1
|
Chen J, Luo Q, Yi Y, Wang J, Chen P, Luo F, Fang Z. ANGPTL3 as a target for treating lipid disorders in type 2 diabetes patients. Lipids Health Dis 2024; 23:356. [PMID: 39487451 PMCID: PMC11528995 DOI: 10.1186/s12944-024-02352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a globally prevalent metabolic disorder, and cardiovascular disease (CVD) is a significant cause of mortality and morbidity in diabetic individuals. In addition to hyperglycemia, lipid abnormalities associated with T2DM play a crucial role in the development of CVD complications. Diabetic dyslipidemia is characterized by elevated levels of triglyceride (TG)-rich lipoproteins and small dense low-density lipoprotein (LDL) particles, reduced high-density lipoprotein (HDL) cholesterol, and impaired HDL function. Angiopoietin protein-like 3 (ANGPTL3) is a liver-derived protein that plays a crucial role in regulating plasma lipoprotein metabolism by inhibiting lipoprotein lipase and influencing lipid levels. Inhibiting ANGPTL3 has shown promising effects in promoting HDL-mediated cholesterol reverse transport and reducing the levels of TG-rich lipoproteins and LDL cholesterol. Here, we explore the potential of ANGPTL3 as a therapeutic target for lipid management in T2DM patients.
Collapse
Affiliation(s)
- Jingfei Chen
- Research Institute of Blood Lipid and Atherosclerosis, Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Qin Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Yanfeng Yi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Jiangang Wang
- Department of Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Pengfei Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China.
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, 410011, P.R. China.
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China.
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, 410011, P.R. China.
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China.
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, 410011, P.R. China.
| |
Collapse
|
2
|
Dimitriadis K, Theofilis P, Iliakis P, Pyrpyris N, Dri E, Sakalidis A, Soulaidopoulos S, Tsioufis P, Fragkoulis C, Chrysohoou C, Tsiachris D, Tsioufis K. Management of dyslipidemia in coronary artery disease: the present and the future. Coron Artery Dis 2024; 35:516-524. [PMID: 38682459 DOI: 10.1097/mca.0000000000001375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Coronary artery disease (CAD) remains a leading cause of global morbidity and mortality, necessitating continuous refinement in the management of dyslipidemia, one of its major risk factors, to mitigate cardiovascular risks. Previous studies have proven the critical role of immediate and robust low-density lipoprotein cholesterol (LDL-C) reduction in the aftermath of acute coronary syndrome (ACS). Emphasizing the evidence supporting this approach, we delve into the impact of early intervention on cardiovascular outcomes and propose optimal strategies for achieving rapid LDL-C lowering, while also providing the rationale for early proprotein convertase subtilisin/kexin 9 inhibitor use after an ACS. Given the importance of the residual lipidemic risk, we present an overview of emerging therapeutic avenues poised to reshape dyslipidemia management, such as bempedoic acid, lipoprotein(a) inhibition, ApoC3 modulation, and angiopoietin-like protein 3 targeting. This comprehensive review amalgamates current evidence with future prospects, offering a holistic perspective on the management of dyslipidemia in CAD. By exploring both the urgency for immediate post-ACS LDL-C reduction and the exciting advancements on the horizon, this article provides a roadmap for clinicians navigating the intricate landscape of lipid-lowering therapies in CAD.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Gao WY, Chen PY, Hsu HJ, Liou JW, Wu CL, Wu MJ, Yen JH. Xanthohumol, a prenylated chalcone, regulates lipid metabolism by modulating the LXRα/RXR-ANGPTL3-LPL axis in hepatic cell lines and high-fat diet-fed zebrafish models. Biomed Pharmacother 2024; 174:116598. [PMID: 38615609 DOI: 10.1016/j.biopha.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024] Open
Abstract
Angiopoietin-like 3 (ANGPTL3) acts as an inhibitor of lipoprotein lipase (LPL), impeding the breakdown of triglyceride-rich lipoproteins (TGRLs) in circulation. Targeting ANGPTL3 is considered a novel strategy for improving dyslipidemia and atherosclerotic cardiovascular diseases (ASCVD). Hops (Humulus lupulus L.) contain several bioactive prenylflavonoids, including xanthohumol (Xan), isoxanthohumol (Isoxan), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN), with the potential to manage lipid metabolism. The aim of this study was to investigate the lipid-lowering effects of Xan, the effective prenylated chalcone in attenuating ANGPTL3 transcriptional activity, both in vitro using hepatic cells and in vivo using zebrafish models, along with exploring the underlying mechanisms. Xan (10 and 20 μM) significantly reduced ANGPTL3 mRNA and protein expression in HepG2 and Huh7 cells, leading to a marked decrease in secreted ANGPTL3 proteins via hepatic cells. In animal studies, orally administered Xan significantly alleviated plasma triglyceride (TG) and cholesterol levels in zebrafish fed a high-fat diet. Furthermore, it reduced hepatic ANGPTL3 protein levels and increased LPL activity in zebrafish models, indicating its potential to modulate lipid profiles in circulation. Furthermore, molecular docking results predicted that Xan exhibits a higher binding affinity to interact with liver X receptor α (LXRα) and retinoic acid X receptor (RXR) than their respective agonists, T0901317 and 9-Cis-retinoic acid (9-Cis-RA). We observed that Xan suppressed hepatic ANGPTL3 expression by antagonizing the LXRα/RXR-mediated transcription. These findings suggest that Xan ameliorates dyslipidemia by modulating the LXRα/RXR-ANGPTL3-LPL axis. Xan represents a novel potential inhibitor of ANGPTL3 for the prevention or treatment of ASCVD.
