1
|
Li L, Wang S, Fu S, Chen Z, Wang P, Zhao Y. Human ATP-binding proteins: Structural features, functional diversity, and pharmacotherapeutic potential in disease: A review. Int J Biol Macromol 2025; 308:142303. [PMID: 40118416 DOI: 10.1016/j.ijbiomac.2025.142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
ATP-binding proteins (ABPs) form diverse and essential protein families across living organisms. Early life forms likely relied on simple chemical reactions for energy, but with the emergence of ABPs and their evolving functions, organisms became capable of more efficient energy storage and utilization, which drove the complexity of metabolic and life processes. By binding and hydrolyzing ATP through conserved structural motifs such as the Walker motifs, ABPs play critical roles in material transport, signal transduction, cellular structure maintenance, motility, and cell cycle regulation. Dysfunctions arising from mutations, deletions, or misregulation of ABPs are linked to a variety of human diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases. The growing recognition of ABPs' significance in disease progression highlights their relevance not only in basic biology but also in clinical applications, particularly as biomarkers and therapeutic targets. This review provides a comprehensive overview of human ABPs, detailing their structural and functional roles, their involvement in disease mechanisms, and the latest advances in understanding their clinical relevance. Additionally, it identifies current research gaps and offers new perspectives for future investigations and therapeutic strategies.
Collapse
Affiliation(s)
- Letong Li
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, PR China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Shanshan Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Zhen Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Blöcher L, Schwabe J, Glatter T, Søgaard-Andersen L. Identification of EcpK, a bacterial tyrosine pseudokinase important for exopolysaccharide biosynthesis in Myxococcus xanthus. J Bacteriol 2025; 207:e0049924. [PMID: 40067014 PMCID: PMC12004946 DOI: 10.1128/jb.00499-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/16/2025] [Indexed: 04/18/2025] Open
Abstract
Bacteria synthesize chemically diverse capsular and secreted polysaccharides that function in many physiological processes and are widely used in industrial applications. In the ubiquitous Wzx/Wzy-dependent biosynthetic pathways for these polysaccharides, the polysaccharide co-polymerase (PCP) facilitates the polymerization of repeat units in the periplasm, and in Gram-negative bacteria, also polysaccharide translocation across the outer membrane. These PCPs belong to the PCP-2 family, are integral inner membrane proteins with extended periplasmic domains, and functionally depend on alternating between different oligomeric states. The oligomeric state is determined by a cognate cytoplasmic bacterial tyrosine kinase (BYK), which is either part of the PCP or a stand-alone protein. Interestingly, BYK-like proteins, which lack key catalytic residues and/or the phosphorylated Tyr residues, have been described. In Myxococcus xanthus, the exopolysaccharide (EPS) is synthesized and exported via the Wzx/Wzy-dependent EPS pathway in which EpsV serves as the PCP. Here, we confirm that EpsV lacks the BYK domain. Using phylogenomics, experiments, and computational structural biology, we identify EcpK as important for EPS biosynthesis and show that it structurally resembles canonical BYKs but lacks residues important for catalysis and Tyr phosphorylation. Using proteomic analyses, two-hybrid assays, and structural modeling, we demonstrate that EcpK directly interacts with EpsV. Based on these findings, we suggest that EcpK is a BY pseudokinase and functions as a scaffold, which by direct protein-protein interactions, rather than by Tyr phosphorylation, facilitates EpsV function. EcpK and EpsV homologs are present in other bacteria, suggesting broad conservation of this mechanism and establishing a phosphorylation-independent PCP-2 subfamily.IMPORTANCEBacteria produce a variety of polysaccharides with important biological functions. In Wzx/Wzy-dependent pathways for the biosynthesis of secreted and capsular polysaccharides in Gram-negative bacteria, the polysaccharide co-polymerase (PCP) is a key protein that facilitates repeat unit polymerization and polysaccharide translocation across the outer membrane. PCP function depends on assembly/disassembly cycles that are determined by the phosphorylation/dephosphorylation cycles of an associated bacterial tyrosine kinase (BYK). Here, we identify the BY pseudokinase EcpK as essential for exopolysaccharide biosynthesis in Myxococcus xanthus. Based on experiments and computational structural biology, we suggest that EcpK is a scaffold protein, guiding the assembly/disassembly cycles of the partner PCP via binding/unbinding cycles independently of Tyr phosphorylation/dephosphorylation cycles. We suggest that this novel mechanism is broadly conserved.
