1
|
Shao B, Snell-Bergeon JK, de Boer IH, Davidson WS, Bornfeldt KE, Heinecke JW. Elevated levels of serum alpha-2-macroglobulin associate with diabetes status and incident CVD in type 1 diabetes. J Lipid Res 2025; 66:100741. [PMID: 39761918 PMCID: PMC11841089 DOI: 10.1016/j.jlr.2025.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025] Open
Abstract
Atherosclerotic CVD is a major cause of death in individuals with type 1 diabetes mellitus (T1DM). However, conventional risk factors do not fully account for the increased risk. This study aimed to investigate whether serum proteins associate with diabetes status and the occurrence of CVD in T1DM. We used isotope dilution-MS/MS to quantify 28 serum proteins in 228 subjects participating in the prospective Coronary Artery Calcification in Type 1 Diabetes study. We used linear regression to analyze the association between serum protein levels and T1DM status using 47 healthy controls and 134 T1DM patients without CVD and Cox proportional hazards regression to assess their prediction for incident CVD by a case-cohort study using a subcohort of 145 T1DM subjects and a total of 47 CVD events. Of the 28 serum proteins studied, five of them-alpha-2-macroglobulin (A2M), apolipoprotein A-IV, apolipoprotein L1, insulin-like growth factor 2, and phospholipid transfer protein-were significantly associated with T1DM status, with A2M being 1.6-fold higher in T1DM. After adjusting for potential confounders, A2M independently predicted incident CVD, with a mean hazard ratio of 3.3 and 95% CI of 1.8-6.1. In our study, A2M showed the largest increase in serum levels when comparing patients with T1DM to control subjects. A2M also predicted incident CVD, suggesting that it could serve as both a marker and possibly a mediator of atherosclerosis in T1DM. These findings emphasize the importance of specific serum proteins in assessing and managing CVD risk in T1DM.
Collapse
Affiliation(s)
- Baohai Shao
- Department of Medicine, University of Washington, Seattle, WA.
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ian H de Boer
- Department of Medicine, University of Washington, Seattle, WA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Yang L, Xu Z, Wang Z, Ding F, Wu Z, Shi X, Wang J, Ma Y, Jin J. Increased pro-SFTPB in HDL promotes the pro-inflammatory transition of HDL and represents a sign of poor prognosis in ARDS patients. J Transl Med 2025; 23:75. [PMID: 39819672 PMCID: PMC11740663 DOI: 10.1186/s12967-025-06100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is causatively associated with excessive alveolar inflammation involving deregulated pro-inflammatory macrophage polarization. High-density lipoprotein (HDL) showed critical anti-inflammatory roles by modulating macrophage function, and its adverse transition to pro-inflammation has an important role in the pathogenesis of ARDS. However, the relationship between HDL protein constituents and functional remodeling is unknown in ARDS. METHODS Proteomic techniques were applied to examine the protein profile changes in HDL from septic-ARDS patients versus HDL from healthy controls across two distinct cohorts: a discovery cohort (8 patients and 8 healthy controls) and a validation cohort (22 patients and 10 healthy controls). The changed components significantly associated with prognosis were identified. Luminex assessed the levels of 38 plasma cytokines and chemokines. The in vitro constructed pro-SFTPB enriched HDL was applied to confirm the effect on M1 polarization of THP1-derived macrophage. RESULTS 18 proteins were validated from 102 changed HDL proteins identified in the discovery cohort, including HDL particle components, such as apolipoproteins, pro-inflammatory substances known as serum amyloid As (SAAs), and anti-oxidative proteins like paraoxonases (PONs). Among these proteins, only the increase of pro-SFTPB in HDL was significantly associated with poor prognosis of ARDS patients. Notably, HDL-pro-SFTPB level was correlated with plasma pro-inflammatory cytokines and chemokines levels. The correlation assay of pro-SFTPB with other HDL components showed that it was positively and negatively correlated with SAA2 and PON3, respectively. Furthermore, the in vitro studies confirmed that the pro-SFTPB enriched HDL significantly promoted M1 polarization of monocyte-derived macrophages. CONCLUSIONS The increase of HDL-pro-SFTPB promotes HDL pro-inflammatory transition during septic ARDS, leading to exacerbated progression of ARDS through enhancing M1 macrophage polarization. HDL-pro-SFTPB could be a useful prognostic biomarker for septic ARDS.
Collapse
Affiliation(s)
- Liu Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
| | - Zhuo Xu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, China
| | - Zhenyan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
| | - Fangping Ding
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, China
| | - Zhipeng Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, China
| | - Xiaoqian Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, China.
