the surveillance and forecasting of COVID-19. Primary environmental factors that act as simulators for the spread of the virus include meteorological variation, low air quality, pollen abundance, and spatial-temporal variation. However, the influence of these environmental factors on COVID-19 spread is still equivocal because of other non-pharmaceutical factors. The limitations of different modelling methods suggest the need for a multidisciplinary approach, including the 'One-Health' concept. Extended One-Health-based decision tools would assist policymakers in making informed decisions such as social gatherings, indoor environment improvement, and COVID-19 risk mitigation by adapting the control measurements.
Collapse
Affiliation(s)
- Zunaira Asif
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Saverio Stranges
- Department of Epidemiology and Biostatistics, Western University, Ontario, Canada
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Canada
| | - Rehan Sadiq
- School of Engineering (Okanagan Campus), University of British Columbia, Kelowna, BC, Canada
| | | | - Changhui Peng
- Department of Biological Sciences, University of Quebec in Montreal, Canada
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Tong Yu
- Department of Civil and Environmental Engineering, University of Alberta, Canada
| |
Collapse
|
15
|
Chaiyes A, Duengkae P, Suksavate W, Pongpattananurak N, Wacharapluesadee S, Olival KJ, Srikulnath K, Pattanakiat S, Hemachudha T. Mapping Risk of Nipah Virus Transmission from Bats to Humans in Thailand. ECOHEALTH 2022; 19:175-189. [PMID: 35657574 PMCID: PMC10116436 DOI: 10.1007/s10393-022-01588-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Nipah virus (NiV) is a zoonotic virus that can pose a serious threat to human and livestock health. Old-world fruit bats (Pteropus spp.) are the natural reservoir hosts for NiV, and Pteropus lylei, Lyle's flying fox, is an important host of NiV in mainland Southeast Asia. NiV can be transmitted from bats to humans directly via bat-contaminated foods (i.e., date palm sap or fruit) or indirectly via livestock or other intermediate animal hosts. Here we construct risk maps for NiV spillover and transmission by combining ecological niche models for the P. lylei bat reservoir with other spatial data related to direct or indirect NiV transmission (livestock density, foodborne sources including fruit production, and human population). We predict the current and future (2050 and 2070) distribution of P. lylei across Thailand, Cambodia, and Vietnam. Our best-fit model predicted that central and western regions of Thailand and small areas in Cambodia are currently the most suitable habitats for P. lylei. However, due to climate change, the species range is predicted to expand to include lower northern, northeastern, eastern, and upper southern Thailand and almost all of Cambodia and lower southern Vietnam. This expansion will create additional risk areas for human infection from P. lylei in Thailand. Our combined predictive risk maps showed that central Thailand, inhabited by 2.3 million people, is considered highly suitable for the zoonotic transmission of NiV from P. lylei. These current and future NiV transmission risk maps can be used to prioritize sites for active virus surveillance and developing awareness and prevention programs to reduce the risk of NiV spillover and spread in Thailand.
Collapse
Affiliation(s)
- Aingorn Chaiyes
- School of Agricultural and Cooperatives, Sukhothai Thammathirat Open University, Nonthaburi, 11120, Thailand
| | - Prateep Duengkae
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| | - Warong Suksavate
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Nantachai Pongpattananurak
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Supaporn Wacharapluesadee
- King Chulalongkorn Memorial Hospital Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases - Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | | | - Kornsorn Srikulnath
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Sura Pattanakiat
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thiravat Hemachudha
- King Chulalongkorn Memorial Hospital Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases - Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| |
Collapse
|
16
|
Skowron K, Bauza-Kaszewska J, Grudlewska-Buda K, Wiktorczyk-Kapischke N, Zacharski M, Bernaciak Z, Gospodarek-Komkowska E. Nipah Virus-Another Threat From the World of Zoonotic Viruses. Front Microbiol 2022; 12:811157. [PMID: 35145498 PMCID: PMC8821941 DOI: 10.3389/fmicb.2021.811157] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Among the diseases that pose a serious threat to public health, those caused by viruses are of great importance. The Nipah virus (NiV) belonging to the Paramyxoviridae family was reported in Malaysia in 1998/1999. Due to its high mortality in humans, its zoonotic nature, the possibility of human-to-human transmission, and the lack of an available vaccine, the World Health Organization (WHO) has recognized it as a global health problem. Depending on strain specificity, neurological symptoms and severe respiratory disorders are observed in NiV infection. In most confirmed cases of NiV epidemics, the appearance of the virus in humans was associated with the presence of various animal species, but generally, bats of Pteropus species are considered the most important natural animal NiV reservoir and vector. Consumption of contaminated food, contact with animals, and “human-to-human” direct contact were identified as NiV transmission routes. Due to the lack of vaccines and drugs with proven effectiveness against NiV, treatment of patients is limited to supportive and prophylactic.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, Jan and Jędrzej Śniadecki University of Technology in Bydgoszcz, Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Maciej Zacharski
- Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Zuzanna Bernaciak
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
17
|
Abstract
In this review, we highlight the risk to livestock and humans from infections with henipaviruses, which belong to the virus family Paramyxoviridae. We provide a comprehensive overview of documented outbreaks of Nipah and Hendra virus infections affecting livestock and humans and assess the burden on the economy and health systems. In an increasingly globalized and interconnected world, attention must be paid to emerging viruses and infectious diseases, as transmission routes can be rapid and worldwide.
