1
|
Swain PP, Subudhi E, Sahoo RK. Heavy Metals and Carbapenem-Resistant Klebsiella pneumoniae in a River System of Odisha, India: Correlation and Integrated Risk Assessment. MICROBIAL ECOLOGY 2025; 88:62. [PMID: 40483289 PMCID: PMC12145280 DOI: 10.1007/s00248-025-02562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 05/28/2025] [Indexed: 06/11/2025]
Abstract
The unregulated release of heavy metals and antibiotics into rivers has the potential to significantly impact human health. Infections caused by healthcare-associated pathogen, carbapenem-resistant Klebsiella pneumoniae (CRKP), present a critical challenge to clinical practitioners due to its resistance to last-line antibiotics. In this study, we investigated co-contamination of heavy metals (As, Cd, Cr, Mn, and Pb) and CRKP isolates in water samples from multiple sites along the river receiving wastewater discharge from urban areas of twin-city, Odisha. We used a composite risk scoring framework integrating chemical risks (based on hazard indices (HI) of heavy metals) and biological risks (based on the proportion of CRKP isolates exhibiting multidrug-resistant phenotypes and their multiple antibiotic resistance (MAR) index. Furthermore, Spearman's correlations and redundancy analysis (RDA) were employed to assess the association between heavy metals and antibiotic resistance genes (ARGs). From the total CRKP isolates identified (n = 91), 90.1% and 9.89% exhibited multidrug resistant (MDR) and extensively drug-resistant (XDR) phenotypes, respectively. Sites D2 and C2 were flagged as high-risk sites based on their composite risk scores of 0.735 and 0.699, respectively. Positive correlations were observed between heavy metals and ARGs (blaOXA-48, blaTEM, and blaSHV). The findings raise concern regarding the potential threat of CRKP and heavy metal pollution in river water while also emphasizing the need for integrated assessment to control their release into the environment.
Collapse
Affiliation(s)
- Pragyan Paramita Swain
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
2
|
Mishra P, Sahoo D, Sahu MC. Genetic diversity and antimicrobial resistance of clinical Klebsiella pneumoniae isolates: An ISSR-PCR analysis. J Infect Public Health 2025; 18:102813. [PMID: 40409222 DOI: 10.1016/j.jiph.2025.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/25/2025] [Accepted: 05/04/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a major nosocomial pathogen associated with severe infections and increasing antimicrobial resistance. The study aimed to investigate the genetic diversity of K. pneumoniae clinical isolates using Inter Simple Sequence Repeat (ISSR) primers to assess strain differentiation and evolutionary relationships. METHODS A total of 144 K. pneumoniae isolates were obtained from clinical samples in a tertiary care hospital. Standard microbiological and biochemical techniques were used for bacterial identification. Antibiotic susceptibility testing was performed using the Kirby-Bauer disk diffusion method. Genomic DNA was extracted, and ISSR-PCR was conducted using 19 primers to analyze genetic diversity. Banding patterns were scored, and genetic relationships were determined using Jaccard's coefficient and the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) to construct a phylogenetic dendrogram. Principal Component Analysis (PCA) was also applied to assess variability among isolates. RESULTS The antibiotic resistance profile revealed a high prevalence of multidrug-resistant (MDR) K. pneumoniae, with resistance to beta-lactams, aminoglycosides, and fluoroquinolones. ISSR-PCR analysis exhibited significant genetic polymorphism, with ISSR 1, ISSR 7, and ISSR 15 generating the highest number of bands. The resolving power of ISSR 11 and ISSR 14 was the highest (0.889 and 0.867), indicating their efficacy in distinguishing closely related strains. Phylogenetic analysis clustered the isolates into two major groups, suggesting genetic heterogeneity. PCA further confirmed genetic variability, with distinct clusters forming among isolates. CONCLUSION The study underscores the genetic diversity of K. pneumoniae isolates and the utility of ISSR markers in bacterial typing. The high prevalence of MDR strains highlights the urgent need for enhanced molecular surveillance and infection control strategies. ISSR-PCR offers a cost-effective alternative for epidemiological studies, though integration with whole-genome sequencing could provide deeper insights into resistance mechanisms.
Collapse
Affiliation(s)
- Poonamrani Mishra
- Department of Microbilogy, IMS and SUM Hospital, SOA Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Debasish Sahoo
- Department of Microbilogy, IMS and SUM Hospital, SOA Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Mahesh Chandra Sahu
- Division of Microbiology, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha 751023, India.
| |
Collapse
|
3
|
Khan Z, Ali Q, Azam S, Khan I, Javed J, Rehman N, Ahmed MM, Uddin J, Khan A, Al-Harrasi A. Current pattern of antibiotic resistance and molecular characterization of virulence genes in Klebsiella pneumoniae obtained from urinary tract infection (UTIs) patients, Peshawar. PLoS One 2025; 20:e0319273. [PMID: 40208900 PMCID: PMC11984708 DOI: 10.1371/journal.pone.0319273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 04/12/2025] Open
Abstract
The current study investigates the prevalence of virulence genes obtained from clinical isolates of multidrug-resistant (MDR) Klebsiella pneumoniae at Khyber Teaching Hospital Peshawar, from October 2021 to January 2023. Upon proper consent, clinical samples of suspected UTIs patients were collected and inoculated on the nutrients agar media, McConkey agar media, and Cysteine Lysine Electrolyte Deficient (CLED) agar media followed by incubation at 37°C for 24 hrs. The phenotypic and genotypic identification were employed for the bacterial isolates. The phenotypic identification includes gram staining followed by the Analytical Profile Index (API 20E). A total of 215 (3.85%) positive isolates were found with the highest prevalence observed among the female patients (4.35%) followed by male (3.26%). The highest prevalence, constituting 52.55% (n = 113), was detected in the age group of 21-40 years, followed by 31.62% (n = 68) in the 41-60 age group. Additionally, 10.23% (n = 22), 3.25% (n = 7), and 2.32% (n = 5) of cases were identified in the age groups of 01-10 years, 11-20 years, and above 60 years, respectively. Among the total positive samples, 44.65% (n = 96) were collected from the Outpatient department (OPD), while inpatient department (IPD) cases contributed 55.35% (n = 119). The antibiotic susceptibility profile of K. pneumoniae showed significant resistance to trimethoprim/Sulfamethoxazole (93%) and Colistin (79.07%). Tigecycline emerged as the most effective antibiotic with a sensitivity rate of 90%, along with Cefepime at the same level. Minimum Inhibitory Concentration (MIC) values indicated higher resistance for CTX, MEM, CN, AK, DO, CIP, and SXT in K. pneumoniae-causing UTIs from KTH, Peshawar. Molecular characterization of virulence genes reveals the highest prevalence of fimH (80%) followed by SAT (65%), papEF (49%), afa (29%), and VAT (16%). The sequencing data of the virulence genes reveals mutations in fimH and papEF, while sat, afa and vat virulence genes showed no mutations. The Chi-square test indicated a significant association between the types of bacteria, supporting our null hypothesis with a significance level of p ≤ 0.05. The current study's finding is to evaluate the rise of antibiotic resistance in hospital settings, which highly demands the focus of health authorities and clinicians to manage the burden of the disease effectively.
Collapse
Affiliation(s)
- Zeeshan Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Qaisar Ali
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sadiq Azam
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ibrar Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Jamila Javed
- Institute of Biotechnology Genetic Engineering, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Noor Rehman
- Department of Pathology, Khyber Teaching Hospital Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mesaik M. Ahmed
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Microbiology, Molecular Microbiology and Infectious Diseases Unit, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
4
|
Panchal J, Prajapati J, Dabhi M, Patel A, Patel S, Rawal R, Saraf M, Goswami D. Comprehensive computational investigation for ligand recognition and binding dynamics of SdiA: a degenerate LuxR -type receptor in Klebsiella pneumoniae. Mol Divers 2024; 28:3897-3918. [PMID: 38212453 DOI: 10.1007/s11030-023-10785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/26/2023] [Indexed: 01/13/2024]
Abstract
SdiA is a LuxR-type receptor that controls the virulence of Klebsiella pneumoniae, a Gram-negative bacterium that causes various infections in humans. SdiA senses exogenous acyl-homoserine lactones (AHLs) and autoinducer-2 (AI-2), two types of quorum sensing signals produced by other bacterial species. However, the molecular details of how SdiA recognizes and binds to different ligands and how this affects its function and regulation in K. pneumoniae still need to be better understood. This study uses computational methods to explore the protein-ligand binding dynamics of SdiA with 11 AHLs and 2 AI-2 ligands. The 3D structure of SdiA was predicted through homology modeling, followed by molecular docking with AHLs and AI-2 ligands. Binding affinities were quantified using MM-GBSA, and complex stability was assessed via Molecular Dynamics (MD) simulations. Results demonstrated that SdiA in Klebsiella pneumoniae exhibits a degenerate binding nature, capable of interacting with multiple AHLs and AI-2. Specific ligands, namely C10-HSL, C8-HSL, 3-oxo-C8-HSL, and 3-oxo-C10-HSL, were found to have high binding affinities and formed critical hydrogen bonds with key amino acid residues of SdiA. This finding aligns with the observed preference of SdiA for AHLs having 8 to 10 carbon-length acyl chains and lacking hydroxyl groups. In contrast, THMF and HMF demonstrated poor binding properties. Furthermore, AI-2 exhibited a low affinity, corroborating the inference that SdiA is not the primary receptor for AI-2 in K. pneumoniae. These findings provide insights into the protein-ligand binding dynamics of SdiA and its role in quorum sensing and virulence of K. pneumoniae.
