1
|
Yang B, Zhang H, Feng X, Yu Z, Cao J, Niu Y, Wan P, Liu G, Zhao X. Genetic Diversity Estimation and Genome-Wide Selective Sweep Analysis of the Bazhou Yak. Animals (Basel) 2025; 15:849. [PMID: 40150378 PMCID: PMC11939585 DOI: 10.3390/ani15060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
The Bazhou yak, a major native meat yak breed in Xinjiang, China, is renowned for its fast growth rate, strong adaptability, and particularly high intramuscular fat (IMF) content. However, limited knowledge regarding its phylogenetic history and genomic composition has hindered its long-term conservation and utilization. This study evaluated the genetic diversity, population phylogenetics, and genome-wide selective sweep analysis (GWSA) of 100 newly obtained Bazhou yaks through genome resequencing, as well as 340 public yak genomes from nine other populations on the Qinghai-Tibet Plateau. The results revealed moderate diversity, lower genomic inbreeding levels, and rapid linkage disequilibrium (LD) decay in Bazhou yaks. Principal component analysis (PCA) and phylogenetic analysis showed a clear separation of Bazhou yaks from other yak populations, indicating the Bazhou yak as an independent genetic population. Furthermore, less genetic differentiation was found between the Bazhou yak and the Huanhu yak, while ADMIXTURE analysis revealed a common ancestral lineage between Bazhou yaks and Huanhu yaks, indicating an important genetic contribution of the Qinghai yak population to Bazhou yaks. The GWSA identified a total of 833 selected genes in Bazhou yaks using the top 5% interaction windows of both parameters (FST, Pi ratio, and XP-EHH). A significant number of these genes are related to fat synthesis and deposition, such as MTOR, APOA1, and GPAT4. In summary, this study sheds light on the phylogenetic status and distinctive genomic features of Bazhou yaks, which facilitates our understanding of the genetic basis of the IMF phenotype in Bazhou yaks.
Collapse
Affiliation(s)
- Baigao Yang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Zhou Yu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Jianhua Cao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Yifan Niu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100193, China
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| |
Collapse
|
2
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Pilarczyk M, Gąssowska-Dobrowolska M, Jarmużek P, Szućko-Kociuba I, Kulik-Sajewicz J, Chlubek D, Baranowska-Bosiacka I. Phospholipid Acyltransferases: Characterization and Involvement of the Enzymes in Metabolic and Cancer Diseases. Cancers (Basel) 2024; 16:2115. [PMID: 38893234 PMCID: PMC11171337 DOI: 10.3390/cancers16112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Jarmużek
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | | | - Justyna Kulik-Sajewicz
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
4
|
Zhu X, Zeng C, Yu B. White adipose tissue in metabolic associated fatty liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102336. [PMID: 38604293 DOI: 10.1016/j.clinre.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD) is a prevalent chronic liver condition globally, currently lacking universally recognized therapeutic drugs, thereby increasing the risk of cirrhosis and hepatocellular carcinoma. Research has reported an association between white adipose tissue and MAFLD. SCOPE OF REVIEW White adipose tissue (WAT) is involved in lipid metabolism and can contribute to the progression of MAFLD by mediating insulin resistance, inflammation, exosomes, autophagy, and other processes. This review aims to elucidate the mechanisms through which WAT plays a role in the development of MAFLD. MAJOR CONCLUSIONS WAT participates in the occurrence and progression of MAFLD by mediating insulin resistance, inflammation, autophagy, and exosome secretion. Fibrosis and restricted expansion of adipose tissue can lead to the release of more free fatty acids (FFA), exacerbating the progression of MAFLD. WAT-secreted TNF-α and IL-1β, through the promotion of JNK/JKK/p38MAPK expression, interfere with insulin receptor serine and tyrosine phosphorylation, worsening insulin resistance. Adiponectin, by inhibiting the TLR-4-NF-κB pathway and suppressing M2 to M1 transformation, further inhibits the secretion of IL-6, IL-1β, and TNF-α, improving insulin resistance in MAFLD patients. Various gene expressions within WAT, such as MBPAT7, Nrf2, and Ube4A, can ameliorate insulin resistance in MAFLD patients. Autophagy-related gene Atg7 promotes the expression of fibrosis-related genes, worsening MAFLD. Non-pharmacological treatments, including diabetes-related medications and exercise, can improve MAFLD.