Collapse
Affiliation(s)
- Susann Kummer
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- * E-mail:
| | - Denise-Carina Kranz
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
18
|
Gabra MD, Ghaith HS, Ebada MA. Nipah Virus: An Updated Review and Emerging Challenges. Infect Disord Drug Targets 2022; 22:e170122200296. [PMID: 35078400 DOI: 10.2174/1871526522666220117120859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Many hospitals are teetering on the edge of being overwhelmed, with many already there because of the COVID-19 pandemic. Moreover, a recent report has also warned about the Nipah virus (NiV). NiV is a pleomorphic enveloped virus that belongs to the Paramyxoviridae family (genus Henipavirus); it affects both the respiratory and central nervous systems, with a fatality rate ranging from 40% to 75%, as documented by the World Health Organization. The first reported NiV outbreak was in early 1999 in Malaysia among people who contacted infected pigs. NiV also affected Bangladesh and India, where the main infection route was the consumption of raw date palm sap contaminated by bats. The World Health Organization has listed NiV as one of the emerging pathogens that can lead to severe outbreaks at any moment in the future with limited medical preparations and only a few projects in pharmaceutical firms. There is no licensed treatment for human use against NiV until now, and the management is limited to supportive care and symptomatic treatment. In severe cases with neurologic and respiratory complications, intensive care is needed. This article reviews the published literature and highlights the latest updates about this emerging pathogen and the methods to avoid the spread of this disease during this critical period.
Collapse
Affiliation(s)
| | | | - Mahmoud Ahmed Ebada
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
- Internal Medicine Resident, Ministry of Health and Population of Egypt, Cairo, Egypt
- Department of Internal Medicine and Endocrinology, National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| |
Collapse
|
19
|
Menon VB, George LS. Response of the health system in Nipah outbreak in Ernakulam district: A qualitative analysis. J Family Med Prim Care 2021; 10:3355-3360. [PMID: 34760757 PMCID: PMC8565131 DOI: 10.4103/jfmpc.jfmpc_801_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 11/04/2022] Open
Abstract
Background: Nipah is an emerging zoonotic disease that is transmitted through contaminated food or directly between people. Recently, Nipah virus infection was confirmed in Kochi, Kerala, making it the fourth outbreak reported in India. However, due to its good epidemic response, the health system of Kerala was able to control it in a timely manner. Objective: To qualitatively analyse the response of the health system of Kerala in controlling the Nipah outbreak (2019) by identifying the enabling factors and the challenges faced by it. Methods: A qualitative study was conducted using grounded theory approach. Key informant interviews were conducted till data saturation was reached. The audio recorded data was translated, transcribed and was manually coded and thematically analysed. Results: The major enablers for its apt response were identified to be effective communication, good line of control, effective division of work, intersectorial coordination, strong leadership, political commitment, resilient public private partnership and support groups, past experiences in disaster management, quick procurement of medicines and availability of lab facilities. On the other hand, the challenges identified were initial confusions, lack of standard operating procedures/guidelines for epidemic management, complacency, lack of effective zoonotic surveillance, media management and community participation. Conclusion: This study attributes the success of the outbreak response to the strong leadership and political commitment. In order to prevent recurrences in the future, there is a need to build a resilient health system through capacity building and further strengthening of the surveillance system.
