1
|
Mouisel E, Bodon A, Noll C, Cassant-Sourdy S, Marques MA, Flores-Flores R, Riant E, Bergoglio C, Vezin P, Caspar-Bauguil S, Fournes-Fraresso C, Tavernier G, Oumar KAI, Gourdy P, Blondin DP, Denechaud PD, Carpentier AC, Langin D. Cold-induced thermogenesis requires neutral-lipase-mediated intracellular lipolysis in brown adipocytes. Cell Metab 2025; 37:429-440.e5. [PMID: 39566492 DOI: 10.1016/j.cmet.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Long-chain fatty acids (FAs) are the major substrates fueling brown adipose tissue (BAT) thermogenesis. Investigation of mouse models has previously called into question the contribution of brown adipocyte intracellular lipolysis to cold-induced non-shivering thermogenesis. Here, we determined the role of the lipolytic enzymes, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in BAT thermogenesis. Brown fat from mice with inducible brown-adipocyte-specific deletion of ATGL and HSL (BAHKO) is hypertrophied with increased lipid droplet size and preserved mitochondria area and density. Maintenance of body temperature during cold exposure is compromised in BAHKO mice in the fasted but not in the fed state. This altered response to cold is observed in various thermal and nutritional conditions. Positron emission tomography-computed tomography using [11C]-acetate and [11C]-palmitate shows abolished cold-induced BAT oxidative activity and impaired FA metabolism in BAHKO mice. Our findings show that brown adipocyte intracellular lipolysis is required for BAT thermogenesis.
Collapse
Affiliation(s)
- Etienne Mouisel
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.
| | - Anaïs Bodon
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Christophe Noll
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Division of Endocrinology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stéphanie Cassant-Sourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie-Adeline Marques
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Remy Flores-Flores
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Elodie Riant
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Camille Bergoglio
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Pierre Vezin
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Sylvie Caspar-Bauguil
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Camille Fournes-Fraresso
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Geneviève Tavernier
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Khalil Acheikh Ibn Oumar
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Denis P Blondin
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Damien Denechaud
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - André C Carpentier
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Division of Endocrinology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Langin
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
2
|
Beito M, Taegtmeyer H. Metabolic cycles: A unifying concept for energy transfer in the heart. J Mol Cell Cardiol 2024; 195:103-109. [PMID: 39154711 DOI: 10.1016/j.yjmcc.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
It is still debated whether changes in metabolic flux are cause or consequence of contractile dysfunction in non-ischemic heart disease. We have previously proposed a model of cardiac metabolism grounded in a series of six moiety-conserved, interconnected cycles. In view of a recent interest to augment oxygen availability in heart failure through iron supplementation, we integrated this intervention in terms of moiety conservation. Examining published work from both human and murine models, we argue this strategy restores a mitochondrial cycle of energy transfer by enhancing mitochondrial pyruvate carrier (MPC) expression and providing pyruvate as a substrate for carboxylation and anaplerosis. Metabolomic data from failing heart muscle reveal elevated pyruvate levels with a concomitant decrease in the levels of Krebs cycle intermediates. Additionally, MPC is downregulated in the same failing hearts, as well as under hypoxic conditions. MPC expression increases upon mechanical unloading in the failing human heart, as does contractile function. We note that MPC deficiency also alters expression of enzymes involved in pyruvate carboxylation and decarboxylation, increases intermediates of biosynthetic pathways, and eventually leads to cardiac hypertrophy and dilated cardiomyopathy. Collectively, we propose that an unbroken chain of moiety-conserved cycles facilitates energy transfer in the heart. We refer to the transport and subsequent carboxylation of pyruvate in the mitochondrial matrix as an example and a proposed target for metabolic support to reverse impaired contractile function.
Collapse
Affiliation(s)
- Mitchell Beito
- McGovern Medical School - The University of Texas Health Science Center at Houston, United States of America
| | - Heinrich Taegtmeyer
- McGovern Medical School - The University of Texas Health Science Center at Houston Department of Internal Medicine, Division of Cardiology, 6431 Fannin St. Houston, TX 77030, United States of America.