Collapse
Affiliation(s)
- Luca Blöcher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Johannes Schwabe
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
3
|
Sakuma K, Chikenji G, Ota M. Statistical Analysis of Walker-A Motif-Containing β-α-β Supersecondary Structures in the Protein Data Bank. Methods Mol Biol 2025; 2870:79-93. [PMID: 39543032 DOI: 10.1007/978-1-0716-4213-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
We introduce our approach to analyzing the entire Protein Data Bank (PDB) by combining state-of-the-art bioinformatic tools. As an interesting case, we report sequence/conformation analysis of Walker-A motifs and β-α-β supersecondary structures with/without this motif. Statistical analysis revealed that Walker-A motifs strongly correlate with β-α-β units having one or two intervening β-strands, while in general β-α-β units tend to exhibit direct contacts between the β-strands without intervening β-strands.
Collapse
Affiliation(s)
- Koya Sakuma
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - George Chikenji
- Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan.
- Institute for Glyco-core Research, Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
4
|
Patel DT, Stogios PJ, Jaroszewski L, Urbanus ML, Sedova M, Semper C, Le C, Takkouche A, Ichii K, Innabi J, Patel DH, Ensminger AW, Godzik A, Savchenko A. Global atlas of predicted functional domains in Legionella pneumophila Dot/Icm translocated effectors. Mol Syst Biol 2025; 21:59-89. [PMID: 39562741 PMCID: PMC11696984 DOI: 10.1038/s44320-024-00076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Legionella pneumophila utilizes the Dot/Icm type IVB secretion system to deliver hundreds of effector proteins inside eukaryotic cells to ensure intracellular replication. Our understanding of the molecular functions of the largest pathogenic arsenal known to the bacterial world remains incomplete. By leveraging advancements in 3D protein structure prediction, we provide a comprehensive structural analysis of 368 L. pneumophila effectors, representing a global atlas of predicted functional domains summarized in a database ( https://pathogens3d.org/legionella-pneumophila ). Our analysis identified 157 types of diverse functional domains in 287 effectors, including 159 effectors with no prior functional annotations. Furthermore, we identified 35 cryptic domains in 30 effector models that have no similarity with experimentally structurally characterized proteins, thus, hinting at novel functionalities. Using this analysis, we demonstrate the activity of thirteen functional domains, including three cryptic domains, predicted in L. pneumophila effectors to cause growth defects in the Saccharomyces cerevisiae model system. This illustrates an emerging strategy of exploring synergies between predictions and targeted experimental approaches in elucidating novel effector activities involved in infection.
Collapse
Affiliation(s)
- Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Lukasz Jaroszewski
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Mayya Sedova
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cathy Le
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Abraham Takkouche
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Keita Ichii
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Julie Innabi
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada.
| | - Adam Godzik
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA.
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
5
|
Monterrey DT, Azcona L, Revuelta J, Sánchez-Moreno I, García-Junceda E. Polyphosphate Kinase from Burkholderia cenocepacia, One Enzyme Catalyzing a Two-Step Cascade Reaction to Synthesize ATP from AMP. Int J Mol Sci 2024; 25:12995. [PMID: 39684704 DOI: 10.3390/ijms252312995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
This study characterizes a novel polyphosphate kinase from Burkholderia cenocepacia (BcPPK2-III), an enzyme with potential applications in ATP regeneration processes. Bioinformatic and structural analyses confirmed the presence of conserved motifs characteristic of PPK2 enzymes, including Walker A and B motifs, and the subclass-specific residue E137. Molecular docking simulations showed AMP had the highest binding affinity (-7.0 kcal/mol), followed by ADP (-6.5 kcal/mol), with ATP having the lowest affinity (-6.3 kcal/mol). It was overexpressed in Escherichia coli, after purification enzymatic activity assays revealed that BcPPK2-III needed divalent cations (Mg2⁺, Mn2⁺, Co2⁺) as cofactors to be active. Functional assays revealed its ability to synthesize ATP from AMP through a stepwise phosphorylation mechanism, forming ADP as an intermediate, achieving 70% ATP conversion (TTN 4354.7) after 24 h. Kinetic studies indicated cooperative behavior and substrate preference, with AMP phosphorylation to ADP being the most efficient step. The enzyme demonstrated high thermostability (T50 = 62 °C) and a broad pH stability range (pH 6.0-9.0), making it suitable for diverse biocatalytic applications. The study highlights BcPPK2-III as a robust and versatile candidate for cost-effective ATP regeneration, offering advantages in industrial processes requiring stoichiometric amounts of ATP.