Collapse
Affiliation(s)
- Vishnu B Menon
- Department of Community Medicine and Public Health, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Leyanna Susan George
- Department of Community Medicine and Public Health, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
20
|
Wong JJ, Chen Z, Chung JK, Groves JT, Jardetzky TS. EphrinB2 clustering by Nipah virus G is required to activate and trap F intermediates at supported lipid bilayer-cell interfaces. SCIENCE ADVANCES 2021; 7:eabe1235. [PMID: 33571127 PMCID: PMC7840137 DOI: 10.1126/sciadv.abe1235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Paramyxovirus membrane fusion requires an attachment protein that binds to a host cell receptor and a fusion protein that merges the viral and host membranes. For Nipah virus (NiV), the G attachment protein binds ephrinB2/B3 receptors and activates F-mediated fusion. To visualize dynamic events of these proteins at the membrane interface, we reconstituted NiV fusion activation by overlaying F- and G-expressing cells onto ephrinB2-functionalized supported lipid bilayers and used TIRF microscopy to follow F, G, and ephrinB2. We found that G and ephrinB2 form clusters and that oligomerization of ephrinB2 is necessary for F activation. Single-molecule tracking of F particles revealed accumulation of an immobilized intermediate upon activation. We found no evidence for stable F-G protein complexes before or after activation. These observations lead to a revised model for NiV fusion activation and provide a foundation for investigating other multicomponent viral fusion systems.
Collapse
Affiliation(s)
- Joyce J Wong
- Department of Structural Biology, Stanford University, Stanford, CA, USA
| | - Zhongwen Chen
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jean K Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| | | |
Collapse
|
21
|
Nipah Virus: Past Outbreaks and Future Containment. Viruses 2020; 12:v12040465. [PMID: 32325930 PMCID: PMC7232522 DOI: 10.3390/v12040465] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Viral outbreaks of varying frequencies and severities have caused panic and havoc across the globe throughout history. Influenza, small pox, measles, and yellow fever reverberated for centuries, causing huge burden for economies. The twenty-first century witnessed the most pathogenic and contagious virus outbreaks of zoonotic origin including severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV) and Nipah virus. Nipah is considered one of the world’s deadliest viruses with the heaviest mortality rates in some instances. It is known to cause encephalitis, with cases of acute respiratory distress turning fatal. Various factors contribute to the onset and spread of the virus. All through the infected zone, various strategies to tackle and enhance the surveillance and awareness with greater emphasis on personal hygiene has been formulated. This review discusses the recent outbreaks of Nipah virus in Malaysia, Bangladesh and India, the routes of transmission, prevention and control measures employed along with possible reasons behind the outbreaks, and the precautionary measures to be ensured by private–public undertakings to contain and ensure a lower incidence in the future.
Collapse
|
22
|
Gupta AK, Kumar A, Rajput A, Kaur K, Dar SA, Thakur A, Megha K, Kumar M. NipahVR: a resource of multi-targeted putative therapeutics and epitopes for the Nipah virus. Database (Oxford) 2020; 2020:baz159. [PMID: 32090261 PMCID: PMC7036594 DOI: 10.1093/database/baz159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/20/2019] [Accepted: 12/23/2020] [Indexed: 12/20/2022]
Abstract
Nipah virus (NiV) is an emerging and priority pathogen from the Paramyxoviridae family with a high fatality rate. It causes various diseases such as respiratory ailments and encephalitis and poses a great threat to humans and livestock. Despite various efforts, there is no approved antiviral treatment available. Therefore, to expedite and assist the research, we have developed an integrative resource NipahVR (http://bioinfo.imtech.res.in/manojk/nipahvr/) for the multi-targeted putative therapeutics and epitopes for NiV. It is structured into different sections, i.e. genomes, codon usage, phylogenomics, molecular diagnostic primers, therapeutics (siRNAs, sgRNAs, miRNAs) and vaccine epitopes (B-cell, CTL, MHC-I and -II binders). Most decisively, potentially efficient therapeutic regimens targeting different NiV proteins and genes were anticipated and projected. We hope this computational resource would be helpful in developing combating strategies against this deadly pathogen. Database URL: http://bioinfo.imtech.res.in/manojk/nipahvr/.
Collapse
Affiliation(s)
- Amit Kumar Gupta
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India
| | - Archit Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India
| | - Akanksha Rajput
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India
| | - Karambir Kaur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India
| | - Showkat Ahmed Dar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India
| | - Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India
| | - Kirti Megha
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
23
|
Abstract
This book explores the topic of resilience at the city level. The focus is more on outbreak events at the city level, or how cities should prepare and react in facing the larger events of epidemic and pandemic.
Collapse
|
24
|
Reflection on Disruptions: Managing the City in Need, Saving the City in Need. THE CITY IN NEED 2020. [PMCID: PMC7278286 DOI: 10.1007/978-981-15-5487-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|