1
|
Salleh MZ, Nik Zuraina NMN, Deris ZZ, Mohamed Z. Current trends in the epidemiology of multidrug-resistant and beta-lactamase-producing Pseudomonas aeruginosa in Asia and Africa: a systematic review and meta-analysis. PeerJ 2025; 13:e18986. [PMID: 40017659 PMCID: PMC11867037 DOI: 10.7717/peerj.18986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Pseudomonas aeruginosa continues to be a significant contributor to high morbidity and mortality rates worldwide, particularly due to its role in severe infections such as hospital-acquired conditions, including ventilator-associated pneumonia and various sepsis syndromes. The global increase in antimicrobial-resistant (AMR) P. aeruginosa strains has made these infections more difficult to treat, by limiting the effective drug options available. This systematic review and meta-analysis aim to provide an updated summary of the prevalence of AMR P. aeruginosa over the past 5 years. A systematic search was performed across three major electronic databases-PubMed, ScienceDirect, and Web of Science-yielding 40 eligible studies published between 2018 and 2023. Using a random-effects model, our meta-analysis estimated that the overall prevalence of P. aeruginosa in Asia and Africa over the past 5 years was 22.9% (95% CI [14.4-31.4]). The prevalence rates for multidrug-resistant (MDR) and extensively drug-resistant (XDR) P. aeruginosa strains were found to be 46.0% (95% CI [37.1-55.0]) and 19.6% (95% CI [4.3-34.9]), respectively. Furthermore, the prevalence rates of extended-spectrum β-lactamase- and metallo-β-lactamase-producing P. aeruginosa were 33.4% (95% CI [23.6-43.2]) and 16.0% (95% CI [9.8-22.3]), respectively. Notably, resistance rates to β-lactams used for treating pseudomonal infections were alarmingly high, with rates between 84.4% and 100.0% for cephalosporins, and over 40% of P. aeruginosa isolates showed resistance to penicillins. Our analysis identified the lowest resistance rates for last-resort antimicrobials, with 0.3% (95% CI [0.0-1.3]) resistance to polymyxin B and 5.8% (95% CI [1.5-10.2]) to colistin/polymyxin E. The low resistance rates to polymyxins suggest that these antibiotics remain effective against MDR P. aeruginosa. However, the findings also highlight the critical public health threat posed by antimicrobial-resistant P. aeruginosa, particularly concerning β-lactam antibiotics. This underscores the need for effective and carefully planned intervention strategies, including the development of new antibiotics to address the growing challenge of resistance. Developing robust antibiotic treatment protocols is essential for better management and control of pseudomonal infections globally. Therefore, continued research and international collaboration is vital to tackle this escalating public health challenge. This study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO), under registration number CRD42023412839.
Collapse
Affiliation(s)
- Mohd Zulkifli Salleh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Nik Mohd Noor Nik Zuraina
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Zakuan Zainy Deris
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Zeehaida Mohamed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
2
|
Alatoom A, Alattas M, Alraddadi B, Moubareck CA, Hassanien A, Jamal W, Kurdi A, Mohamed N, Senok A, Somily AM, Ziglam H. Antimicrobial Resistance Profiles of Pseudomonas aeruginosa in the Arabian Gulf Region Over a 12-Year Period (2010-2021). J Epidemiol Glob Health 2024; 14:529-548. [PMID: 38856819 PMCID: PMC11442796 DOI: 10.1007/s44197-024-00191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/11/2024] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVES To evaluate literature from a 12-year period (2010-2021) on the antimicrobial resistance profile of Pseudomonas aeruginosa from the Arabian Gulf countries (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates). METHODS An electronic literature search was conducted for articles on antimicrobial resistance in P. aeruginosa and associated phenotypes, covering the period of 1st January 2010 to 1st December 2021. RESULTS Antimicrobial resistance in the Arabian Gulf was highest to meropenem (10.3-45.7%) and lowest to colistin (0.0-0.8%), among the agents tested. Annual data showed that ceftazidime resistance (Kuwait), piperacillin-tazobactam non-susceptibility (Qatar), and aztreonam, imipenem, and meropenem resistance (Saudi Arabia) increased by 12-17%. Multiple mechanisms of carbapenem resistance were identified and multiple clones were detected, including high-risk clones such as ST235. The most common carbapenemases detected were the VIM-type metallo-β-lactamases. CONCLUSIONS Among P. aeruginosa in the Arabian Gulf countries, resistance to meropenem was higher than to the other agents tested, and meropenem resistance increased in Saudi Arabia during the study period. Resistance to colistin, a classic antibiotic used to treat Pseudomonas spp. infections, remained low. The VIM-type β-lactamase genes were dominant. We recommend local and regional antimicrobial resistance surveillance programs to detect the emergence of resistance genes and to monitor antimicrobial resistance trends in P. aeruginosa.
Collapse
Affiliation(s)
- A Alatoom
- National Reference Laboratory, Abu Dhabi, UAE.