Collapse
Affiliation(s)
- Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Pei-Yi Chen
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan; Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Hao-Jen Hsu
- Department of Biomedical Science and Engineering, Tzu Chi University, Hualien 970374, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| | - Jui-Hung Yen
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan; Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan.
| |
Collapse
|
4
|
Gill PK, Hegele RA. New Biological Therapies for Low-Density Lipoprotein Cholesterol. Can J Cardiol 2023; 39:1913-1930. [PMID: 37562541 DOI: 10.1016/j.cjca.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Depressed low-density lipoprotein cholesterol concentration protects against atherosclerotic cardiovascular disease. Natural hypocholesterolemia states can have a monogenic etiology, caused by pathogenic loss of function variants in the PCSK9, ANGPTL3, MTTP, or APOB genes. In this focused review, we discuss development and clinical use of several new therapeutics that inhibit these gene products to target elevated levels of low-density lipoprotein cholesterol. In particular, inhibitors of proprotein convertase subtilisin kexin type 9 (PCSK9) have notably affected clinical practice, followed recently by inhibition of angiopoietin-like 3 (ANGPTL3). Currently used in the clinic are alirocumab and evolocumab, two anti-PCSK9 monoclonal antibodies, inclisiran, a small interfering RNA that prevents PCSK9 translation, evinacumab, an anti-ANGPTL3 monoclonal antibody, and lomitapide, a small-molecule inhibitor of microsomal triglyceride transfer protein. Additional therapies are in preclinical or clinical trial stages of development. These consist of other monoclonal antibodies, antisense oligonucleotides, small-molecule inhibitors, mimetic peptides, adnectins, vaccines, and gene-editing therapies. Vaccines and gene-editing therapies in particular hold great potential to confer active long-term attenuation or provide single-treatment life-long knock-down of PCSK9 or ANGPTL3 activity. Biologic therapies inspired by monogenic hypocholesterolemia states are becoming valuable tools to help protect against atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Praneet K Gill
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
5
|
Srivastava RAK. A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD. Cells 2023; 12:1648. [PMID: 37371118 DOI: 10.3390/cells12121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Since the discovery of the LDL receptor in 1973 by Brown and Goldstein as a causative protein in hypercholesterolemia, tremendous amounts of effort have gone into finding ways to manage high LDL cholesterol in familial hypercholesterolemic (HoFH and HeFH) individuals with loss-of-function mutations in the LDL receptor (LDLR) gene. Statins proved to be the first blockbuster drug, helping both HoFH and HeFH individuals by inhibiting the cholesterol synthesis pathway rate-limiting enzyme HMG-CoA reductase and inducing the LDL receptor. However, statins could not achieve the therapeutic goal of LDL. Other therapies targeting LDLR include PCSK9, which lowers LDLR by promoting LDLR degradation. Inducible degrader of LDLR (IDOL) also controls the LDLR protein, but an IDOL-based therapy is yet to be developed. Among the LDLR-independent pathways, such as angiopoietin-like 3 (ANGPTL3), apolipoprotein (apo) B, apoC-III and CETP, only ANGPTL3 offers the advantage of treating both HoFH and HeFH patients and showing relatively better preclinical and clinical efficacy in animal models and hypercholesterolemic individuals, respectively. While loss-of-LDLR-function mutations have been known for decades, gain-of-LDLR-function mutations have recently been identified in some individuals. The new information on gain of LDLR function, together with CRISPR-Cas9 genome/base editing technology to target LDLR and ANGPTL3, offers promise to HoFH and HeFH individuals who are at a higher risk of developing atherosclerotic cardiovascular disease (ASCVD).