Collapse
Affiliation(s)
- Dianelis T Monterrey
- Department of Bio-Organic Chemistry, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Leire Azcona
- Department of Bio-Organic Chemistry, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Julia Revuelta
- Department of Bio-Organic Chemistry, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Israel Sánchez-Moreno
- Department of Bio-Organic Chemistry, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Eduardo García-Junceda
- Department of Bio-Organic Chemistry, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
6
|
Höfmann S, Schmerling C, Stracke C, Niemeyer F, Schaller T, Snoep JL, Bräsen C, Siebers B. The archaeal family 3 polyphosphate kinase reveals a function of polyphosphate as energy buffer under low energy charge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610084. [PMID: 39257778 PMCID: PMC11383997 DOI: 10.1101/2024.08.28.610084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Inorganic polyphosphate, a linear polymer of orthophosphate residues linked by phosphoanhydride bonds, occurs in all three domains of life and plays a diverse and prominent role in metabolism and cellular regulation. While the polyphosphate metabolism and its physiological significance have been well studied in bacteria and eukaryotes including human, there are only few studies in archaea available so far. In Crenarchaeota including members of Sulfolobaceae , the presence of polyphosphate and degradation via exopolyphosphatase has been reported and there is some evidence for a functional role in metal ion chelation, biofilm formation, adhesion and motility, however, the nature of the crenarchaeal polyphosphate kinase is still unknown. Here we used the crenarchaeal model organism Sulfolobus acidocaldarius to study the enzymes involved in polyphosphate synthesis. The two genes annotated as thymidylate kinase ( saci_2019 and saci_2020 ), localized downstream of the exopolyphosphatase, were identified as the missing polyphosphate kinase in S. acidocaldarius ( Sa PPK3). Thymidylate kinase activity was confirmed for Saci_0893. Notably Saci_2020 showed no polyphosphate kinase activity on its own but served as regulatory subunit (rPPK3) and was able to enhance polyphosphate kinase activity of the catalytically active subunit Saci_2019 (cPPK3). Heteromeric polyphosphate kinase activity is reversible and shows a clear preference for polyP-dependent nucleotide kinase activity, i.e. polyP-dependent formation of ATP from ADP (12.4 U/mg) and to a lower extent of GDP to GTP whereas AMP does not serve as substrate. PPK activity in the direction of ATP-dependent polyP synthesis is rather low (0.25 U/mg); GTP was not used as phosphoryl donor. A combined experimental modelling approach using quantitative 31 P NMR allowed to follow the reversible enzyme reaction for both ATP and polyP synthesis. PolyP synthesis was only observed when the ATP/ADP ratio was kept high, using an ATP recycling system. In absence of such a recycling system, all incubations with polyP and PPK would reach an equilibrium state with an ATP/ADP ratio between 3 and 4, independent of the initial conditions. Structural and sequence comparisons as well as phylogenetic analysis reveal that the S. acidocaldarius PPK is a member of a new PPK family, named PPK3, within the thymidylate kinase family of the P-loop kinase superfamily, clearly separated from PPK2. Our studies show that polyP, in addition to its function as phosphate storage, has a special importance for the energy homeostasis of S. acidocaldarius and due to its reversibility serves as energy buffer under low energy charge enabling a quick response to changes in cellular demand.