- Department of Pathology and Laboratory Medicine, Sheikh Shakhbout Medical City, Abu Dhabi, UAE.
| | - M Alattas
- King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - B Alraddadi
- King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- Alfaisal University, Riyadh, Saudi Arabia
| | - C Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai, UAE
| | | | - W Jamal
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - A Kurdi
- Pfizer, Dubai, UAE
- Hikma Pharmaceuticals, Amman, Jordan
| | | | - A Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - A M Somily
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University Medical City, Riyadh, Saudi Arabia
| | - H Ziglam
- Department of Infectious Diseases, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
3
|
Sharif F, Shahzad L, Batool M. The association between climatic factors and waterborne infectious outbreaks with a focus on vulnerability in Pakistan: integrative review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3299-3316. [PMID: 38195067 DOI: 10.1080/09603123.2024.2302040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
Climate change affects the spread of waterborne infectious diseases, yet research on vulnerability to outbreaks remains limited. This integrative review examines how climate variables (temperature and precipitation) relate to human vulnerability factors in Pakistan. By 2060, mean temperatures are projected to rise from 21.68°C (2021) to 30°C, with relatively stable precipitation. The epidemiological investigation in Pakistan identified Diarrhea (119,000 cases/year), Malaria (2.6 million cases/year), and Hepatitis (A and E) as the most prevalent infections. This research highlighted vulnerability factors, including poverty (52% of the population), illiteracy (59% of the population), limited healthcare accessibility (55% of the population), malnutrition (38% of the population), dietary challenges (48% of the population), as well as exposure to water pollution (80% of the population) and air pollution (55% of the population). The findings suggest that the coordinated strategies are vital across health, environmental, meteorological, and social sectors, considering climatic variability patterns and population vulnerability determinants.
Collapse
Affiliation(s)
- Faiza Sharif
- Sustainable development study center (SDSC), Government College University, Lahore, Pakistan
| | - Laila Shahzad
- Sustainable development study center (SDSC), Government College University, Lahore, Pakistan
| | - Masooma Batool
- Sustainable development study center (SDSC), Government College University, Lahore, Pakistan
| |
Collapse
|
4
|
Hemmati J, Nazari M, Abolhasani FS, Ahmadi A, Asghari B. In vitro investigation of relationship between quorum-sensing system genes, biofilm forming ability, and drug resistance in clinical isolates of Pseudomonas aeruginosa. BMC Microbiol 2024; 24:99. [PMID: 38528442 DOI: 10.1186/s12866-024-03249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen in the health-care systems and one of the primary causative agents with high mortality in hospitalized patients, particularly immunocompromised. The limitation of effective antibiotic administration in multidrug-resistant and extensively drug-resistant P. aeruginosa isolates leads to the development of nosocomial infections and health problems. Quorum sensing system contributes to biofilm formation, expression of bacterial virulence factors, and development of drug resistance, causing prolonged patient infections. Therefore, due to the significance of the quorum sensing system in increasing the pathogenicity of P. aeruginosa, the primary objective of our study was to investigate the frequency of quorum sensing genes, as well as the biofilm formation and antibiotic resistance pattern among P. aeruginosa strains. METHODS A total of 120 P. aeruginosa isolates were collected from different clinical specimens. The disk diffusion method was applied to detect the antibiotic resistance pattern of P. aeruginosa strains. Also, the microtiter plate method was carried out to evaluate the biofilm-forming ability of isolates. Finally, the frequency of rhlI, rhlR, lasI, and lasR genes was examined by the polymerase chain reaction method. RESULTS In total, 88.3% P. aeruginosa isolates were found to be multidrug-resistant, of which 30.1% had extensively drug-resistant pattern. The highest and lowest resistance rates were found against ceftazidime (75.0%) and ciprofloxacin (46.6%), respectively. Also, 95.8% of isolates were able to produce biofilm, of which 42.5%, 33.3%, and 20.0% had strong, moderate, and weak biofilm patterns, respectively. The frequency of quorum sensing genes among all examined strains was as follows: rhlI (81.6%), rhlR (90.8%), lasI (89.1%), and lasR (78.3%). The most common type of quorum sensing genes among multidrug-resistant isolates were related to rhlR and lasI genes with 94.3%. Furthermore, rhlI, rhlR, and lasI genes were positive for all extensively drug-resistant isolates. However, the lasR gene had the lowest frequency among both multidrug-resistant (83.0%) and extensively drug-resistant (90.6%) isolates. Moreover, rhlR (94.7%) and lasR (81.7%) genes had the highest and lowest prevalence among biofilm-forming isolates, respectively. CONCLUSION Our findings disclosed the significantly high prevalence of drug resistance among P. aeruginosa isolates. Also, the quorum sensing system had a significant correlation with biofilm formation and drug resistance, indicating the essential role of this system in the emergence of nosocomial infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Jaber Hemmati