Collapse
Affiliation(s)
- Janki Panchal
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Milan Dabhi
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Arun Patel
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Kamdhenu University, Sardarkrushinagar 385505, Gujarat, India
| | - Sandip Patel
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Kamdhenu University, Sardarkrushinagar 385505, Gujarat, India
| | - Rakesh Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
5
|
Saha U, Jadhav SV, Pathak KN, Saroj SD. Screening of Klebsiella pneumoniae isolates reveals the spread of strong biofilm formers and class 1 integrons. J Appl Microbiol 2024; 135:lxae275. [PMID: 39448367 DOI: 10.1093/jambio/lxae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
AIMS Klebsiella pneumoniae is a Gram-negative bacterium that can colonize, penetrate, and cause infections at several human anatomical locations. The emergence of hypervirulent K. pneumoniae and its ability to evade the immune system and develop antibiotic resistance has made it a key concern in the healthcare industry. The hypervirulent variants are increasingly involved in community-acquired infections. Therefore, it is pertinent to understand the biofilm formation potential among the clinical isolates. METHODS AND RESULTS We acquired 225 isolates of K. pneumoniae from the Department of Microbiology, Symbiosis University Hospital and Research Centre (SUHRC), Pune, India, over 1 year from March 2022 to March 2023, and evaluated antimicrobial susceptibility, hypermucoviscous phenotype, virulence, and antimicrobial-resistant gene distribution in K. pneumoniae isolates and established a correlation between antimicrobial resistance and integrons. Most isolates were strong biofilm formers (76%). The isolates harbored one or more carbapenemase/beta-lactamase-encoding gene combinations. Hypermucoviscous (HMKP) isolates had considerably greater positive rates for iutA, magA, K2 serotype, rmpA, and rmpA2 than non-HMKP isolates. Isolates carrying integrons (43%) showed significantly more antibiotic resistance. CONCLUSION The study reveals spread of strong biofilm formers with extensive virulence and antimicrobial-resistant genes, and integrons responsible for multidrug resistance among the clinical isolates of K. pneumoniae in Pune, India, posing a threat to the public health and necessitating close surveillance, accurate diagnosis, control, and therapeutic management of infections.
Collapse
Affiliation(s)
- Ujjayni Saha
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra 412115, India
| | - Savita V Jadhav
- L.N.C.T Medical College and Sewakunj Hospital, Kanadia Road, Indore, Madhya Pradesh 452016, India
| | - Ketaki N Pathak
- Department of Microbiology, Symbiosis Medical College for Women (SMCW), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra 412115, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra 412115, India
| |
Collapse
|
6
|
Elkady FM, Badr BM, Alfeky AAE, Abdulrahman MS, Hashem AH, Al-Askar AA, AbdElgayed G, Hashem HR. Genetic Insights on Meropenem Resistance Concerning Klebsiella pneumoniae Clinical Isolates. Life (Basel) 2024; 14:1408. [PMID: 39598206 PMCID: PMC11595234 DOI: 10.3390/life14111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The transferable genetic elements are associated with the dissemination of virulence determinants amongst Klebsiella pneumoniae. Thus, we assessed the correlated antimicrobial resistance in carbapenem-resistant Klebsiella pneumoniae clinical isolates. Each isolate's ability to biosynthesize biofilm, carbapenemase, and extended-spectrum β-lactamase were examined. Genotypically, the biofilm-, outer membrane porin-, and some plasmid-correlated antimicrobial resistance genes were screened. About 50% of the isolates were multidrug-resistant while 98.4% were extended-spectrum β-lactamase producers and 89.3% were carbapenem-resistant. Unfortunately, 93.1% of the multidrug-resistant isolates produced different biofilm levels. Additionally, fimD and mrkD genes encoding adhesins were detected in 100% and 55.2% of the tested isolates, respectively. Also, the blaKPC, blaOXA-48-like, and blaNDM-encoding carbapenemases were observed in 16.1%, 53.6%, and 55.4% of the tested isolates, respectively. Moreover, the blaSHV and blaCTX-M extended-spectrum β-lactamase-associated genes were detected at 95.2% and 61.3%, respectively. Furthermore, aac(3)IIa, qnrB, and tetB resistance-correlated genes were observed in 38.1%, 46%, and 7.9% of the tested isolates, respectively. Certainly, the tested antimicrobial resistance-encoding genes were concurrently observed in 3.2% of the tested isolates. These findings confirmed the elevated prevalence of various antimicrobial resistance-associated genes in Klebsiella pneumoniae. The concurrent transferring of plasmid-encoding antimicrobial resistance-related genes could be associated with the possible acquisition of multidrug-resistant Klebsiella pneumoniae phenotypes.
Collapse
Affiliation(s)
- Fathy M. Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Bahaa M. Badr
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa P.O. Box 132222, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut P.O. Box 71524, Egypt
| | - Abdel-Aty E. Alfeky
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Mohammed S. Abdulrahman
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Hany R. Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Al-Fayoum P.O. Box 53514, Egypt
| |
Collapse
|
7
|
Jomehzadeh N, Rahimzadeh M, Ahmadi B. Molecular detection of extended-spectrum β-lactamase- and carbapenemase-producing Klebsiella pneumoniae isolates in southwest Iran. Trop Med Int Health 2024; 29:875-881. [PMID: 39095950 DOI: 10.1111/tmi.14043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVE The global emergence of carbapenem-resistant Klebsiella pneumoniae is considered a significant contemporary concern., as carbapenems are the last resort for treating infections caused by multidrug-resistant Gram-negative bacteria. This study aimed to investigate the carbapenem-resistance genes in extended-spectrum β-lactamase producing K. pneumoniae isolates. METHODS Seventy-five non-duplicate clinical K. pneumoniae strains were isolated from urine, blood, sputum, and wound samples. Antimicrobial susceptibility tests for 12 different antibiotics were performed using the disk diffusion method, followed by determining minimum inhibitory concentrations of imipenem and meropenem. Phenotypic detection of extended-spectrum β-lactamase and carbapenemase enzymes was performed by double-disc synergy test and modified Hodge test, respectively. PCR assay further investigated resistant isolates for extended-spectrum β-lactamase and carbapenemase-encoding genes. RESULTS The highest and lowest resistance rates were observed against ampicillin (93.3%) and tigecycline (9.3%). According to phenotypic tests, 46.7% of isolates were positive for extended-spectrum β-lactamase enzymes and 52.8% for carbapenemase. A total of 11 isolates contained carbapenemase genes, with blaOXA-48 (19.4%; 7/36) being the predominant gene, followed by blaNDM (8.3%; 3/36). CONCLUSION The study's findings reveal the alarming prevalence of beta-lactamase enzymes in K. pneumoniae strains. Early detection of carbapenem-resistant isolates and effective infection control measures are necessary to minimise further spread, as carbapenem resistance has become a public health concern.