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China.
| |
Collapse
|
3
|
Prapa I, Yanni AE, Kompoura V, Mitropoulou G, Panas P, Kostomitsopoulos N, Kourkoutas Y. Functional Modulation of Gut Microbiota and Blood Parameters in Diabetic Rats Following Dietary Intervention with Free or Immobilized Pediococcus acidilactici SK Cells on Pistachio Nuts. Nutrients 2024; 16:4221. [PMID: 39683613 DOI: 10.3390/nu16234221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES The gut microbiota is linked to the pathogenesis of type 1 diabetes mellitus (T1DM), while supplementation with probiotics may result in positive alterations in the composition of the gut microbiome. This research aimed to map the changes in the gut microbiome and blood markers of streptozotocin-induced diabetic rats after a dietary intervention with free or immobilized cells of the presumptive probiotic Pediococcus acidilactici SK on pistachio nuts. METHODS Twenty-four male Wistar rats were studied and divided into four groups (healthy or diabetic) which received the free or the immobilized P. acidilactici SK cells on pistachio nuts for 4 weeks. Blood, fecal, and intestinal tissue samples were examined. RESULTS The diabetic rats exhibited an elevated concentration of HDL-c, while the inflammatory IL-1β levels were significantly lower in the diabetic animals that received the immobilized cells compared to the group that received the free cells. The dietary intervention with immobilized cells led to decreased counts of fecal staphylococci and enterococci in the diabetic animals, while the diet with both free and immobilized P. acidilactici SK cells rendered levels of these populations in normal values in the feces and intestinal tissue of the diabetic animals. Noticeably, the Lactobacillus and Bifidobacterium genera were elevated after the supplementation with immobilized P. acidilactici SK cells on pistachio nuts. CONCLUSIONS Dietary supplementation with P. acidilactici SK cells (in free or in immobilized form) beneficially affected the gut microbiota/microbiome of streptozotocin-induced diabetic rats, leading to the alleviation of dysbiosis and inflammation and control over their lipid levels.
Collapse
Affiliation(s)
- Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Amalia E Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece
| | - Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
4
|
Shao B, Shimizu-Albergine M, Kramer F, Kanter JE, Heinecke JW, Vaisar T, Mittendorfer B, Patterson BW, Bornfeldt KE. A targeted proteomics method for quantifying plasma apolipoprotein kinetics in individual mice using stable isotope labeling. J Lipid Res 2024; 65:100531. [PMID: 38490635 PMCID: PMC11002879 DOI: 10.1016/j.jlr.2024.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024] Open
Abstract
Altered apolipoprotein kinetics play a critical role in promoting dyslipidemia and atherogenesis. Human apolipoprotein kinetics have been extensively evaluated, but similar studies in mice are hampered by the lack of robust methods suitable for the small amounts of blood that can be collected at sequential time points from individual mice. We describe a targeted liquid chromatography tandem mass spectrometry method for simultaneously quantifying the stable isotope enrichment of several apolipoproteins represented by multiple peptides in serial blood samples (15 μl each) obtained after retro-orbital injection of 13C6,15N2-lysine (Lys8) in mice. We determined apolipoprotein fractional clearance rates (FCRs) and production rates (PRs) in WT mice and in two genetic models widely used for atherosclerosis research, LDL receptor-deficient (Ldlr-/-) and apolipoprotein E-deficient (Apoe-/-) mice. Injection of Lys8 produced a unique and readily detectable mass shift of labeled compared with unlabeled peptides with sensitivity allowing robust kinetics analyses. Ldlr-/- mice showed slower FCRs of APOA1, APOA4, total APOB, APOB100, APOCs, APOE and APOM, while FCRs of APOA1, APOB100, APOC2, APOC3, and APOM were not lower in Apoe-/- mice versus WT mice. APOE PR was increased in Ldlr-/- mice, and APOB100 and APOA4 PRs were reduced in Apoe-/- mice. Thus, our method reproducibly quantifies plasma apolipoprotein kinetics in different mouse models. The method can easily be expanded to include a wide range of proteins in the same biospecimen and should be useful for determining the kinetics of apolipoproteins in animal models of human disease.
Collapse
Affiliation(s)
- Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Masami Shimizu-Albergine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Jay W Heinecke
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Bettina Mittendorfer
- Division of Nutritional Science and Obesity Medicine, Department of Medicine, Washington University, St Louis, MO, USA; Departments of Medicine and Nutrition & Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Bruce W Patterson
- Division of Nutritional Science and Obesity Medicine, Department of Medicine, Washington University, St Louis, MO, USA
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Banfi C, Gugliandolo P, Paolillo S, Mallia A, Gianazza E, Agostoni P. The alveolar-capillary unit in the physiopathological conditions of heart failure: identification of a potential marker. Eur J Prev Cardiol 2023; 30:ii2-ii8. [PMID: 37819226 DOI: 10.1093/eurjpc/zwad227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 10/13/2023]
Abstract
In this review, we describe the structure and function of the alveolar-capillary membrane and the identification of a novel potential marker of its integrity in the context of heart failure (HF). The alveolar-capillary membrane is indeed a crucial structure for the maintenance of the lung parenchyma gas exchange capacity, and the occurrence of pathological conditions determining lung fluids accumulation, such as HF, might significantly impair lung diffusion capacity altering the alveolar-capillary membrane protective functions. In the years, we found that the presence of immature forms of the surfactant protein-type B (proSP-B) in the circulation reflects alterations in the alveolar-capillary membrane integrity. We discussed our main achievements showing that proSP-B, due to its chemical properties, specifically binds to high-density lipoprotein, impairing their antioxidant activity, and likely contributing to the progression of the disease. Further, we found that immature proSP-B, not the mature protein, is related to lung abnormalities, more precisely than the lung function parameters. Thus, to the list of the potential proposed markers of HF, we add proSP-B, which represents a precise marker of alveolar-capillary membrane dysfunction in HF, correlates with prognosis, and represents a precocious marker of drug therapy.