Collapse
Affiliation(s)
- Xiaoqin Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
5
|
Varadharajan V, Ramachandiran I, Massey WJ, Jain R, Banerjee R, Horak AJ, McMullen MR, Huang E, Bellar A, Lorkowski SW, Gulshan K, Helsley RN, James I, Pathak V, Dasarathy J, Welch N, Dasarathy S, Streem D, Reizes O, Allende DS, Smith JD, Simcox J, Nagy LE, Brown JM. Membrane-bound O-acyltransferase 7 (MBOAT7) shapes lysosomal lipid homeostasis and function to control alcohol-associated liver injury. eLife 2024; 12:RP92243. [PMID: 38648183 PMCID: PMC11034944 DOI: 10.7554/elife.92243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss of function promotes ALD via reorganization of lysosomal lipid homeostasis. Circulating levels of MBOAT7 metabolic products are significantly reduced in heavy drinkers compared to healthy controls. Hepatocyte- (Mboat7-HSKO), but not myeloid-specific (Mboat7-MSKO), deletion of Mboat7 exacerbates ethanol-induced liver injury. Lipidomic profiling reveals a reorganization of the hepatic lipidome in Mboat7-HSKO mice, characterized by increased endosomal/lysosomal lipids. Ethanol-exposed Mboat7-HSKO mice exhibit dysregulated autophagic flux and lysosomal biogenesis, associated with impaired transcription factor EB-mediated lysosomal biogenesis and autophagosome accumulation. This study provides mechanistic insights into how MBOAT7 influences ALD progression through dysregulation of lysosomal biogenesis and autophagic flux, highlighting hepatocyte-specific MBOAT7 loss as a key driver of ethanol-induced liver injury.
Collapse
Affiliation(s)
- Venkateshwari Varadharajan
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Iyappan Ramachandiran
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - William J Massey
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anthony J Horak
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Megan R McMullen
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Emily Huang
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Annette Bellar
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Shuhui W Lorkowski
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
| | - Kailash Gulshan
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State UniversityClevelandUnited States
| | - Robert N Helsley
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Department of Pharmacology & Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky College of MedicineLexingtonUnited States
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Vai Pathak
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Jaividhya Dasarathy
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Family Medicine, Metro Health Medical Center, Case Western Reserve UniversityClevelandUnited States
| | - Nicole Welch
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Srinivasan Dasarathy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - David Streem
- Lutheran Hospital, Cleveland ClinicClevelandUnited States
| | - Ofer Reizes
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Daniela S Allende
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Anatomical Pathology, Cleveland ClinicClevelandUnited States
| | - Jonathan D Smith
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Laura E Nagy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - J Mark Brown
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
6
|
Caddeo A, Spagnuolo R, Maurotti S. MBOAT7 in liver and extrahepatic diseases. Liver Int 2023; 43:2351-2364. [PMID: 37605540 DOI: 10.1111/liv.15706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
MBOAT7 is a protein anchored to endomembranes by several transmembrane domains. It has a catalytic dyad involved in remodelling of phosphatidylinositol with polyunsaturated fatty acids. Genetic variants in the MBOAT7 gene have been associated with the entire spectrum of non-alcoholic fatty liver (NAFLD), recently redefined as metabolic dysfunction-associated fatty liver disease (MAFLD) and, lately, steatotic liver disease (SLD), and to an increasing number of extrahepatic conditions. In this review, we will (a) elucidate the molecular mechanisms by which MBOAT7 loss-of-function predisposes to MAFLD and neurodevelopmental disorders and (b) discuss the growing number of genetic studies linking MBOAT7 to hepatic and extrahepatic diseases. MBOAT7 complete loss of function causes severe changes in brain development resulting in several neurological manifestations. Lower MBOAT7 hepatic expression at both the mRNA and protein levels, due to missense nucleotide polymorphisms (SNPs) in the locus containing the MBOAT7 gene, affects specifically metabolic and viral diseases in the liver from simple steatosis to hepatocellular carcinoma, and potentially COVID-19 disease. This body of evidence shows that phosphatidylinositol remodelling is a key factor for human health.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Rocco Spagnuolo
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
7
|
Shi F, Zhao M, Zheng S, Zheng L, Wang H. Advances in genetic variation in metabolism-related fatty liver disease. Front Genet 2023; 14:1213916. [PMID: 37753315 PMCID: PMC10518415 DOI: 10.3389/fgene.2023.1213916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Metabolism-related fatty liver disease (MAFLD) is the most common form of chronic liver disease in the world. Its pathogenesis is influenced by both environmental and genetic factors. With the upgrading of gene screening methods and the development of human genome project, whole genome scanning has been widely used to screen genes related to MAFLD, and more and more genetic variation factors related to MAFLD susceptibility have been discovered. There are genetic variants that are highly correlated with the occurrence and development of MAFLD, and there are genetic variants that are protective of MAFLD. These genetic variants affect the development of MAFLD by influencing lipid metabolism and insulin resistance. Therefore, in-depth analysis of different mechanisms of genetic variation and targeting of specific genetic variation genes may provide a new idea for the early prediction and diagnosis of diseases and individualized precision therapy, which may be a promising strategy for the treatment of MAFLD.
Collapse
Affiliation(s)
- Fan Shi
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Bornfeldt KE. Adipocyte phosphatidylinositol biosynthesis via the Lands cycle protects against insulin resistance. J Lipid Res 2023; 64:100383. [PMID: 37127068 PMCID: PMC10239062 DOI: 10.1016/j.jlr.2023.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023] Open
Affiliation(s)
- Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute and Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|