Collapse
Affiliation(s)
- Nabi Jomehzadeh
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Bahare Ahmadi
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
8
|
Kashefieh M, Zeighami H, Samadi Kafil H, Gholizadeh P, Sadeghi J, Soroush Barhaghi MH, Ebrahimzadeh Leylabadlo H, Ghotaslou R. Molecular typing of clinical multidrug-resistant Klebsiella pneumoniae isolates. Mol Biol Rep 2024; 51:416. [PMID: 38478145 DOI: 10.1007/s11033-024-09278-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2025]
Abstract
INTRODUCTION Klebsiella pneumoniae is an opportunistic pathogen which is an important cause of hospital-acquired and antibiotic resistance infections. Therefore, this study aimed to determine the frequency of resistance to antibiotics, as well as the molecular typing of the associated isolates, and compare multiple-locus VNTR analysis (MLVA) and Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction (ERIC-PCR) methods to specify the degree to which distinctions can be separated from each other. METHODS AND MATERIALS One hundred K. pneumoniae isolates were obtained from different sources of infections from patients admitted to hospitals. Antibiotic susceptibility testing was then performed by applying the Kirby-Bauer disk diffusion method. Typing of K. pneumoniae was done by utilizing MLVA and ERIC-PCR methods. RESULTS Eighty-six multidrug-resistant (MDR) K. pneumoniae isolates were identified, which resistance to ampicillin, trimethoprim/sulfamethoxazole, and ceftriaxone was the most frequent in the considered isolates (100, 93, and 93%, respectively). A total of 50 different antibiotic susceptibility patterns were observed among the MDR K. pneumonia, with the most frequent pattern being resistance to all antibiotics (12.79%) and resistance to all antibiotics except amikacin (10.47%). The isolates were then divided into 37 different MLVA types and seven clonal complexes were obtained from the minimum spanning tree analysis. Finally, the isolates were assigned to 38 different ERIC types. The discriminatory power of MLVA and ERIC methods also showed a value of 0.958, and 0.974. CONCLUSION Both PCR-typing methods with phenotypic patterns can be useful for the epidemiological typing of K. pneumoniae isolates with the highest performance in discriminating isolates.
Collapse
Affiliation(s)
- Mehdi Kashefieh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zeighami
- Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Digestive Disease Research Center, Ardabil University of Medical Science, Ardabil, Iran
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Lin XC, Li CL, Zhang SY, Yang XF, Jiang M. The Global and Regional Prevalence of Hospital-Acquired Carbapenem-Resistant Klebsiella pneumoniae Infection: A Systematic Review and Meta-analysis. Open Forum Infect Dis 2024; 11:ofad649. [PMID: 38312215 PMCID: PMC10836986 DOI: 10.1093/ofid/ofad649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/07/2023] [Accepted: 12/18/2023] [Indexed: 02/06/2024] Open
Abstract
Background Due to scarce therapeutic options, hospital-acquired infections caused by Klebsiella pneumoniae (KP), particularly carbapenem-resistant KP (CRKP), pose enormous threat to patients' health worldwide. This study aimed to characterize the epidemiology and risk factors of CRKP among nosocomial KP infections. Method MEDLINE, Embase, PubMed, and Google Scholar were searched for studies reporting CRKP prevalence from inception to 30 March 2023. Data from eligible publications were extracted and subjected to meta-analysis to obtain global, regional, and country-specific estimates. To determine the cause of heterogeneity among the selected studies, prespecified subgroup analyses and meta-regression were also performed. Odds ratios of CRKP-associated risk factors were pooled by a DerSimonian and Laird random-effects method. Results We retained 61 articles across 14 countries and territories. The global prevalence of CRKP among patients with KP infections was 28.69% (95% CI, 26.53%-30.86%). South Asia had the highest CRKP prevalence at 66.04% (95% CI, 54.22%-77.85%), while high-income North America had the lowest prevalence at 14.29% (95% CI, 6.50%-22.0%). In the country/territory level, Greece had the highest prevalence at 70.61% (95% CI, 56.77%-84.45%), followed by India at 67.62% (95% CI, 53.74%-81.79%) and Taiwan at 67.54% (95% CI, 58.65%-76.14%). Hospital-acquired CRKP infections were associated with the following factors: hematologic malignancies, corticosteroid therapies, intensive care unit stays, mechanical ventilations, central venous catheter implantations, previous hospitalization, and antibiotic-related exposures (antifungals, carbapenems, quinolones, and cephalosporins). Conclusions Study findings highlight the importance of routine surveillance to control carbapenem resistance and suggest that patients with nosocomial KP infection have a very high prevalence of CRKP.
Collapse
Affiliation(s)
- Xing-chen Lin
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang-li Li
- Department of FSTC Clinic, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shao-yang Zhang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-feng Yang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Jiang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Sun X, Zou X, Zhou B, Yin T, Wang P. Comparison of bloodstream and non-bloodstream infections caused by carbapenem-resistant Klebsiella pneumoniae in the intensive care unit: a 9-year respective study. Front Med (Lausanne) 2023; 10:1230721. [PMID: 37795412 PMCID: PMC10547144 DOI: 10.3389/fmed.2023.1230721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Background Bloodstream infections (BSIs) caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) have received much attention. However, few studies have identified risk factors for CRKP BSIs in comparison to CRKP non-bloodstream infections (non-BSIs). This study aimed to compare the epidemiology, risk factors, and outcomes of CRKP BSIs and CRKP non-BSIs. Methods We conducted a retrospective study of patients infected with CRKP in the ICU from January 2012 to December 2020. Clinical characteristics and outcomes were compared between CRKP BSIs and CRKP non-BSIs. Predictors associated with 28-day all-cause mortality in CRKP-infected patients were also evaluated. Results 326 patients infected with CRKP were enrolled, including 96 patients with CRKP BSIs and 230 with CRKP non-BSIs. The rates of CRKP BSIs in CRKP infections were generally raised from 2012 (12.50%) to 2020 (45.76%). Multivariate logistic analysis indicated that the use of carbapenems within the prior 90 days was an independent risk factor for CRKP BSIs (p = 0.019). Compared to CRKP non-BSIs, CRKP isolates in the CRKP BSI group were found to be non-susceptible to more tested carbapenems (p = 0.001). Moreover, the CRKP BSI group exhibited a higher mortality rate (p = 0.036). The non-susceptibility of CRKP isolates to more tested carbapenems (p = 0.025), a high SOFA score (p = 0.000), and the use of antifungal drugs within the prior 90 days (p = 0.018) were significant factors for 28-day all-cause mortality in CRKP-infected patients. Conclusion The proportion of CRKP BSI increased progressively in CRKP-infected patients over 9 years. The use of carbapenems within the prior 90 days was an independent risk factor for the development of CRKP BSIs. The non-susceptibility of CRKP isolates to more tested carbapenems and a higher mortality rate were found in the CRKP BSI group.
Collapse
Affiliation(s)
- Xiangyuan Sun
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha Hunan, China
- Department of Pharmacy, Lixian People’s Hospital, Lixian, Hunan, China
| | - Xiaocui Zou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Boting Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Yin
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Zhang QB, Zhu P, Zhang S, Rong YJ, Huang ZA, Sun LW, Cai T. Hypervirulent Klebsiella pneumoniae detection methods: a minireview. Arch Microbiol 2023; 205:326. [PMID: 37672079 DOI: 10.1007/s00203-023-03665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp), characterized by high virulence and epidemic potential, has become a global public health challenge. Therefore, improving the identification of hvKp and enabling earlier and faster detection in the community to support subsequent effective treatment and prevention of hvKp are an urgent issue. To address these issues, a number of assays have emerged, such as String test, Galleria mellonella infection test, PCR, isothermal exponential amplification, and so on. In this paper, we have collected articles on the detection methods of hvKp and conducted a retrospective review based on two aspects: traditional detection technology and biomarker-based detection technology. We summarize the advantages and limitations of these detection methods and discuss the challenges as well as future directions, hoping to provide new insights and references for the rapid detection of hvKp in the future. The aim of this study is to focus on the research papers related to Hypervirulent Klebsiella pneumoniae involving the period from 2012 to 2022. We conducted searches using the keywords "Hypervirulent Klebsiella pneumoniae, biomarkers, detection techniques" on ScienceDirect and Google Scholar. Additionally, we also searched on PubMed, using MeSH terms associated with the keywords (such as Klebsiella pneumoniae, Klebsiella Infections, Virulence, Biomarkers, diagnosis, etc.).