Collapse
Affiliation(s)
- Cristina Banfi
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | | | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples 80131, Italy
| | - Alice Mallia
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia 27100, Italy
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | - Erica Gianazza
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan 20138, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| |
Collapse
|
6
|
Souza Junior DR, Silva ARM, Ronsein GE. Strategies for consistent and automated quantification of HDL proteome using data-independent acquisition (DIA). J Lipid Res 2023:100397. [PMID: 37286042 PMCID: PMC10339053 DOI: 10.1016/j.jlr.2023.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023] Open
Abstract
The introduction of mass spectrometry-based proteomics has revolutionized HDL field, with the description, characterization and implication of HDL-associated proteins in an array of pathologies. However, acquiring robust, reproducible data is still a challenge in the quantitative assessment of HDL proteome. Data-independent acquisition (DIA) is a mass spectrometry methodology that allows the acquisition of reproducible data, but data analysis remains a challenge in the field. Up to date, there is no consensus in how to process DIA-derived data for HDL proteomics. Here, we developed a pipeline aiming to standardize HDL proteome quantification. We optimized instrument parameters, and compared the performance of four freely available, user-friendly software tools (DIA-NN, EncyclopeDIA, MaxDIA and Skyline) in processing DIA data. Importantly, pooled samples were used as quality controls throughout our experimental setup. A carefully evaluation of precision, linearity, and detection limits, first using E. coli background for HDL proteomics, and second using HDL proteome and synthetic peptides, was undertaken. Finally, as a proof of concept, we employed our optimized and automated pipeline to quantify the proteome of HDL and apolipoprotein B (APOB)-containing lipoproteins. Our results show that determination of precision is key to confidently and consistently quantify HDL proteins. Taking this precaution, any of the available software tested here would be appropriate for quantification of HDL proteome, although their performance varied considerably.
Collapse
Affiliation(s)
| | | | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Hsu CC, Shao B, Kanter JE, He Y, Vaisar T, Witztum JL, Snell-Bergeon J, McInnes G, Bruse S, Gottesman O, Mullick AE, Bornfeldt KE. Apolipoprotein C3 induces inflammasome activation only in its delipidated form. Nat Immunol 2023; 24:408-411. [PMID: 36781985 PMCID: PMC9992333 DOI: 10.1038/s41590-023-01423-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023]
Abstract
Matters arising regarding the lipidation form of plasma APOC3 that induces an alternative NLRP3 activation pathway.
Collapse
Affiliation(s)
- Cheng-Chieh Hsu
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Yi He
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Joseph L Witztum
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Janet Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO, USA
| | | | | | | | | | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Bornfeldt KE. The Remnant Lipoprotein Hypothesis of Diabetes-Associated Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2022; 42:819-830. [PMID: 35616031 DOI: 10.1161/atvbaha.122.317163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Both type 1 and type 2 diabetes are associated with an increased risk of atherosclerotic cardiovascular disease (CVD). Research based on human-first or bedside-to-bench approaches has provided new insights into likely mechanisms behind this increased risk. Although both forms of diabetes are associated with hyperglycemia, it is becoming increasingly clear that altered lipoprotein metabolism also plays a critical role in predicting CVD risk in people with diabetes. This review examines recent findings indicating that increased levels of circulating remnant lipoproteins could be a missing link between diabetes and CVD. Although CVD risk associated with diabetes is clearly multifactorial in nature, these findings suggest that we should increase efforts in evaluating whether remnant lipoproteins or the proteins that govern their metabolism are biomarkers of incident CVD in people living with diabetes and whether reducing remnant lipoproteins will prevent the increased CVD risk associated with diabetes.
Collapse
Affiliation(s)
- Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition and Department of Laboratory Medicine and Pathology, University of Washington Medicine Diabetes Institute, Seattle
| |
Collapse
|
9
|
Frey K, von Eckardstein A. HDL, heart disease, and the lung. J Lipid Res 2022; 63:100217. [PMID: 35487261 PMCID: PMC9131245 DOI: 10.1016/j.jlr.2022.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kathrin Frey
- University Hospital Zurich and University of Zurich, Institute of Clinical Chemistry, Raemistrasse 100, CH 8091 ZURICH , Switzerland
| | - Arnold von Eckardstein
- University Hospital Zurich and University of Zurich, Institute of Clinical Chemistry, Raemistrasse 100, CH 8091 ZURICH , Switzerland,.
| |
Collapse
|