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Nazari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Sadat Abolhasani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amjad Ahmadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Gondal AJ, Choudhry N, Niaz A, Yasmin N. Molecular Analysis of Carbapenem and Aminoglycoside Resistance Genes in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Strains: A Challenge for Tertiary Care Hospitals. Antibiotics (Basel) 2024; 13:191. [PMID: 38391577 PMCID: PMC10886086 DOI: 10.3390/antibiotics13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains have become a global threat due to their remarkable capability to survive and disseminate successfully by the acquisition of resistance genes. As a result, the treatment strategies have been severely compromised. Due to the insufficient available data regarding P. aeruginosa resistance from Pakistan, we aimed to investigate the resistance mechanisms of 249 P. aeruginosa strains by antimicrobial susceptibility testing, polymerase chain reaction for the detection of carbapenemases, aminoglycoside resistance genes, extended-spectrum beta-lactamases (ESBLs), sequence typing and plasmid typing. Furthermore, we tested silver nanoparticles (AgNPs) to evaluate their in vitro sensitivity against antimicrobial-resistant P. aeruginosa strains. We observed higher resistance against antimicrobials in the general surgery ward, general medicine ward and wound samples. Phenotypic carbapenemase-producer strains comprised 80.7% (201/249) with 89.0% (179/201) demonstrating genes encoding carbapenemases: blaNDM-1 (32.96%), blaOXA48 (37.43%), blaIMP (7.26%), blaVIM (5.03%), blaKPC-2 (1.12%), blaNDM-1/blaOXA48 (13.97%), blaOXA-48/blaVIM (1.68%) and blaVIM/blaIMP (0.56%). Aminoglycoside-modifying enzyme genes and 16S rRNA methylase variants were detected in 43.8% (109/249) strains: aac(6')-lb (12.8%), aac(3)-lla (12.0%), rmtB (21.1%), rmtC (11.0%), armA (12.8%), rmtD (4.6%), rmtF (6.4%), rmtB/aac(3)-lla (8.2%), rmtB/aac(6')-lla (7.3%) and rmtB/armA (3.6%). In total, 43.0% (77/179) of the strains coharbored carbapenemases and aminoglycoside resistance genes with 83.1% resistant to at least 1 agent in 3 or more classes and 16.9% resistant to every class of antimicrobials tested. Thirteen sequence types (STs) were identified: ST235, ST277, ST234, ST170, ST381, ST175, ST1455, ST1963, ST313, ST207, ST664, ST357 and ST348. Plasmid replicon types IncFI, IncFII, IncA/C, IncL/M, IncN, IncX, IncR and IncFIIK and MOB types F11, F12, H121, P131 and P3 were detected. Meropenem/AgNPs and Amikacin/AgNPs showed enhanced antibacterial activity. We reported the coexistence of carbapenemases and aminoglycoside resistance genes among carbapenem-resistant P. aeruginosa with diverse clonal lineages from Pakistan. Furthermore, we highlighted AgNP's potential role in handling future antimicrobial resistance concerns.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Ammara Niaz
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Ma Z, Xiao H, Li H, Lu X, Yan J, Nie H, Yin Q. Prodigiosin as an Antibiofilm Agent against the Bacterial Biofilm-Associated Infection of Pseudomonas aeruginosa. Pathogens 2024; 13:145. [PMID: 38392883 PMCID: PMC10891946 DOI: 10.3390/pathogens13020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Pseudomonas aeruginosa is known to generate bacterial biofilms that increase antibiotic resistance. With the increase of multi-drug resistance in recent years, the formulation of a new therapeutic strategy has seemed urgent. Preliminary findings show that Prodigiosin (PG), derived from chromium-resistant Serratia marcescens, exhibited efficient anti-biofilm activity against Staphylococcus aureus. However, its anti-biofilm activity against P. aeruginosa remains largely unexplored. The anti-biofilm activity of PG against three clinical single drug-resistant P. aeruginosa was evaluated using crystal violet staining, and the viability of biofilms and planktonic cells were also assessed. A model of chronic lung infection was constructed to test the in vivo antibiofilm activity of PG. The results showed that PG inhibited biofilm formation and effectively inhibited the production of pyocyanin and extracellular polysaccharides in vitro, as well as moderated the expression of interleukins (IL-1β, IL-6, IL-10) and tumor necrosis factor (TNF-α) in vivo, which might be attributed to the downregulation of biofilm-related genes such as algA, pelA, and pslM. These findings suggest that PG could be a potential treatment for drug-resistant P aeruginosa and chronic biofilm infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, China
| |
Collapse
|
7
|
Hemmati J, Nazari M, Ahmadi A, Bayati M, Jalili M, Taheri M, Mohammadi Y, Asghari B. In vitro evaluation of biofilm phenotypic and genotypic characteristics among clinical isolates of Pseudomonas aeruginosa in Hamadan, West of Iran. J Appl Genet 2024; 65:213-222. [PMID: 38017355 DOI: 10.1007/s13353-023-00811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Due to high antimicrobial resistance and biofilm-forming ability, Pseudomonas aeruginosa is one of the seriously life-threatening agents causing chronic and nosocomial infections. This study was performed to determine the antibiotic resistance pattern, biofilm formation, and frequency of biofilm-related genes in P. aeruginosa strains. In total, 123 P. aeruginosa isolates were collected from different clinical sources. Antimicrobial susceptibility testing (AST) was performed to detect multidrug-resistant P. aeruginosa (MDRPA) isolates. To evaluate the biofilm-forming isolates, the microtiter plate (MTP) method was carried out. Also, the prevalence of biofilm genotype patterns, including pslA, pslD, pelA, pelF, and algD genes, was detected by polymerases chain reaction (PCR). According to our findings, the highest resistance and susceptibility rates were found in ceftazidime with 74.7% (n = 92) and ciprofloxacin with 42.2% (n = 52), respectively. In our study, the highest level of antibiotic resistance belonged to wound isolates which meropenem had the most antibacterial activity against them. In total, 86.1% (n = 106) P. aeruginosa isolates were determined as MDRPA, of which 61.3% (n = 65) were able to form strong biofilm. The highest and lowest frequency of biofilm-related genes among biofilm producer isolates belonged to pelF with 82.1% (n = 101) and algD with 55.2% (n = 68), respectively. The findings of the conducted study indicate a significant relationship between MDRPA and biofilm genotypic/phenotypic patterns, suggesting the necessity of a careful surveillance program in hospital settings.