Collapse
Affiliation(s)
- Qi-Bin Zhang
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Peng Zhu
- Ningbo No. 2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yan-Jing Rong
- Ningbo No. 2 Hospital, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Zuo-An Huang
- Ningbo No. 2 Hospital, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | | | - Ting Cai
- Ningbo No. 2 Hospital, Ningbo, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China.
| |
Collapse
|
12
|
Indrajith S, Natarajan S, Thangasamy S, Natesan S. Drug Resistance, Characterization and Phylogenetic Discrepancy of Salmonella enterica Isolates from Distinct Sources. Curr Microbiol 2023; 80:314. [PMID: 37544954 DOI: 10.1007/s00284-023-03343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/23/2023] [Indexed: 08/08/2023]
Abstract
Salmonella enterica is one of the foodborne pathogens that can infect humans, spreading from one person to another by contaminated food and water. To identify the pathogenic S. enterica from the contaminated food product, culture-based and molecular identifications, drug resistance profiling, virulence and genetic traits of the strains have been used. Herein, different animal products was subjected to screen for S. enterica prevalence, pathogenic characterization and compared with clinical Salmonella isolates (human). A total of 173 isolates from animal products and 51 isolates from clinical samples were collected. S. Typhi, S. Agona and S. Ohio were predominant serovars in blood, stool and different animal products. Both, clinical [37% (n = 19/51)] and animal product-associated isolates [21% (n = 37/173)] expressed their highest resistance to nalidixic acid. Thirty-one percentage of (n = 16/51) clinical isolates and 12% (n = 21/173) animal food-associated isolates were resistant to multiple classes of antibiotics. Class 1 integrons encoded by S. Typhi, S. Infantis and S. Emek were screened for sequence analysis, the result revealed that the cassettes encoded-aminoglycoside acetyltransferase and dihydrofolate reductase enzymes. Salmonella pathogenicity island-1 encoded-hilA gene was detected most frequently in all the isolates. PFGE profile revealed the genetic traits of the isolates which were closely linked with antibiotic-resistant properties and virulent characteristics. Only S. Enteritidis, collected from different samples had clonal similarities. In summary, drug-resistant pathogenic Salmonella prevalence was observed in the animal product that could be an important alarm to consumers with the risk of enteric fever and it causes the potential risk to public health.
Collapse
Affiliation(s)
- Sureka Indrajith
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sisubalan Natarajan
- Department of Botany, Bishop Heber College (Autonomous), Affi. To Bharathidasan University, Trichy, Tamil Nadu, 620017, India
| | - Selvankumar Thangasamy
- PG and Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637501, India
| | - Sivakumar Natesan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
13
|
Ibrahim ME. Risk factors in acquiring multidrug-resistant Klebsiella pneumoniae infections in a hospital setting in Saudi Arabia. Sci Rep 2023; 13:11626. [PMID: 37468757 DOI: 10.1038/s41598-023-38871-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Over the last decades, the prevalence of multidrug-resistant (MDR) Klebsiella pneumoniae in clinical settings has increased progressively. This study determined the prevalence and risk factors associated with MDR K. pneumoniae infection among hospitalized patients in a referral hospital located in southern Saudi Arabia. A prospective cross-sectional study was conducted in King Abdullah Hospital from April 2021 to March 2022. K. pneumoniae (n = 211) bacteria were recovered from clinical samples of adult patients and examined for antibiotic susceptibility. Univariate and multivariate logistic regressions were applied to determine the factors associated with MDR K. pneumoniae infection. MDR K. pneumoniae strains was found in 66.8% (142/211) of the patients. Among MDR K. pneumoniae, the highest resistance rate was determined for ampicillin (100%), cefuroxime (97.9%), ceftriaxone (94.3%), and aztreonam (92.2%). The lowest resistance rate was determined for colistin (16.3%), and tigecycline (6.4%). Further, the patients' gender, age group, intensive care unit (ICU) admission, invasive medical devices, and chronic illness were found to be significantly associated with MDR K. pneumoniae infection. The independent risk factors associated with MDR K. pneumoniae infection were the male gender (adjusted odds ratio [AOR] 2.107, 95% confidence interval CI 1.125‒3.945, p = 0.02), patients ≥ 65 years of age (AOR 1.905; CI 1.003‒3.616, p = 0.049), ICU admission (AOR 1.963; CI 1.033‒3.732, p = 0.04), diabetes (AOR 1.95; CI 1.02‒3.727, p = 0.043) and chronic obstructive pulmonary disease (AOR 7.172; CI 1.557‒33.032, p = 0.011). The study offered a vision of MDR K. pneumoniae infection in our setting and provided essential indications for further studies that may lead to the prevention and reduction of MDR bacteria.
Collapse
Affiliation(s)
- Mutasim E Ibrahim
- Department of Basic Medical Sciences (Microbiology Unit), College of Medicine, University of Bisha, P. O. Box 731, Bisha, 67614, Saudi Arabia.
| |
Collapse
|
14
|
Pattolath A, Adhikari P, Pai V. Clinical and Molecular Profile of Carbapenem Resistant Klebsiella pneumoniae Infections in a Tertiary Care Hospital -Mangalore. Infect Drug Resist 2023; 16:4335-4348. [PMID: 37424665 PMCID: PMC10329450 DOI: 10.2147/idr.s411056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Carbapenemase producing Klebsiella pneumoniae infection has increased in recent years, leading to limitations in treatment options. The present study was undertaken to detect the Carbapenemase-producing genes in K. pneumoniae, the risk factors for acquiring them, and their impact on clinical outcomes. Patients and Methods This prospective study included 786 clinically significant K. pneumoniae isolates. Antimicrobial susceptibility testing was done by conventional method, carbapenem-resistant isolates were screened by carba NP test, and positive isolates were further evaluated by multiplex PCR method. The patient's clinical and demographic details, co morbidity, and mortality were collected. Multivariate analysis was performed to check risk factors for acquiring CRKP infection. Results The results of our study showed high prevalence of CRKP (68%). The variables subjected to the multivariate analysis found that diabetes, hypertension, cardiovascular disease, COPD, use of immunosuppressants, previous hospitalization history, previous surgery, and parenteral nutrition are found to be significantly associated with carbapenem resistant K. pneumoniae infection. Clinical outcomes revealed that patients in the CRKP group had higher risk of mortality and were discharged against medical advice, and they also had higher rate of septic shock. Most of the isolates carried blaNDM-1 and blaOXA-48 carbapenemase genes. Additionally, the co-existence of blaNDM-1 and blaOXA-48 was found in our isolates. Conclusion The prevalence of CRKP was alarmingly high in our hospital with the limited choice of antibiotics. This was associated with high mortality and morbidity with the increase in health care burden. While this information is important to treat critically ill patients with higher antibiotics, strict infection control practices need to be in place to prevent the spread of these infections in the hospital. Clinicians need to be aware of this infection to use appropriate antibiotics to save the lives of critically ill patients with the infection.
Collapse
Affiliation(s)
- Athira Pattolath
- Department of Geriatric Medicine, Yenepoya Medical College Hospital, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Prabha Adhikari
- Department of Geriatric Medicine, Yenepoya Medical College Hospital, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Vidya Pai
- Department of Microbiology, Yenepoya Medical College Hospital, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| |
Collapse
|
15
|
Lalezadeh A, Ghotaslou P, Ghotaslou R. The Detection of Fosfomycin-Modifying Enzymes (fos) in Uropathogenic Enterobacterale, Azerbaijan, Iran. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3766269. [PMID: 37250435 PMCID: PMC10219773 DOI: 10.1155/2023/3766269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 04/04/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023]
Abstract
Enterobacteriaceae is the most common agent of urinary tract infections (UTIs). Multidrug resistant (MDR) and XDR (extensively drug-resistant) Enterobacteriaceae in UTIs have increased in the world. The present study aimed to study the fosfomycin resistance frequency and the fosfomycin resistance genes among Enterobacteriaceae isolated from UTIs. The urine was collected and cultured in the standard protocol. To determine the susceptibility testing to fosfomycin in 211 isolates, agar dilution and disk agar diffusion methods were used. MDR was nonsusceptibility to at least one agent in three or more antimicrobial categories. The fosfomycin resistance genes were also evaluated by PCR. The frequency of resistance to fosfomycin was in 14 (6.6%) and 15 (7.1%) isolates by the disk agar diffusion and MIC assays, respectively. However, the MIC50 and MIC90 existed at 8 μg/mL and 16 μg/mL, respectively. The MDR was found in 80%. The frequencies of fosfomycin resistance genes were 5 (33.3%), 3 (20%), 2 (13.3%), 1 (6.6%), and 1 (6.6%) for fosC, fosX, fosA3, fosA, and fosB2, respectively. The fosB and fosC2 were not found. A low resistance rate to fosfomycin is observed. Fosfomycin is still one of the most effective and valuable alternative antibiotics against MDR Enterobacteriaceae isolated from UTIs in our region.