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions LLC, Boston, MA 02101-02117, USA
- College of Professional Studies, Northeastern University, Boston, MA 02101-02117, USA
| |
Collapse
|
6
|
Zuo Y, Zhang C, Zhou Y, Li H, Xiao W, Herzog RW, Xu J, Zhang J, Chen YE, Han R. Liver-specific in vivo base editing of Angptl3 via AAV delivery efficiently lowers blood lipid levels in mice. Cell Biosci 2023; 13:109. [PMID: 37322547 PMCID: PMC10273718 DOI: 10.1186/s13578-023-01036-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Gene editing has emerged as an exciting therapeutic development platform for numerous genetic and nongenetic diseases. Targeting lipid-modulating genes such as angiopoietin-related protein 3 (ANGPTL3) with gene editing offers hope for a permanent solution to lower cardiovascular disease risks associated with hypercholesterolemia. RESULTS In this study, we developed a hepatocyte-specific base editing therapeutic approach delivered by dual adeno-associated virus (AAV) to enable hepatocyte-specific targeting of Angptl3 to lower blood lipid levels. Systemic AAV9-mediated delivery of AncBE4max, a cytosine base editor (CBE), targeting mouse Angptl3 resulted in the installation of a premature stop codon in Angptl3 with an average efficiency of 63.3 ± 2.3% in the bulk liver tissue. A near-complete knockout of the ANGPTL3 protein in the circulation were observed within 2-4 weeks following AAV administration. Furthermore, the serum levels of triglyceride (TG) and total cholesterol (TC) were decreased by approximately 58% and 61%, respectively, at 4 weeks after treatment. CONCLUSIONS These results highlight the promise of liver-targeted Angptl3 base editing for blood lipid control.
Collapse
Affiliation(s)
- Yuanbojiao Zuo
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, P.R. China
| | - Chen Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuan Zhou
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Haiwen Li
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Renzhi Han
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Guo X, Huang Z, Chen J, Hu J, Hu D, Peng D, Yu B. ANGPTL3 Is Involved in the Post-prandial Response in Triglyceride-Rich Lipoproteins and HDL Components in Patients With Coronary Artery Disease. Front Cardiovasc Med 2022; 9:913363. [PMID: 35845073 PMCID: PMC9276986 DOI: 10.3389/fcvm.2022.913363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
It is well-established that there exists an inverse relationship between high-density lipoprotein (HDL) cholesterol and triglyceride (TG) levels in the plasma. However, information is lacking on the impact of post-prandial triglyceride-rich lipoproteins (TRLs) on the structure of HDL subclasses in patients with coronary artery disease (CAD). In this study, the data of 49 patients with CAD were analyzed to evaluate dynamic alterations in post-prandial lipid profiles using nuclear magnetic resonance-based methods. An enzyme-linked immunosorbent assay was used to quantify the serum angiopoietin-like protein 3 (ANGPTL3). After glucose supplementation, the expression of hepatic ANGPTL3 was evaluated both in vitro and in vivo. Compared to fasting levels, the post-prandial serum TG level of all participants was considerably increased. Although post-prandial total cholesterol in HDL (HDL-C) remained unchanged, free cholesterol in HDL particles (HDL-FC) was significantly reduced after a meal. Furthermore, the post-prandial decrease in the HDL-FC level corresponded to the increase in remnant cholesterol (RC), indicating the possible exchange of free cholesterol between HDL and TRLs after a meal. Moreover, CAD patients with exaggerated TG response to diet, defined as TG increase >30%, tend to have a greater post-prandial increase of RC and decrease of HDL-FC compared to those with TG increase ≤30%. Mechanistically, the fasting and post-prandial serum ANGPTL3 levels were significantly lower in those with TG increase ≤30% than those with TG increase >30%, suggesting that ANGPTL3, the key lipolysis regulator, may be responsible for the different post-prandial responses of TG, RC, and HDL-FC.
Collapse
Affiliation(s)
- Xin Guo
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Huang
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin Chen
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiarui Hu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Die Hu
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12:jpm12061010. [PMID: 35743794 PMCID: PMC9225161 DOI: 10.3390/jpm12061010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflammation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1 gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardiovascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations, post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis, ischemia/reperfusion, myocardial infarction, and coronary heart disease.