Collapse
Affiliation(s)
- Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Nazari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amjad Ahmadi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maral Bayati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Jalili
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
8
|
Idris FN, Nadzir MM. Multi-drug resistant ESKAPE pathogens and the uses of plants as their antimicrobial agents. Arch Microbiol 2023; 205:115. [PMID: 36917278 PMCID: PMC10013289 DOI: 10.1007/s00203-023-03455-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Infections by ESKAPE (Enterococcus sp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens cause major concern due to their multi-drug resistance (MDR). The ESKAPE pathogens are frequently linked to greater mortality, diseases, and economic burden in healthcare worldwide. Therefore, the use of plants as a natural source of antimicrobial agents provide a solution as they are easily available and safe to use. These natural drugs can also be enhanced by incorporating silver nanoparticles and combining them with existing antibiotics. By focussing the attention on the ESKAPE organisms, the MDR issue can be addressed much better.
Collapse
Affiliation(s)
- Farhana Nazira Idris
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, 14300, Pulau Pinang, Malaysia
| | - Masrina Mohd Nadzir
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, 14300, Pulau Pinang, Malaysia.
| |
Collapse
|
9
|
Estimation, Evaluation and Characterization of Carbapenem Resistance Burden from a Tertiary Care Hospital, Pakistan. Antibiotics (Basel) 2023; 12:antibiotics12030525. [PMID: 36978392 PMCID: PMC10044297 DOI: 10.3390/antibiotics12030525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Carbapenem resistance has become major concern in healthcare settings globally; therefore, its monitoring is crucial for intervention efforts to halt resistance spread. During May 2019–April 2022, 2170 clinical strains were characterized for antimicrobial susceptibility, resistance genes, replicon and sequence types. Overall, 42.1% isolates were carbapenem-resistant, and significantly associated with Klebsiella pneumoniae (K. pneumoniae) (p = 0.008) and Proteus species (p = 0.043). Carbapenemases were detected in 82.2% of isolates, with blaNDM-1 (41.1%) associated with the ICU (p < 0.001), cardiology (p = 0.042), pediatric medicine (p = 0.013) and wound samples (p = 0.041); blaOXA-48 (32.6%) was associated with the ICU (p < 0.001), cardiology (p = 0.008), pediatric medicine (p < 0.001), general surgery (p = 0.001), general medicine (p = 0.005) and nephrology (p = 0.020); blaKPC-2 (5.5%) was associated with general surgery (p = 0.029); blaNDM-1/blaOXA-48 (11.4%) was associated with general surgery (p < 0.001), and wound (p = 0.002), urine (p = 0.003) and blood (p = 0.012) samples; blaOXA-48/blaVIM (3.1%) was associated with nephrology (p < 0.001) and urine samples (p < 0.001). Other detected carbapenemases were blaVIM (3.0%), blaIMP (2.7%), blaOXA-48/blaIMP (0.1%) and blaVIM/blaIMP (0.3%). Sequence type (ST)147 (39.7%) represented the most common sequence type identified among K. pneumoniae, along with ST11 (23.0%), ST14 (15.4%), ST258 (10.9%) and ST340 (9.6%) while ST405 comprised 34.5% of Escherichia coli (E. coli) isolates followed by ST131 (21.2%), ST101 (19.7%), ST10 (16.0%) and ST69 (7.4%). Plasmid replicon types IncFII, IncA/C, IncN, IncL/M, IncFIIA and IncFIIK were observed. This is first report describing the carbapenem-resistance burden and emergence of blaKPC-2-ST147, blaNDM-1-ST340 and blaNDM-1-ST14 in K. pneumoniae isolates and blaNDM-1-ST69 and blaNDM-1/blaOXA-48-ST69 in E. coli isolates coharboring extended-spectrum beta-lactamases (ESBLs) from Pakistan.
Collapse
|
10
|
Coşkun USŞ, Dagcioglu Y. Evaluation of toxin-antitoxin genes, antibiotic resistance, and virulence genes in Pseudomonas aeruginosa isolates. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:51-55. [PMID: 36820713 PMCID: PMC9937597 DOI: 10.1590/1806-9282.20220493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 02/19/2023]
Abstract
OBJECTIVE Toxin-antitoxin genes RelBE and HigBA are known to be involved in the formation of biofilm, which is an important virulence factor for Pseudomonas aeruginosa. The purpose of this study was to determine the presence of toxin-antitoxin genes and exoenzyme S and exotoxin A virulence genes in P. aeruginosa isolates and whether there is a relationship between toxin-antitoxin genes and virulence genes as well as antibiotic resistance. METHODS Identification of the isolates and antibiotic susceptibilities was determined by a VITEK 2 (bioMérieux, France) automated system. The presence of toxin-antitoxin genes, virulence genes, and transcription levels were detected by real-time polymerase chain reaction. RESULTS RelBE and HigBA genes were detected in 94.3% (82/87) of P. aeruginosa isolates, and exoenzyme S and exotoxin A genes were detected in all of the isolates (n=87). All of the isolates that harbor the toxin-antitoxin and virulence genes were transcribed. There was a significant increase in the RelBE gene transcription level in imipenem- and meropenem-sensitive isolates and in the HigBA gene transcription level in amikacin-sensitive isolates (p<0.05). There was a significant correlation between RelBE and exoenzyme S (p=0.001). CONCLUSION The findings suggest that antibiotic resistance may be linked to toxin-antitoxin genes. Furthermore, the relationship between RelBE and exoenzyme S indicates that toxin-antitoxin genes in P. aeruginosa isolates are not only related to antibiotic resistance but also play an influential role in bacterial virulence. Larger collections of comprehensive studies on this subject are required. These studies should contribute significantly to the solution of the antibiotic resistance problem.