| |
Collapse
|
3
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
4
|
Arêdes DS, Rios T, Carvalho-Kelly LF, Braz V, Araripe LO, Bruno RV, Meyer-Fernandes JR, Ramos I, Gondim KC. Deficiency of Brummer lipase disturbs lipid mobilization and locomotion, and impairs reproduction due to defects in the eggshell ultrastructure in the insect vector Rhodnius prolixus. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159442. [PMID: 38042331 DOI: 10.1016/j.bbalip.2023.159442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Rhodnius prolixus is a hematophagous insect, which feeds on large and infrequent blood meals, and is a vector of trypanosomatids that cause Chagas disease. After feeding, lipids derived from blood meal are stored in the fat body as triacylglycerol, which is recruited under conditions of energy demand by lipolysis, where the first step is catalyzed by the Brummer lipase (Bmm), whose orthologue in mammals is the adipose triglyceride lipase (ATGL). Here, we investigated the roles of Bmm in adult Rhodnius prolixus under starvation, and after feeding. Its gene (RhoprBmm) was expressed in all the analyzed insect organs, and its transcript levels in the fat body were not altered by nutritional status. RNAi-mediated knockdown of RhoprBmm caused triacylglycerol retention in the fat body during starvation, resulting in larger lipid droplets and lower ATP levels compared to control females. The silenced females showed decreased flight capacity and locomotor activity. When RhoprBmm knockdown occurred before the blood meal and the insects were fed, the females laid fewer eggs, which collapsed and showed low hatching rates. Their hemolymph had reduced diacylglycerol content and vitellogenin concentration. The chorion (eggshell) of their eggs had no difference in hydrocarbon amounts or in dityrosine crosslinking levels compared to control eggs. However, it showed ultrastructural defects. These results demonstrated that Bmm activity is important not only to guarantee lipid mobilization to maintain energy homeostasis during starvation, but also for the production of viable eggs after a blood meal, by somehow contributing to the right formation of the egg chorion.
Collapse
Affiliation(s)
- Daniela Saar Arêdes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Valdir Braz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana O Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - Rafaela V Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem - INCT-BEB/CNPq, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil.
| |
Collapse
|
5
|
Lin LC, Liu ZY, Yang JJ, Zhao JY, Tao H. Lipid metabolism reprogramming in cardiac fibrosis. Trends Endocrinol Metab 2024; 35:164-175. [PMID: 37949734 DOI: 10.1016/j.tem.2023.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Cardiac fibrosis is a critical pathophysiological process that occurs with diverse types of cardiac injury. Lipids are the most important bioenergy substrates for maintaining optimal heart performance and act as second messengers to transduce signals within cardiac cells. However, lipid metabolism reprogramming is a double-edged sword in the regulation of cardiomyocyte homeostasis and heart function. Moreover, lipids can exert diverse effects on cardiac fibrosis through different signaling pathways. In this review, we provide a brief overview of aberrant cardiac lipid metabolism and recent progress in pharmacological research targeting lipid metabolism alterations in cardiac fibrosis.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
6
|
Wu X, Jia W. Multimodal deep learning as a next challenge in nutrition research: tailoring fermented dairy products based on cytidine diphosphate-diacylglycerol synthase-mediated lipid metabolism. Crit Rev Food Sci Nutr 2023; 64:12272-12283. [PMID: 37615630 DOI: 10.1080/10408398.2023.2248633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Deep learning is evolving in nutritional epidemiology to address challenges including precise nutrition and data-driven disease modeling. Fermented dairy products consumption as the implementation of specific dietary priority contributes to a lower risk of all-cause mortality, cardiovascular disease, and obesity. Various lipid types play different roles in cardiometabolic health and fermentation process changes the lipid profile in dairy products. Leveraging the power of multiple biological datasets can provide mechanistic insights into how proteins impact lipid pathways, and establish connections among fermentation-lipid biomarkers-protein. The recent leap of deep learning has been performed in food category recognition, agro-food freshness detection, and food flavor prediction and regulation. The proposed multimodal deep learning method includes four steps: (i) Forming data matrices based on data generated from different omics layers. (ii) Decomposing high-dimensional omics data according to self-attention mechanism. (iii) Constructing View Correlation Discovery Network to learn the cross-omics correlations and integrate different omics datasets. (iv) Depicting a biological network for lipid metabolism-centered quantitative multi-omics data analysis. Relying on the cytidine diphosphate-diacylglycerol synthase-mediated lipid metabolism regulates the glycerophospholipid composition of fermented dairy effectively. Innovative processing strategies including ohmic heating and pulsed electric field improve the sensory qualities and nutritional characteristics of the products.
Collapse
Affiliation(s)
- Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
7
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
8
|
Jia W, Wu X, Zhang R, Wang X, Shi L. Novel insight into the resilient drivers of bioaccumulation perchlorate on lipid nutrients alterations in goat milk by spatial multi-omics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|