Collapse
|
9
|
Sirtori CR, Corsini A, Ruscica M. The Role of High-Density Lipoprotein Cholesterol in 2022. Curr Atheroscler Rep 2022; 24:365-377. [PMID: 35274229 PMCID: PMC8913032 DOI: 10.1007/s11883-022-01012-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF THE REVIEW High-density lipoproteins (HDL) are responsible for the transport in plasma of a large fraction of circulating lipids, in part from tissue mobilization. The evaluation of HDL-associated cholesterol (HDL-C) has provided a standard method for assessing cardiovascular (CV) risk, as supported by many contributions on the mechanism of this arterial benefit. The present review article will attempt to investigate novel findings on the role and mechanism of HDL in CV risk determination. RECENT FINDINGS The most recent research has been aimed to the understanding of how a raised functional capacity of HDL, rather than elevated levels per se, may be responsible for the postulated CV protection. Markedly elevated HDL-C levels appear instead to be associated to a raised coronary risk, indicative of a U-shaped relationship. While HDL-C reduction is definitely related to a raised CV risk, HDL-C elevations may be linked to non-vascular diseases, such as age-related macular disease. The description of anti-inflammatory, anti-oxidative and anti-infectious properties has indicated potential newer areas for diagnostic and therapeutic approaches. In the last two decades inconclusive data have arisen from clinical trials attempting to increase HDL-C pharmacologically or by way of recombinant protein infusions (most frequently with the mutant A-I Milano); prevention of stent occlusion or heart failure treatment have shown instead significant promise. Targeted clinical studies are still ongoing.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy.
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Lipoprotein lipase (LPL) is the rate-limiting enzyme for intravascular processing of circulating triglyceride-rich lipoproteins (TRLs). One emerging strategy for therapeutic lowering of plasma triglyceride levels aims at increasing the longevity of LPL activity by attenuating its inhibition from angiopoietin-like proteins (ANGPTL) 3, 4 and 8. This mini-review focuses on recent insights into the molecular mechanisms underpinning the regulation of LPL activity in the intravascular unit by ANGPTLs with special emphasis on ANGPTL4. RECENT FINDINGS Our knowledge on the molecular interplays between LPL, its endothelial transporter GPIHBP1, and its inhibitor(s) ANGPTL4, ANGPTL3 and ANGPTL8 have advanced considerably in the last 2 years and provides an outlined on how these proteins regulate the activity and compartmentalization of LPL. A decisive determinant instigating this control is the inherent protein instability of LPL at normal body temperature, a property that is reciprocally impacted by the binding of GPIHBP1 and ANGPTLs. Additional layers in this complex LPL regulation is provided by the different modulation of ANGPTL4 and ANGPTL3 activities by ANGPTL8 and the inhibition of ANGPTL3/8 complexes by apolipoprotein A5 (APOA5). SUMMARY Posttranslational regulation of LPL activity in the intravascular space is essential for the differential partitioning of TRLs across tissues and their lipolytic processing in response to nutritional cues.
Collapse
Affiliation(s)
- Michael Ploug
- Finsen Laboratory, Rigshospitalet
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Ward NC, Chan DC, Watts GF. A Tale of Two New Targets for Hypertriglyceridaemia: Which Choice of Therapy? BioDrugs 2022; 36:121-135. [PMID: 35286660 PMCID: PMC8986672 DOI: 10.1007/s40259-022-00520-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
Abstract
Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (apoC-III) are novel metabolic targets for correcting hypertriglyceridaemia (HTG). As a background to their potential clinical use, we review the metabolic aetiology of HTG, particular abnormalities in triglyceride-rich lipoproteins (TRLs) and their role in atherosclerotic cardiovascular disease (ASCVD) and acute pancreatitis. Molecular and cardiometabolic aspects of ANGPTL3 and apoC-III, as well as inhibition of these targets with monoclonal antibody and nucleic acid therapies, are summarized as background information to descriptions and analyses of recent clinical trials. These studies suggest that ANGPTL3 and apoC-III inhibitors are equally potent in lowering elevated plasma triglycerides and TRLs across a wide range of concentrations, with possibly greater efficacy with inhibition of apoC-III. ANGPTL3 inhibition may, however, have the advantage of greater lowering of plasma LDL cholesterol and could specifically address elevated LDL cholesterol in familial hypercholesterolaemia refractory to standard drug therapies. Large clinical outcome trials in relevant populations are still required to confirm the long-term efficacy, safety and cost effectiveness of these potent agents for mitigating the complications of HTG. Beyond targeting severe chylomicronaemia in the prevention of acute pancreatitis, both agents could be useful in addressing residual risk of ASCVD due to TRLs in patients receiving best standard of care, including behavioural modifications, statins, ezetimibe, fibrates and proprotein convertase subtilisin/kexin type 9 inhibitors.
Collapse
Affiliation(s)
- Natalie C Ward
- Dobney Hypertension Centre, Medical School, University of Western Australia, Perth, WA, Australia.,Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia
| | - Dick C Chan
- Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia. .,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, WA, Australia.
| |
Collapse
|