Collapse
Affiliation(s)
- Umut Safiye Şay Coşkun
- Tokat Gaziosmanpaşa University, Faculty of Medicine, Department of Medical Microbiology – Tokat, Turkey.,Corresponding author:
| | - Yelda Dagcioglu
- Tokat Gaziosmanpaşa University, Training and Research Hospital, Genetic Laboratory – Tokat, Turkey
| |
Collapse
|
11
|
Risk Factors of Clonally Related, Multi, and Extensively Drug-Resistant Acinetobacter baumannii in Severely Ill COVID-19 Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3139270. [PMID: 36814503 PMCID: PMC9940951 DOI: 10.1155/2023/3139270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/30/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Background The secondary infection of multi and extensively drug-resistant "Acinetobacter baumannii" in severely ill COVID-19 individuals is usually associated with extended hospitalisation and a high mortality rate. The current study aimed to assess the exact incidence rate of A. baumannii coinfection in severely ill COVID-19 patients admitted to intensive care unit (ICUs), to identify the possible mechanism of A. baumannii transfer to COVID-19 patients and to find out their resistance rate against different antibiotics. Methods Fifty severely ill "COVID-19" individuals on respiratory support were selected with samples being collected from the pharynx. In addition, another 60 samples were collected from the surrounding environment. Bacterial isolates were diagnosed by microbiological cultures and confirmed by "Vitek 2 system" and real-time PCR. The "Vitek 2 Compact system" was used to evaluate these isolates for antimicrobial susceptibility. The recovered isolates' DNA fingerprints and genetic similarities were performed using ERIC-PCR. Results Twenty-six samples were tested positive for A. baumannii (20 out of 50 samples taken from patients, 40%; 6 out of 60 swabs from a nosocomial setting, 10%). All A. baumannii strains isolated from the nosocomial sites were clonally related (have the same genetic lineage) to some strains isolated from patients. However, the majority of the patients' strains were categorised as belonging to the same genetic lineage. Furthermore, "the multi and extensively drug" resistance patterns were seen in all isolates. In addition, total isolates showed resistance to the most commonly tested antibiotics, while none of them was found to be resistant to tigecycline. Conclusion Secondary "A. baumannii" infection in severely ill "COVID-19" patients is a serious matter, especially when it has one spot of transmission in the ICU as well as when it is extensively drug-resistant, necessitating an immediate and tactical response to secure the issue.
Collapse
|
12
|
Molecular Characterization of Gene-Mediated Resistance and Susceptibility of ESKAPE Clinical Isolates to Cistus monspeliensis L. and Cistus salviifolius L. Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7467279. [PMID: 36204117 PMCID: PMC9532067 DOI: 10.1155/2022/7467279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
Background Multidrug resistance (MDR) and extensively drug-resistant (XDR) are now the biggest threats to human beings. Alternative antimicrobial regimens to conventional antibiotic paradigms are extensively searched. Although Cistus extracts have long been used for infections in traditional folk medicines around the world, their efficacy against resistant bacteria still needs to be elucidated. We aim to investigate the antibiotic susceptibility profiles of clinical strains Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae (acronym “ESKAPE”), and their resistance mechanisms by PCR, as well as their sensitivity to C. monspeliensis (CM) and C. salviifolius (CS) methanol extracts and their fractions. Methods Antibiotic susceptibility profile and resistance mechanism were done by antibiogram and PCR. Fractions of CM and CS were obtained using maceration and Soxhlet; their antibacterial activities were evaluated by determining inhibition zone diameter (IZD), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Results Results revealed that all strains were XDR except S. aureus, which was MDR. The PCR indicates the presence of gene-mediated resistance (blaCTX-M, blaSHV, blaOXA-48, blaNDM, blaOXA-51, blaOXA-58, blaIMP, blaVIM, and blamecA). Also, maceration was slightly better for bioactivity preservation. Overall, the extracts of CM (IZD = 20 mm, MIC = 0.01 mg/mL) were more active than those of CS. All extracts inhibited MRSA (methicillin-resistant Staphylococcus aureus) and ERV (Enterococcus faecium Vancomycin-Resistant) with interesting MICs. The ethyl acetate fraction manifested great efficacy against all strains. Monoterpene hydrocarbons and sesquiterpenes oxygenated were the chemical classes of compounds dominating the analyzed fractions. Viridiflorol was the major compound in ethyl acetate fractions of 59.84% and 70.77% for CM and CS, respectively. Conclusions The superior activity of extracts to conventional antibiotics was seen for the first time in the pathogens group, and their bactericidal effect could be a promising alternative for developing clinical antibacterial agents against MDR and XDR ESKAPE bacteria.