Collapse
Affiliation(s)
- Aidin Lalezadeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pardis Ghotaslou
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Sahoo S, Sahoo RK, Dixit S, Behera DU, Subudhi E. NDM-5-carrying Klebsiella pneumoniae ST437 belonging to high-risk clonal complex (CC11) from an urban river in eastern India. 3 Biotech 2023; 13:139. [PMID: 37124981 PMCID: PMC10133422 DOI: 10.1007/s13205-023-03556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
In this study, we described the carbapenem bla NDM-5-carrying extensive drug-resistant (XDR) K. pneumoniae ST437 from an urban river water Kathajodi in Odisha, India. The presence of carbapenem and co-occurrence of other resistance determinants (bla NDM-5, bla CTX-M, bla SHV, and bla TEM), virulence factors (fimH, mrkD, entB, irp-1, and ybtS), and capsular serotype (K54) represent its pathogenic potential. The insertion sequence ISAba125 and the bleomycin resistance gene ble MBL at upstream and downstream, respectively, could play a significant role in the horizontal transmission of the bla NDM-5. Its biofilm formation ability contributes toward environmental protection and its survivability. MLST analysis assigned the isolate to ST437 and clonal lineage to ST11 (CC11) with a single locus variant. The ST437 K. pneumoniae, a global epidemic clone, has been reported in North America, Europe, and Asia. This work contributes in understanding of the mechanisms behind the spread of bla NDM-5 K. pneumoniae ST437 and demands extensive molecular surveillance of river and nearby hospitals for better community health. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03556-5.
Collapse
Affiliation(s)
- Saubhagini Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Sangita Dixit
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Enketeswara Subudhi
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| |
Collapse
|
17
|
Li XS, Qi Y, Xue JZ, Xu GY, Xu YX, Li XY, Muhammad I, Kong LC, Ma HX. Transcriptomic Changes and satP Gene Function Analysis in Pasteurella multocida with Different Levels of Resistance to Enrofloxacin. Vet Sci 2023; 10:vetsci10040257. [PMID: 37104412 PMCID: PMC10143902 DOI: 10.3390/vetsci10040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Pasteurella multocida (Pm) is one of the major pathogens of bovine respiratory disease (BRD), which can develop drug resistance to many of the commonly used antibiotics. Our earlier research group found that with clinical use of enrofloxacin, Pm was more likely to develop drug resistance to enrofloxacin. In order to better understand the resistance mechanism of Pm to enrofloxacin, we isolated PmS and PmR strains with the same PFGE typing in vitro, and artificially induced PmR to obtain the highly resistant phenotype, PmHR. Then transcriptome sequencing of clinically isolated sensitive strains, resistant and highly drug-resistant strains, treated with enrofloxacin at sub-inhibitory concentrations, were performed. The satP gene, of which the expression changed significantly with the increase in drug resistance, was screened. In order to further confirm the function of this gene, we constructed a satP deletion (ΔPm) strain using suicide vector plasmid pRE112, and constructed the C-Pm strain using pBBR1-MCS, and further analyzed the function of the satP gene. Through a continuously induced resistance test, it was found that the resistance rate of ΔPm was obviously lower than that of Pm in vitro. MDK99, agar diffusion and mutation frequency experiments showed significantly lower tolerance of ΔPm than the wild-type strains. The pathogenicity of ΔPm and Pm was measured by an acute pathogenicity test in mice, and it was found that the pathogenicity of ΔPm was reduced by about 400 times. Therefore, this study found that the satP gene was related to the tolerance and pathogenicity of Pm, and may be used as a target of enrofloxacin synergistic effect.
Collapse
|
18
|
Shyaula M, Khadka C, Dawadi P, Banjara MR. Systematic Review and Meta-analysis on Extended-Spectrum β-lactamases Producing Klebsiella pneumoniae in Nepal. Microbiol Insights 2023; 16:11786361221145179. [PMID: 36655025 PMCID: PMC9841864 DOI: 10.1177/11786361221145179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/26/2022] [Indexed: 01/15/2023] Open
Abstract
Objective This systematic review and meta-analysis aimed to assess the pool estimates of extended-spectrum β-lactamases producing K. pneumoniae (ESBL-KP) and study their drug resistance profile by evaluating the studies from Nepal. Methods A literature search was carried out in PubMed, Google Scholar, and NepJOL to screen all articles on ESBL-KP published between 2011 and 2021 from Nepal. This review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Relevant data were extracted, and R language 4.2.0 software was used for statistical analysis. Results The pooled prevalence of K. pneumoniae was 5%, while the pooled prevalence of ESBL and multidrug resistance (MDR) in K. pneumoniae were 23% and 55%, respectively. Imipenem was the drug of choice (in vitro) against ESBL-KP infection. Conclusion Our analyses showed a high prevalence of ESBL-KP and their high resistance toward commonly used drugs. This study highlights the need for the development of new antibiotics for the management of ESBL-KP infections.
Collapse
Affiliation(s)
| | | | - Prabin Dawadi
- Prabin Dawadi, Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, BA 44618, Nepal.
| | | |
Collapse
|
19
|
Cao H, Liang S, Zhang C, Liu B, Fei Y. Molecular Profiling of a Multi-Strain Hypervirulent Klebsiella pneumoniae Infection Within a Single Patient. Infect Drug Resist 2023; 16:1367-1380. [PMID: 36937147 PMCID: PMC10017834 DOI: 10.2147/idr.s404202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Background The rising prevalence of infections caused by carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKP) has outpaced our understanding of their evolutionary diversity. By straining the antimicrobial options and constant horizontal gene transfer of various pathogenic elements, CR-hvKP poses a global health threat. Methods Six KP isolates (KP1~KP6) from urine, sputum and groin infection secretion of a single patient were characterized phenotypically and genotypically. The antimicrobial susceptibility, carbapenemase production, hypermucoviscosity, serum resistance, virulence factors, MLST and serotypes were profiled. Genomic variations were identified by whole-genome sequencing and the phylogenetic differentiation was analyzed by Enterobacterial repetitive intergenic consensus (ERIC)-PCR. Results All KP strains were multi-drug resistant. Four of them (KP1, KP3, KP5 and KP6) belonged to ST11-K64, with high genetic closeness (relatedness coefficient above 0.96), sharing most resistance and virulence genes. Compared with KP1, the later isolates KP3, KP5 and KP6 acquired bla KPC-1 and lost bla SHV-182 genes. KP2 and KP4 had the same clonal origin of ST35-K16 (relatedness coefficient 0.98), containing almost identical genes for resistance and virulence. They were non-mucoid and carried bla NDM-5 gene. Conclusion A co-infection with two types of CR-hvKP affiliated with different clades within a single patient amplified the treatment difficulties. In addition to source control and epidemiological surveillance, investigation of the in-host interactions between CR-hvKP variants may provide valuable treatment solutions.
Collapse
Affiliation(s)
- Huijun Cao
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Shiwei Liang
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Chenchen Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Bao Liu
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Ying Fei
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- Correspondence: Ying Fei, Email
| |
Collapse
|
20
|
Baraka K, Abozahra R, Haggag MM, Abdelhamid SM. Genotyping and molecular investigation of plasmid-mediated carbapenem resistant clinical Klebsiella pneumoniae isolates in Egypt. AIMS Microbiol 2023; 9:228-244. [PMID: 37091821 PMCID: PMC10113168 DOI: 10.3934/microbiol.2023014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Klebsiella pneumoniae is a multidrug-resistant nosocomial pathogen. Carbapenem resistance is mediated mainly by enzymes carried on transmissible plasmids causing their dissemination among other members of Enterobacteriaceae. This study aimed to molecularly detect carbapenem resistance genes in K. pneumoniae clinical isolates, genotype them using ERIC-PCR, and investigate plasmid transformation of resistant genes by using ERIC-PCR and sequencing. Methods Antimicrobial resistance of sixty carbapenem-resistant K. pneumoniae strains was evaluated by using the disc diffusion method. Five carbapenemases' genes were amplified by conventional PCR. Genotyping was performed using ERIC-PCR. Gene transformation was performed for the five genes to sensitive isolates. Wild and transformed isolates were genetically investigated using ERIC-PCR and sequencing. Results Carbapenem resistance in our isolates was associated with high resistance to all tested antibiotics. The 60 K. pneumoniae isolates were divided into 6 resistor types. The prevalence of KPC, IMP, VIM, NDM, and OXA-48 genes were 17%, 63%, 93%, 85% and 100%, respectively. Dendrogram analysis showed 57 distinct patterns, arranged in three clusters. The five genes were transformed successfully into sensitive isolates. ERIC profiles of wild and transformed isolates showed cluster A contained all the wild isolates, and cluster B contained all transformed isolates. Genetic sequences of the 5 genes reflected high genetic similarity with the GenBank reference genes before plasmid transformation; however, a distinguishable decrease of genetic similarity was observed after transformation. Conclusion Plasmid-mediated carbapenem resistance in K. pneumoniae and its dissemination among different strains is a real threat to public health.