Collapse
|
7
|
Harris DF, Rucker HR, Garcia AK, Yang ZY, Chang SD, Feinsilber H, Kaçar B, Seefeldt LC. Ancient nitrogenases are ATP dependent. mBio 2024; 15:e0127124. [PMID: 38869277 PMCID: PMC11253609 DOI: 10.1128/mbio.01271-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
Life depends on a conserved set of chemical energy currencies that are relics of early biochemistry. One of these is ATP, a molecule that, when paired with a divalent metal ion such as Mg2+, can be hydrolyzed to support numerous cellular and molecular processes. Despite its centrality to extant biochemistry, it is unclear whether ATP supported the function of ancient enzymes. We investigate the evolutionary necessity of ATP by experimentally reconstructing an ancestral variant of the N2-reducing enzyme nitrogenase. The Proterozoic ancestor is predicted to be ~540-2,300 million years old, post-dating the Great Oxidation Event. Growth rates under nitrogen-fixing conditions are ~80% of those of wild type in Azotobacter vinelandii. In the extant enzyme, the hydrolysis of two MgATP is coupled to electron transfer to support substrate reduction. The ancestor has a strict requirement for ATP with no other nucleotide triphosphate analogs (GTP, ITP, and UTP) supporting activity. Alternative divalent metal ions (Fe2+, Co2+, and Mn2+) support activity with ATP but with diminished activities compared to Mg2+, similar to the extant enzyme. Additionally, it is shown that the ancestor has an identical efficiency in ATP hydrolyzed per electron transferred to the extant of two. Our results provide direct laboratory evidence of ATP usage by an ancient enzyme.IMPORTANCELife depends on energy-carrying molecules to power many sustaining processes. There is evidence that these molecules may predate the rise of life on Earth, but how and when these dependencies formed is unknown. The resurrection of ancient enzymes provides a unique tool to probe the enzyme's function and usage of energy-carrying molecules, shedding light on their biochemical origins. Through experimental reconstruction, this research investigates the ancestral dependence of a nitrogen-fixing enzyme on the energy carrier ATP, a requirement for function in the modern enzyme. We show that the resurrected ancestor does not have generalist nucleotide specificity. Rather, the ancestor has a strict requirement for ATP, like the modern enzyme, with similar function and efficiency. The findings elucidate the early-evolved necessity of energy-yielding molecules, delineating their role in ancient biochemical processes. Ultimately, these insights contribute to unraveling the intricate tapestry of evolutionary biology and the origins of life-sustaining dependencies.
Collapse
Affiliation(s)
- Derek F. Harris
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Holly R. Rucker
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Amanda K. Garcia
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Scott D. Chang
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hannah Feinsilber
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| |
Collapse
|
8
|
Liu F, Ryu T, Ravasi T, Wang X, Wang G, Li Z. Niche-dependent sponge hologenome expression profiles and the host-microbes interplay: a case of the hawaiian demosponge Mycale Grandis. ENVIRONMENTAL MICROBIOME 2024; 19:22. [PMID: 38589941 PMCID: PMC11000336 DOI: 10.1186/s40793-024-00563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Most researches on sponge holobionts focus primarily on symbiotic microbes, yet data at the level of the sponge hologenome are still relatively scarce. Understanding of the sponge host and its microbial gene expression profiles and the host-microbes interplay in different niches represents a key aspect of sponge hologenome. Using the Hawaiian demosponge Mycale grandis in different niches as a model, i.e. on rocks, on the surface of coral Porites compressa, under alga Gracilaria salicornia, we compared the bacterial and fungal community structure, functional gene diversity, expression pattern and the host transcriptome by integrating open-format (deep sequencing) and closed-format (GeoChip microarray) high-throughput techniques. RESULTS Little inter-niche variation in bacterial and fungal phylogenetic diversity was detected for M. grandis in different niches, but a clear niche-dependent variability in the functional gene diversity and expression pattern of M. grandis host and its symbiotic microbiota was uncovered by GeoChip microarray and transcriptome analyses. Particularly, sponge host genes related to innate immunity and microbial recognition showed a strong correlation with the microbial symbionts' functional gene diversity and transcriptional richness in different niches. The cross-niche variability with respect to the symbiont functional gene diversity and the transcriptional richness of M. grandis holobiont putatively reflects the interplay of niche-specific selective pressure and the symbiont functional diversity. CONCLUSIONS Niche-dependent gene expression profiles of M. grandis hologenome and the host-microbes interplay were suggested though little inter-niche variation in bacterial and fungal diversity was detected, particularly the sponge innate immunity was found to be closely related to the symbiotic microbes. Altogether, these findings provide novel insights into the black box of one sponge holobiont in different niches at the hologenome level.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, 904-0495, Okinawa, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, 904-0495, Okinawa, Japan