Collapse
|
13
|
Ejaz H. Molecular characterization and antibiogram of the carbapenemase gene variants in clinical strains of Pseudomonas aeruginosa. Mol Biol Rep 2022; 49:10531-10539. [PMID: 36129599 DOI: 10.1007/s11033-022-07930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Carbapenemase-producing Pseudomonas aeruginosa (CPPA) is a substantial clinical concern because it jeopardizes therapeutic choices. This study characterizes the gene variants of CPPA and report its antibiogram. METHODS CPPA was isolated prospectively from diverse clinical sources in a tertiary care setting using a routine microbiological approach. Carbapenem-resistant P. aeruginosa strains were phenotypically identified using the modified carbapenem inactivation (mCIM) method. Minimum inhibitory concentration (MIC) breakpoints of several antibacterial drug groups were determined using broth microdilution methods and the MicroScan WalkAway plus system. Carbapenemase gene variants blaNDM, blaVIM, blaOXA,blaGES, and blaIMP were amplified using polymerase chain reaction (PCR), and the purified gene products were sequenced. RESULTS Seventy-one P. aeruginosa-infected cases were found, with 47 (66.2%) carrying CPPA; 46.8% of the latter were significantly associated with intensive care units (p = 0.03). CPPA was frequently detected in wound swabs (13; 27.7%), sputum (11; 23.4%), and blood (9; 19.1%). All strains were multidrug-resistant (MDR), and several were extensively drug-resistant. MIC50 and MIC90 breakpoints of all antibiotics, except colistin, were within the resistance range. MIC90 breakpoints of aztreonam, amikacin, cefepime, and piperacillin-tazobactam were > 512 µg/mL. The multiple antibiotic resistance index (MARI) was remarkably high, with a range of 0.38-0.92. The most commonly detected carbapenemase genes were blaVIM (74%), blaNDM-1 (19%), blaOXA-23 (14.9%), and blaGES (10.6%), while 12 of 47 strains co-harbored different combinations of carbapenemase gene variants. CONCLUSION A large proportion of CPPA strains carried the blaVIM gene variant, indicating intimidating health problems and emphasizing the need for extensive surveillance and antibiotic stewardship.
Collapse
Affiliation(s)
- Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, 72388, Al Jouf, Saudi Arabia.
| |
Collapse
|
14
|
Shalmashi H, Farajnia S, Sadeghi M, Tanoumand A, Veissi K, Hamishekar H, Gotaslou R. Detection of ESBLs types blaCTX-M, blaSHV and blaTEM resistance genes among clinical isolates of Pseudomonas aeruginosa. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Diorio-Toth L, Irum S, Potter RF, Wallace MA, Arslan M, Munir T, Andleeb S, Burnham CAD, Dantas G. Genomic Surveillance of Clinical Pseudomonas aeruginosa Isolates Reveals an Additive Effect of Carbapenemase Production on Carbapenem Resistance. Microbiol Spectr 2022; 10:e0076622. [PMID: 35638817 PMCID: PMC9241860 DOI: 10.1128/spectrum.00766-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 01/15/2023] Open
Abstract
Carbapenem resistance in Pseudomonas aeruginosa is increasing globally, and surveillance to define the mechanisms of such resistance in low- and middle-income countries is limited. This study establishes the genotypic mechanisms of β-lactam resistance by whole-genome sequencing (WGS) in 142 P. aeruginosa clinical isolates recovered from three hospitals in Islamabad and Rawalpindi, Pakistan between 2016 and 2017. Isolates were subjected to antimicrobial susceptibility testing (AST) by Kirby-Bauer disk diffusion, and their genomes were assembled from Illumina sequencing data. β-lactam resistance was high, with 46% of isolates resistant to piperacillin-tazobactam, 42% to cefepime, 48% to ceftolozane-tazobactam, and 65% to at least one carbapenem. Twenty-two percent of isolates were resistant to all β-lactams tested. WGS revealed that carbapenem resistance was associated with the acquisition of metallo-β-lactamases (MBLs) or extended-spectrum β-lactamases (ESBLs) in the blaGES, blaVIM, and blaNDM families, and mutations in the porin gene oprD. These resistance determinants were found in globally distributed lineages, including ST235 and ST664, as well as multiple novel STs which have been described in a separate investigation. Analysis of AST results revealed that acquisition of MBLs/ESBLs on top of porin mutations had an additive effect on imipenem resistance, suggesting that there is a selective benefit for clinical isolates to encode multiple resistance determinants to the same drugs. The strong association of these resistance determinants with phylogenetic background displays the utility of WGS for monitoring carbapenem resistance in P. aeruginosa, while the presence of these determinants throughout the phylogenetic tree shows that knowledge of the local epidemiology is crucial for guiding potential treatment of multidrug-resistant P. aeruginosa infections. IMPORTANCE Pseudomonas aeruginosa is associated with serious infections, and treatment can be challenging. Because of this, carbapenems and β-lactam/β-lactamase inhibitor combinations have become critical tools in treating multidrug-resistant (MDR) P. aeruginosa infections, but increasing resistance threatens their efficacy. Here, we used WGS to study the genotypic and phylogenomic patterns of 142 P. aeruginosa isolates from the Potohar region of Pakistan. We sequenced both MDR and antimicrobial susceptible isolates and found that while genotypic and phenotypic patterns of antibiotic resistance correlated with phylogenomic background, populations of MDR P. aeruginosa were found in all major phylogroups. We also found that isolates possessing multiple resistance mechanisms had significantly higher levels of imipenem resistance compared to the isolates with a single resistance mechanism. This study demonstrates the utility of WGS for monitoring patterns of antibiotic resistance in P. aeruginosa and potentially guiding treatment choices based on the local spread of β-lactamase genes.