Collapse
Affiliation(s)
- Kholoud Baraka
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, El Behira, Egypt
- * Correspondence: ; Tel: +21006878989
| | - Rania Abozahra
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, El Behira, Egypt
| | - Marwa Mohammed Haggag
- Microbiology and Immunology Department, Faculty of Pharmacy, Sinai University, Arish Campus, Sinai, Egypt
| | - Sarah M Abdelhamid
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, El Behira, Egypt
| |
Collapse
|
21
|
Kumar S, Anwer R, Azzi A. Molecular typing methods & resistance mechanisms of MDR Klebsiella pneumoniae. AIMS Microbiol 2023; 9:112-130. [PMID: 36891535 PMCID: PMC9988409 DOI: 10.3934/microbiol.2023008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The emergence and transmission of carbapenem-resistant Klebsiella pneumoniae (CRKP) have been recognized as a major public health concern. Here, we investigated the molecular epidemiology and its correlation with the mechanisms of resistance in CRKP isolates by compiling studies on the molecular epidemiology of CRKP strains worldwide. CRKP is increasing worldwide, with poorly characterized epidemiology in many parts of the world. Biofilm formation, high efflux pump gene expression, elevated rates of resistance, and the presence of different virulence factors in various clones of K. pneumoniae strains are important health concerns in clinical settings. A wide range of techniques has been implemented to study the global epidemiology of CRKP, such as conjugation assays, 16S-23S rDNA, string tests, capsular genotyping, multilocus sequence typing, whole-genome sequencing-based surveys, sequence-based PCR, and pulsed-field gel electrophoresis. There is an urgent need to conduct global epidemiological studies on multidrug-resistant infections of K. pneumoniae across all healthcare institutions worldwide to develop infection prevention and control strategies. In this review, we discuss different typing methods and resistance mechanisms to explore the epidemiology of K. pneumoniae pertaining to human infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Microbiology, Kampala International University, Western Campus, Ishaka, Uganda
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Sequence-Specific Gene Silencing of acrA in the Multi-drug Efflux System AcrAB Induces Sensitivity in Drug-Resistant Klebsiella pneumoniae. Mol Biotechnol 2022; 65:953-960. [DOI: 10.1007/s12033-022-00585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
23
|
Presence of Extended Spectrum Beta Lactamase, Virulence Genes and Resistance Determinants in Biofilm Forming Klebsiella pneumoniae Isolated from Food Sources: A Potent Risk to the Consumers. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foodborne diseases and infection caused by associated pathogens is a public health concern. Majority of the investigations focus on common foodborne pathogens like Vibrio parahaemolyticus, Escherichia coli, Listeria monocytogenes, Shigella, Salmonella and Staphylococcus aureus. Limited knowledge has been accounted on Klebsiella pneumoniae. Presence of multidrug-resistant K. pneumoniae in the food supply is disturbing. Hence, this study assessed the presence of K. pneumoniae isolates from food samples (fresh vegetables and chicken), ascertained the presence of drug-resistant phenotypes, extended spectrum beta lactamase production, antibiotic resistance determinants, genes associated with virulence and their ability to form biofilm. Resistance towards ceftazidime and tetracycline was noted among all the isolates in the study, while they exhibited sensitivity to chloramphenicol and co-trimoxazole. All the isolates were potent ESBL producers carrying at least one ESBL encoding genes. Plasmid mediated quinolone resistance gene was detected in one isolate each from onion and chicken respectively. The isolates marked the absence of tetracycline and chloramphenicol resistance genes. Multiple virulence genes (ureA, khe, fimH, mrkD, wabG, uge and elt) were possessed by each of the isolates. K. pneumoniae from chicken and cucumber were moderate biofilm formers and those from tomato exhibited weak biofilm formation. Increased expression of the mrkA gene and reduction in the expression of the biofilm forming gene fimH gene was observed among the biofilm formers. One of the moderate and non-biofilm formers exhibited increased mrkD gene expression. The results from our study stipulate, that raw vegetables and meat serve as dormant source of drug-resistant and virulent K. pneumoniae.
Collapse
|
24
|
Antibiotic Resistant Pattern of K. pneumoniae and their Biofilm Development on Diverse Surfaces. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of the study is to determine the antibiotic resistance and biofilm formation of Klebsiella pneumoniae in different surfaces. In this study, 47 K. pneumoniae strains were procured from K.A.P. Viswanatham Government Medical College, Trichy, Tamil Nadu. All the isolates were reconfirmed through biochemical reactions. Maximum resistance was observed against Ampicillin, Cefepime, Cefotaxime, Co-trimoxazole, Aztreonam, and Imipenem. The lowest resistance was noticed against Cefuroxime. Among these 85% strains exhibited multidrug resistance with 13% was carbapenem and 98% ESBL resistant strains. The biofilm formation of all the strains in different surfaces revealed that stainless steel surface found to be adhered high number of cells than in other surfaces. Similarly, the biofilm formation of strains grown with glucose in tryptic soya broth (TSB) enhanced adherence ability. It is concluded that presence of glucose or any sugar substrates enhances the biofilm formation thereby developing high resistance against different antibiotics. This condition is detrimental to human health and causes considerable concern.
Collapse
|
25
|
Yuan PB, Ling JH, Zhu JH, Peng C, Chen EZ, Zhong YX, Liu WT, Wang LJ, Yang L, Chen DQ. Proteomics profiling of ertapenem challenged major porin deficient carbapenem-resistant Klebsiella pneumoniae. J Proteomics 2022; 268:104715. [PMID: 36058541 DOI: 10.1016/j.jprot.2022.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/14/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an urgent threat to human health. Major outer membrane proteins (OMPs) porin mutation is one important resistance mechanism of CRKP, and may also affect the inhibition activity of β-lactam and β-lactamase inhibitor combinations. The ertapenem-resistant K. pneumoniae strain 2018B120 with major porin mutations was isolated from a clinical patient. Genomic and time-series proteomic analyses were conducted to retrieve the ertapenem-challenged response of 2018B120. The abundance changing of proteins from PTS systems, ABC transporters, the autoinducer 2 (AI-2) quorum sensing system, and antioxidant systems can be observed. Overexpression of alternative porins was also noticed to balance major porins' defection. These findings added a detailed regulation network in bacterial resistance mechanisms and gave new insights into bypass adaptation mechanisms the porin deficient bacteria adopted under carbapenem antibiotics pressure. SIGNIFICANCE: Outer membrane porins deficiency is an important mechanism of carbapenem resistance in K. pneumoniae. Comprehensive genomic and proteomic profiling of an ertapenem-resistant K. pneumoniae strain 2018B120 gives a detailed systematic regulation network in bacterial resistance mechanisms. Overexpression of alternative porins to balance major porins' defection was noticed, giving new insights into bypass adaptation mechanisms of porin deficient bacteria.
Collapse
Affiliation(s)
- Pei-Bo Yuan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Hui Ling
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Hui Zhu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Peng
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - En-Zhong Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Xia Zhong
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wan-Ting Liu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin-Jing Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ding-Qiang Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Antibiotic Resistance and Biofilm Development of Escherichia coli on Different Surfaces. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this research is on antibiotic resistance and biofilm formation of Escherichia coli on different surfaces. 37 E.coli isolates were obtained from K.A.P. Viswanatham Government Medical College, Tiruchirappalli, Tamil Nadu, India. Biochemical assays were used to re-confirm all the isolates. Ampicillin, Cefepime, Cefotaxime, Co-trimoxazole, Tetracycline and Levofloxacin showed substantial levels of resistance. Meropenem, Tigecycline, and Colistin showed the least amount of resistance. 75.6% of the E.coli strains were multidrug resistant (MDR). Biofilm formation of E.coli was higher in TSBG than in TSB in all (polystyrene, polypropylene, glass and stainless steel) surfaces. It is evident that the presence of glucose or any sugar substrate promotes biofilm development, resulting in notable antibiotic resistance. This situation is hazardous to human health.
Collapse
|
27
|
Liang S, Cao H, Ying F, Zhang C. Report of a Fatal Purulent Pericarditis Case Caused by ST11-K64 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae. Infect Drug Resist 2022; 15:4749-4757. [PMID: 36034175 PMCID: PMC9416326 DOI: 10.2147/idr.s379654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
The report describes a 44-year-old female patient who died of the rare acute purulent pericarditis caused by Klebsiella pneumoniae (KP). The genomic analysis revealed an extensively drug-resistant ST11-K64 KP strain from five isolates (blood cultures, urine, ascites, pericardial effusion, and sputum). Several high virulence (hv) and carbapenem-resistant (CR) genes were identified in the pericardial effuse isolate. The isolates showed low resistance to healthy human serum. This study highlights the potential lethality of CR-hvKP infections in patients suffering from underlying comorbidities such as diabetes mellitus and chronic ailments.
Collapse
Affiliation(s)
- Shiwei Liang
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China.,School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, People's Republic of China
| | - Huijun Cao
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Fei Ying
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Chenchen Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, People's Republic of China
| |
Collapse
|
28
|
Amereh S, Kelishomi FZ, Ghayaz F, Javadi A, Peymani A, Fardsanei F, Aali E, Nikkhahi F. Activity of meropenem-vaborbactam against different beta-lactamase producing Klebsiella pneumoniae and Escherichia coli isolates in Iran. Acta Microbiol Immunol Hung 2022; 69:201-208. [PMID: 35895481 DOI: 10.1556/030.2022.01782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
We evaluated the activity of meropenem-vaborbactam against different beta-lactamase producing Klebsiella pneumoniae and Escherichia coli isolates. In our study antibiotic susceptibility testing, double disk synergy test, modified Hodge test were applied. Detection of ESBL, AmpC, and carbapenemase genes was performed by PCR. Multilocus sequence typing (MLST) analysis was done on OXA-48 producing K. pneumoniae strains. Our results showed that among E. coli and K. pneumoniae isolates, 41.1% and 40% of strains produced ESBL, respectively. Additionally, the prevalence of AmpC producing K. pneumoniae and E. coli was 4% and 45.5%, respectively. Altogether 64.2% of K. pneumoniae strains and one E. coli isolate produced carbapenemase. Among OXA-48 producing K. pneumoniae strains ST3500 and ST2528 were detected by MLST. Based on the phenotypic results of this study, vaborbactam was an effective inhibitor on the third-generation cephalosporin-resistant isolates (P < 0.0001). Meropenem-vaborbactam combination had the highest efficacy on KPC producing strains, and it had limited activity on isolates producing OXA-48 type beta-lactamases, whereas no effect was observed on NDM-1 producing isolates. Our study provided valuable information regarding the vaborbactam inhibitory effect on β-lactamase-producing strains.
Collapse
Affiliation(s)
- Samira Amereh
- 1 Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Fatemeh Ghayaz
- 1 Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Javadi
- 2 Community Medicine Department, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Peymani
- 1 Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Fardsanei
- 1 Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ehsan Aali
- 3 Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farhad Nikkhahi
- 1 Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
29
|
Makaremi S, Asgarzadeh A, Kianfar H, Mohammadnia A, Asghariazar V, Safarzadeh E. The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm Res 2022; 71:923-947. [PMID: 35751653 PMCID: PMC9243884 DOI: 10.1007/s00011-022-01596-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022] Open
Abstract
A global pandemic has erupted as a result of the new brand coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has been consociated with widespread mortality worldwide. The antiviral immune response is an imperative factor in confronting the recent coronavirus disease 2019 (COVID-19) infections. Meantime, cytokines recognize as crucial components in guiding the appropriate immune pathways in the restraining and eradication of the virus. Moreover, SARS-CoV-2 can induce uncontrolled inflammatory responses characterized by hyper-inflammatory cytokine production, which causes cytokine storm and acute respiratory distress syndrome (ARDS). As excessive inflammatory responses are contributed to the severe stage of the COVID-19 disease, therefore, the pro-inflammatory cytokines are regarded as the Achilles heel during COVID-19 infection. Among these cytokines, interleukin (IL-) 1 family cytokines (IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38) appear to have a strong inflammatory role in severe COVID-19. Hence, understanding the underlying inflammatory mechanism of these cytokines during infection is critical for reducing the symptoms and severity of the disease. Here, the possible mechanisms and pathways involved in inflammatory immune responses are discussed.
Collapse
Affiliation(s)
- Shima Makaremi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Kianfar
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Mohammadnia
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran. .,Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
30
|
Identification of metabolite extraction method for targeted exploration of antimicrobial resistance associated metabolites of Klebsiella pneumoniae. Sci Rep 2022; 12:8939. [PMID: 35624184 PMCID: PMC9142494 DOI: 10.1038/s41598-022-12153-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Antimicrobial resistant Klebsiella pneumoniae (K. pneumoniae), as being a pathogen of critical clinical concern, urgently demands effective therapeutic options. However, the discovery of novel antibiotics over the last three decades has declined drastically and necessitates exploring novel strategies. Metabolomic modulation has been the promising approach for the development of effective therapeutics to deal with AMR; however, only limited efforts have been made to-date, possibly due to the unavailability of suitable metabolites extraction protocols. Therefore, in order to establish a detailed metabolome of K. pneumoniae and identify a method for targeted exploration of metabolites that are involved in the regulation of AMR associated processes, metabolites were extracted using multiple methods of metabolites extraction (freeze-thaw cycle (FTC) and sonication cycle (SC) method alone or in combination (FTC followed by SC; FTC + SC)) from K. pneumoniae cells and then identified using an orbitrap mass analyzer (ESI-LC-MS/MS). A total of 151 metabolites were identified by using FTC, 132 metabolites by using FTC+SC, 103 metabolites by using SC and 69 metabolites common among all the methods used which altogether enabled the identification of 199 unique metabolites. Of these 199, 70 metabolites were known to have an association with AMR phenotype and among these, the FTC + SC method yielded better (identified 55 metabolites), quantitatively and qualitatively compared to FTC and SC alone (identified 51 and 41 metabolites respectively). Each method of metabolite extraction showed a definite degree of biasness and specificity towards chemical classes of metabolites and jointly contributed to the development of a detailed metabolome of the pathogen. FTC method was observed to give higher metabolomic coverage as compared to SC alone and FTC + SC. However, FTC + SC resulted in the identification of a higher number of AMR associated metabolites of K. pneumoniae compared to FTC and SC alone.
Collapse
|
31
|
C/MIC > 4: A Potential Instrument to Predict the Efficacy of Meropenem. Antibiotics (Basel) 2022; 11:antibiotics11050670. [PMID: 35625314 PMCID: PMC9137711 DOI: 10.3390/antibiotics11050670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/01/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
This prospective study aimed to explore the determinants of meropenem trough concentration (Ctrough) in patients with bacterial pneumonia and to investigate the association between its concentration and efficacy. From January 2019 to December 2019, patients with pulmonary infections were prospectively enrolled from the intensive care unit. Factors affecting the meropenem trough concentration were analyzed, and a multiple linear regression model was constructed. Logistic regression analyses were used to investigate the relationship between Ctrough and clinical efficacy. A total of 64 patients were enrolled, in whom 210 meropenem concentrations were measured. Of the total, 60.9% (39/64) were considered clinically successful after treatment. Ctrough may increase with increased blood urea nitrogen, albumin, and concomitant antifungal use. By contrast, concentration may decrease with increased endogenous creatinine clearance rate. Six variables, including Ctrough/minimum inhibitory concentration (MIC) > 4, were associated with the efficacy of meropenem. There was an independent correlation between Ctrough/MIC > 4 and efficacy after fully adjusting for confounding factors. Based upon renal function indexes, it is possible to predict changes in meropenem concentration and adjust the dosage precisely and individually. Ctrough/MIC > 4 is a potential instrument to predict successful treatment with meropenem.
Collapse
|
32
|
Garduno A, Martín-Loeches I. Efficacy and appropriateness of novel antibiotics in response to antimicrobial-resistant Gram-negative bacteria in patients with sepsis in the ICU. Expert Rev Anti Infect Ther 2021; 20:513-531. [PMID: 34727820 DOI: 10.1080/14787210.2022.1999804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION There is an ever-increasing range of antibiotic-resistant pathogens that have led to higher community-acquired infections, and substantial mortality rates in critically ill patients. AREAS COVERED We have critically appraised available evidence through a structured literature review, investigating effective empiric antibiotic administration and appropriateness on outcomes of critically ill patients with an increased risk of developing resistant pathogens. The use of new antibiotics should be determined based on relevant knowledge of their spectrum and properties to provide effective mode of action for critically ill patients. EXPERT OPINION Restricting severely ill patients access to new broad-spectrum empirical drugs is not the answer. Rather there should be a focus on identifying host response to infection to differentiate between colonization or contamination and true infection, and the sensitivity to antibiotics used in the intensive care unit (ICU). Management relies on adequate antibiotic administration, the ability to monitor response, and facilitate the cessation of antibiotic treatment. The major determinant of patient success in a patient with a severe infection is the 'right' antibiotic or complementary course of treatment. As an overarching criterion, the following 3 appropriate "Ds" should be considered: Dosing, Duration and De-escalation to empirically assess the right antibiotic optimal antimicrobial selection.