Collapse
Affiliation(s)
- Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sidra Irum
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Robert F. Potter
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Muhammad Arslan
- Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Tehmina Munir
- Department of Microbiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Abd-Elmonsef MME, Maxwell SY. Class 1, 2 and 3 integrons in clinical Pseudomonas aeruginosa isolated from Tanta University Hospitals, Egypt. J Chemother 2022; 34:241-246. [PMID: 35100950 DOI: 10.1080/1120009x.2022.2031468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa has become a significant health threat, as it has developed resistance to multiple antimicrobial drugs. In this study, we aimed to identify class 1, 2 and 3 integrons in clinical P. aeruginosa isolates for the first time in Egypt, and detect their relationship with antibiotic resistance. A total of 192 clinical P. aeruginosa isolates were gathered from Tanta University Hospitals. One hundred and thirteen isolates (58.9%) were multidrug- resistant, and 38 isolates (19.8%) were resistant to all drugs tested. Class 1 integrons were detected in 87 isolates (45.3%), while class 2 and 3 integrons were not detected. This is the first report of a profile of integrons in P. aeruginosa from Egypt. The detection of only class 1 integrons in our isolates suggests that other genetic elements may be responsible for the distribution of antibiotic resistance in our setting. Aztreonam and colistin were the drugs of choice for the treatment of infections with P. aeruginosa.
Collapse
Affiliation(s)
| | - Sara Youssef Maxwell
- Medical Microbiology & Immunology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
17
|
Honarmand T, Sharif AP, Salehzadeh A, Jalali A, Nikokar I. Does Conjugation of Silver Nanoparticles with Thiosemicarbazide Increase Their Antibacterial Properties? Microb Drug Resist 2022; 28:293-305. [PMID: 35005985 DOI: 10.1089/mdr.2020.0557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The opportunistic pathogen, Pseudomonas aeruginosa, uses different mechanisms as well as biofilm production to acquire antibiotic resistance. The polysaccharide synthesis locus (psl) genes play an important role in P. aeruginosa biofilm formation. Therefore, targeting the expression of psl genes can be a suitable strategy to prevent the formation of biofilms by antibiotic-resistant strains. Today, advances in nanotechnology provide a novel potential strategy to combat antibiotic-resistant bacteria. In this study, the silver nanoparticles (Ag NPs) synthesized using a chemical co-precipitation method and, after conjugation with thiosemicarbazide, their effect on the biofilm-forming ability are studied in P. aeruginosa isolates. Chemical properties of synthesized nanoparticles were determined by scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, diffuse reflectance spectroscopy, ultraviolet-visible spectroscopy, X-ray diffraction, and energy dispersive X-ray spectroscopy. The results confirmed the spherical/cubic morphology, solution stability, and good dispersion of Ag@Glu-TSC NPs with an average size of 40-60 nm. In addition, minimum inhibitory concentration values of functionalized Ag NPs were at least twofold lower than the Ag NPs (alone). The quantitative PCR data analysis showed a decrease in the expression of the pslA gene in the presence of Ag@Glu-TSC NPs, up to 60%, which was associated with a reduction of biofilm formation compared to control. In conclusion, the Ag@Glu-TSC NPs can be considered a new inhibitor of biofilm production in antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Tayebeh Honarmand
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ardalan Panahi Sharif
- Department of Medical Sciences, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Amir Jalali
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Iraj Nikokar
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
18
|
Olaniran OB, Adeleke OE, Donia A, Shahid R, Bokhari H. Incidence and Molecular Characterization of Carbapenemase Genes in Association with Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa from Tertiary Healthcare Facilities in Southwest Nigeria. Curr Microbiol 2021; 79:27. [PMID: 34905085 DOI: 10.1007/s00284-021-02706-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa, resistant to multiple antibacterial agents including carbapenems, is of great global public health concern. There is limited data available regarding incidence of Metallo-Beta Lactamase producing P. aeruginosa, their molecular basis of resistance in particular carbapenem resistance and any genetic relatedness among circulating clinical isolates in Southwest Nigeria. Four hundred and thirty P. aeruginosa isolates were collected from seven tertiary care hospitals (predominantly from wound, ear, and urinary tract infections) and verified by PCR targeting oprI and oprL. Antibiotic susceptibility using 16 selected antibiotics and MBL screening was performed. The integrons (class 1, 2 and 3) and carbapenemase genes- blaGES, blaNMC-A, blaBIC-1, blaSME, blaIMP, blaVIM, blaSPM, blaNDM, blaAIM, blaDIM, blaSIM, blaGIM, blaOXA-48, blaOXA-58 were detected by PCR and were sequenced. Quantitative real-time polymerase chain reaction was used to quantify expression levels of eight efflux pump genes, ampC cephalosporinase and outer membrane porin, oprD. The isolates were genotyped using Enterobacterial Repetitive Intergenic Consensus sequence Polymerase Chain Reaction (ERIC-PCR). Four hundred and thirty P. aeruginosa isolates were subjected to antibiotic susceptibility testing, revealing that 109 (25.4%) isolates were multidrug-resistant, 47 (10.9%) were extensively drug-resistant and 25 (5.8%) were pandrug-resistant. MBL was seen in 17.0% (73/430) isolates. MBL-encoding genes; blaVIM-5 and blaNDM-1 were detected in 86.3% (63/73) isolates, with blaVIM-5 and blaNDM-1 in 35.6% (26/73) and 38.4% (28/73), respectively, whereas co-occurrence of blaVIM-5 and blaNDM-1 was found in 12.3% (9/73). Forty-one (56.2%) carbapenem-resistant P. aeruginosa strains carried class 1 integrons, while co-occurrence of class 1 and 2 integrons was seen in 12.3%. qPCR results indicated that MexXY-OprM was highly expressed pump in 58.9%, ampC upregulated in 26.0%, while oprD porin was downregulated in 65.8% isolates. ERIC-PCR results suggest that carbapenem-resistant strains exhibit genetic heterogeneity. The high incidence of MBL-encoding genes and integrons in diversified clinical P. aeruginosa from southwestern Nigeria is of great concern. The co-occurrence of blaVIM-5 and blaNDM-1 as well as resistance in general manifesting a gradient based on genotypic variation suggests that there is a strong need for efficient surveillance programs and antibiotic stewardship.