Collapse
Affiliation(s)
- Alexis Garduno
- Department of Clinical Medicine, Intensive Care Translational Research, Trinity College Dublin
| | - Ignacio Martín-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, (Ireland)
| |
Collapse
|
33
|
Zhao Y, Liao Y, Zhang N, Liu S, Zhang J, Hu X, Zhou D, Deng Q, Shi Y, Gu B, Hou T. Four Types of ST11 Novel Mutations From Increasing Carbapenem-Resistant Klebsiella pneumoniae in Guangdong, 2016-2020. Front Microbiol 2021; 12:702941. [PMID: 34659140 PMCID: PMC8517524 DOI: 10.3389/fmicb.2021.702941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: This study aimed to explore changes in carbapenem-resistant Klebsiella pneumoniae (CR-KP) isolates collected in Guangdong over the period of 2016–2020. Methods: Antibacterial susceptibility was quantified through VITEK 2 compact and K-B method. Carbapenemase phenotypes and genotypes were characterized by modified carbapenem inactivation method (mCIM), EDTA-carbapenem inactivation method (eCIM), and polymerase chain reaction (PCR). Molecular characteristics and evolutionary trends were analyzed by multilocus sequence typing and evolutionary tree. Results: Isolates (2,847) of K. pneumoniae were separated in 2016–2020, and the separate rate of CR-KP increased from 5.65 to 9.90% (p = 0.009). The top 3 wards were intensive care unit (ICU) (21.92%), neonatal wards (13.70%), and respiratory wards (12.33%). In 146 CR-KP strains, serine carbapenemase was the main phenotype, and KPC was the main genotype, and 57 contained two resistant genes, and 1 contained three resistant genes. Two polygenic strains were first found: IMP + GES and KPC + NDM + VIM, but all the phenotypes were metalloenzyme, which indicated that metalloenzyme was usually the first choice for CR-KP resistance. In addition, all the ST54 of metalloenzyme type contained IMP, and all the ST45, ST37, and ST76 contained OXA. ST11 was the most prevalent (42.47%); ST11 and its mutants proved the predominant sequence type making up 51.1% of the carbapenemase-producing isolates. A novel type of ST11 mutation, the rpoB was mutated from sequence 1 to sequence 146, was in an independent separate branch on the evolutionary tree and was resistant to all antibacterial agents. The other three mutants, rpoB 1–15, infB 3–148, and infB 3–80, are also resistant to all antibacteria. Of note, all the four mutants produced serine carbapenemase and contained KPC, and indicated that the prevalent strain in China, ST11, has serious consequences and potential outbreaks. Conclusion: The infection rate of CR-KP has increased, and ICU and neonatal wards have become the key infection areas. Producing serine enzyme, the KPC genotype, and ST11 are the predominant CR-KP. Polygenic strains and ST11 mutation made clinical treatment difficult and may become a potential threat.
Collapse
Affiliation(s)
- Yunhu Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yalong Liao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ni Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Suling Liu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiao Zhang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xuejiao Hu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dianrong Zhou
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qianyun Deng
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanping Shi
- General Hospital of Southern Theatre Command, Guangzhou, China
| | - Bing Gu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tieying Hou
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
34
|
Mirzaie A, Ranjbar R. Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples. AMB Express 2021; 11:122. [PMID: 34460016 PMCID: PMC8405773 DOI: 10.1186/s13568-021-01282-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Klebsiella pneumoniae is a multidrug-resistant (MDR) opportunistic pathogen that causes nosocomial infections. Virulence analysis and molecular typing as powerful approaches can provide relevant information on K. pneumoniae infection. In the current study, antibiotic resistance, virulence-associated genes analysis, as well as molecular typing of K. pneumoniae strains were investigated. Out of 505 clinical samples collected from hospitalized patients, 100 K. pneumoniae strains were isolated by standard microbiological methods and subjected to the phenotypic and genotyping analysis. The highest prevalence of resistance was observed against ciprofloxacin (75%), trimethoprim-sulfamethoxazole (73%) and nitrofurantoin (68%). Virulence associated genes including entB, traT, ybts, magA, iucC, htrA and rmpA were found in 80%, 62%, 75%, 5%, 30%, 72% and 48%, of the isolates, respectively. The prevalence of biofilm-associated genes including mrkA, fimH, and mrkD were equally 88% for all tested isolates. Moreover, the efflux pump genes including AcrAB, TolC and mdtK were observed in 41 (41%), 33 (33%) and 26 (26%) of the strains respectively. A significant statistical association was observed between MDR strains and high expression of efflux pump and biofilm genes. The K. pneumoniae strains were differentiated into 11 different genetic patterns using the repetitive element sequence-based PCR (rep-PCR) technique. High prevalence of resistance, presence of various virulence factors, high level of efflux pump, and biofilm gene expression in diverse clones of K. pneumoniae strains pose an important health issue in clinical settings.
Collapse
Affiliation(s)
- Amir Mirzaie
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
El-Shaer S, Abdel-Rhman SH, Barwa R, Hassan R. Genetic characterization of extended-spectrum β-Lactamase- and carbapenemase-producing Escherichia coli isolated from Egyptian hospitals and environments. PLoS One 2021; 16:e0255219. [PMID: 34297783 PMCID: PMC8301635 DOI: 10.1371/journal.pone.0255219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Abstract
Over the past decades, Escherichia coli (E. coli) have acquired extensive resistance to antibiotics; especially β- lactams. This study aimed to investigate the frequency of Extended-spectrum β-lactamase (ESBL) and carbapenemase producers among E. coli isolates and their correlation with serotypes, phylogenetic background, and pathogenicity associated islands. A total of 105 E. coli strains were isolated and subjected to antimicrobial susceptibility testing against β-lactam antibiotics. All isolates showed a high resistance profile. Resistant isolates were tested for ESBL and carbapenemase production. Fifty-three and 18 isolates were positive for ESBL and carbapenemase producers, respectively. ESBL and carbapenemase genes were detected by PCR. TEM gene was the most prevalent gene among all isolates followed by SHV and CTX-M15. In carbapenemase-producers, OXA-48 and IMP were the predominant genes. Enteropathogenic E. coli (EPEC) and Enterohemorrhagic E. coli (EHEC) were the major producers of ESBL and carbapenemase, respectively as indicated by serodiagnosis. They were further assessed for the presence of pathogenicity islands (PAIs) and phylogenetic background. The most predominant DEC PAI and ExPEC PAI were HPI and IICFT073. Most clinically ESBL-producers were group D and B2 while environmentally ones were group B1 and A. On contrary, clinically carbapenemase-producers belonged to group C and D. In conclusion, our study confirms the importance of phylogenetic group D, B2, and C origin for antibiotic resistance in E. coli. Ultimately, our findings support the fact that environmental isolates contribute to the local spread of E. coli pathogenicity in Egypt and these isolates maybe serve as reservoirs for transmission of resistance.
Collapse
Affiliation(s)
- Soha El-Shaer
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Shaymaa H. Abdel-Rhman
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rasha Barwa
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ramadan Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
36
|
Rasi-Bonab F, Jafari-Sales A, Shaverdi MA, Navidifar T, Saki M, Ghorbani A, Adekanmbi AO, Jafari B, Naebi S. Antibiotic resistance pattern and frequency of cagA and vacA genes in Helicobacter pylori strains isolated from patients in Tabriz city, Iran. BMC Res Notes 2021; 14:216. [PMID: 34059110 PMCID: PMC8165783 DOI: 10.1186/s13104-021-05633-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/25/2021] [Indexed: 01/14/2023] Open
Abstract
Objective Helicobacter pylori is one of the most common causes of gastric infections in humans. It is estimated that approximately 50% of people around the world are infected with this bacterium. This study aimed to determine the antibiotic resistance pattern, as well as the frequency of cagA and vacA genes in H. pylori isolates obtained from patients in the clinical centers in Tabriz city, Iran. Results The culture method detected 100 (45.25%) H. pylori isolates from 221 biopsy samples during 3 years. The results showed that 63% and 81% of the isolates were positive for cagA and vacA genes, respectively. The highest resistance of isolates was seen against metronidazole (79%) and amoxicillin (36%), respectively. Also, the isolates showed the least resistance to tetracycline (8%).
Collapse
Affiliation(s)
- Farnaz Rasi-Bonab
- Department of Microbiology, Marand Branch, Islamic Azad University, Marand, Iran
| | - Abolfazl Jafari-Sales
- Department of Microbiology, School of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran.
| | - Mohammad Amin Shaverdi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran. .,Khuzestan Blood Transfusion Center, Abadan, Iran.
| | | | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atosa Ghorbani
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Behboud Jafari
- Department of Microbiology, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Sara Naebi
- Department of Microbiology, Ahar Branch, Islamic Azad University, Ahar, Iran
| |
Collapse
|