Collapse
Affiliation(s)
- Oluwatoyin B Olaniran
- Department of Pharmaceutical Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Olufemi E Adeleke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Ahmed Donia
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
- Kohsar University Murree, Murree, Pakistan.
| |
Collapse
|
19
|
Detection of synergistic antimicrobial resistance mechanisms in clinical isolates of Pseudomonas aeruginosa from post-operative wound infections. Appl Microbiol Biotechnol 2021; 105:9321-9332. [PMID: 34797390 DOI: 10.1007/s00253-021-11680-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
Infections caused by carbapenem-resistant Pseudomonas aeruginosa are life-threatening due to its synergistic resistance mechanisms resulting in the ineffectiveness of the used antimicrobials. This study aimed to characterize P. aeruginosa isolates for antimicrobial susceptibility, biofilm formation virulence genes, and molecular mechanisms responsible for resistance against various antimicrobials. Out of 700 samples, 91 isolates were confirmed as P. aeruginosa which were further classified into 19 non-multidrug-resistant (non-MDR), 7 multidrug-resistant (MDR), 19 extensively drug-resistant (XDR), and 8 pan drug-resistant (PDR) pulsotypes based on standard Kirby Bauer disc diffusion test and pulse field gel electrophoresis. In M9 minimal media, strong biofilms were formed by the XDR and PDR pulsotypes as compared to the non-MDR pulsotypes. The virulence genes, responsible for the worsening of wounds including LasB, plcH, toxA, and exoU, were detected among all MDR, XDR, and PDR pulsotypes. Carbapenemase activity was phenotypically detected in 45% pulsotypes and the responsible genes were found as blaGES (100%), blaVIM (58%), blaIMP (4%), and blaNDM (4%). Real-time polymerase chain reaction showed the concomitant use of multiple mechanisms such as oprD under-expression, enhanced efflux pump activity, and ampC overexpression in the resistant isolates. Polymyxin is found as the only class left with more than 80% susceptibility among the isolates which is an alarming situation suggesting appropriate measures to be taken including alternative therapies. KEY POINTS: • Multidrug-resistant P. aeruginosa isolates formed stronger biofilms in minimal media. • Only polymyxin antimicrobial was found effective against MDR P. aeruginosa isolates. • Under-expression of oprD and overexpression of ampC were found in resistant isolates.
Collapse
|
20
|
Prevalence and molecular typing of Metallo-β-lactamase-producing Pseudomonas aeruginosa with adhesion factors: A descriptive analysis of burn wounds isolates from Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes 2020; 13:380. [PMID: 32778154 PMCID: PMC7418330 DOI: 10.1186/s13104-020-05224-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Multi and extensively drug-resistant (MDR and XDR), Pseudomonas aeruginosa (P. aeruginosa) and Acinetobacter baumannii (A. baumannii) are two main causative agents of nosocomial infections leading to increased morbidity and mortality. We aim to study the prevalence of MDR and XDR-A. baumannii and P. aeruginosa phenotypes in clinical specimens. We conducted this for 1 year (2017-2018) and isolated bacteria from the clinical samples. Then, XDR and MDR strains were determined by susceptibility testing (disc diffusion). RESULTS Out of 3248 clinical samples, A. baumannii and P. aeruginosa strains were detected in 309(9.51%) of them. Susceptibility testing indicated that (16.50%) and (15.53%) of the P. aeruginosa and (74.75%) and (73.13%) of the A. baumannii isolates were screened as the MDR and XDR strains. The frequency of MDR isolates was higher in wound samples 222 (71.8%). This rate in behavioral intensive care unit (BICU) and restoration ward, were 187 (60.5%) and 63 (20.4%). The frequency of XDR isolates in BICU 187 (59.54%), restoration 58(18.77%), and burns 30 (9.70%) were assessed as well. Considering high isolation rates of MDR and XDR of mentioned strains, it is necessary to apply prevention criteria for eradication of the mentioned bacteria from hospital wards.
Collapse
Affiliation(s)
- Bahman Mirzaei
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran. .,Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran.
| | - Zahra Norouzi Bazgir
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Fatemeh Iranpour
- Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Fatemeh Mohammadi
- Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Ryhaneh Babaei
- Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|