| | - Xin Wang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 32611, Gainesville, FL, USA
| | - Guangyi Wang
- School of Environmental Science and Engineering, Tianjin University, 300072, Tianjin, P. R. China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| |
Collapse
|
9
|
Xu J, Jiang M, Wang P, Kong Q. The Gene vepN Regulated by Global Regulatory Factor veA That Affects Aflatoxin Production, Morphological Development and Pathogenicity in Aspergillus flavus. Toxins (Basel) 2024; 16:174. [PMID: 38668599 PMCID: PMC11054512 DOI: 10.3390/toxins16040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/02/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024] Open
Abstract
Velvet (VeA), a light-regulated protein that shuttles between the cytoplasm and the nucleus, serves as a key global regulator of secondary metabolism in various Aspergillus species and plays a pivotal role in controlling multiple developmental processes. The gene vepN was chosen for further investigation through CHIP-seq analysis due to significant alterations in its interaction with VeA under varying conditions. This gene (AFLA_006970) contains a Septin-type guanine nucleotide-binding (G) domain, which has not been previously reported in Aspergillus flavus (A. flavus). The functional role of vepN in A. flavus was elucidated through the creation of a gene knockout mutant and a gene overexpression strain using a well-established dual-crossover recombinational technique. A comparison between the wild type (WT) and the ΔvepN mutant revealed distinct differences in morphology, reproductive capacity, colonization efficiency, and aflatoxin production. The mutant displayed reduced growth rate; dispersion of conidial heads; impaired cell wall integrity; and decreased sclerotia formation, colonization capacity, and aflatoxin levels. Notably, ΔvepN exhibited complete growth inhibition under specific stress conditions, highlighting the essential role of vepN in A. flavus. This study provides evidence that vepN positively influences aflatoxin production, morphological development, and pathogenicity in A. flavus.
Collapse
Affiliation(s)
- Jia Xu
- School of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.X.); (M.J.)
| | - Mengqi Jiang
- School of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.X.); (M.J.)
| | - Peng Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China;
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.X.); (M.J.)
| |
Collapse
|
10
|
Sakuma K, Koike R, Ota M. Dual-wield NTPases: A novel protein family mined from AlphaFold DB. Protein Sci 2024; 33:e4934. [PMID: 38501460 PMCID: PMC10949312 DOI: 10.1002/pro.4934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
AlphaFold protein structure database (AlphaFold DB) archives a vast number of predicted models. We conducted systematic data mining against AlphaFold DB and discovered an uncharacterized P-loop NTPase family. The structure of the protein family was surprisingly novel, showing an atypical topology for P-loop NTPases, noticeable twofold symmetry, and two pairs of independent putative active sites. Our findings show that structural data mining is a powerful approach to identifying undiscovered protein families.
Collapse
Affiliation(s)
- Koya Sakuma
- Department of Complex Systems ScienceGraduate School of Informatics, Nagoya UniversityNagoyaAichiJapan
| | - Ryotaro Koike
- Department of Complex Systems ScienceGraduate School of Informatics, Nagoya UniversityNagoyaAichiJapan
| | - Motonori Ota
- Department of Complex Systems ScienceGraduate School of Informatics, Nagoya UniversityNagoyaAichiJapan
- Institute for Glyco‐core Research, Nagoya UniversityNagoyaAichiJapan
| |
Collapse
|
11
|
Mustieles-del-Ser P, Ruano-Gallego D, Parro V. Immunoanalytical Detection of Conserved Peptides: Refining the Universe of Biomarker Targets in Planetary Exploration. Anal Chem 2024; 96:4764-4773. [PMID: 38484023 PMCID: PMC10975014 DOI: 10.1021/acs.analchem.3c04165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024]
Abstract
Ancient peptides are remnants of early biochemistry that continue to play pivotal roles in current proteins. They are simple molecules yet complex enough to exhibit independent functions, being products of an evolved biochemistry at the interface of life and nonlife. Their adsorption to minerals may contribute to their stabilization and preservation over time. To investigate the feasibility of conserved peptide sequences and structures as target biomarkers for the search for life on Mars or other planetary bodies, we conducted a bioinformatics selection of well-conserved ancient peptides and produced polyclonal antibodies for their detection using fluorescence microarray immunoassays. Additionally, we explored how adsorbing peptides to Mars-representative minerals to form organomineral complexes could affect their immunological detection. The results demonstrated that the selected peptides exhibited autonomous folding, with some of them regaining their structure, even after denaturation. Furthermore, their cognate antibodies detected their conformational features regardless of amino acid sequences, thereby broadening the spectrum of target peptide sequences. While certain antibodies displayed unspecific binding to bare minerals, we validated that peptide-mineral complexes can be detected using sandwich immunoassays, as confirmed through desorption and competitive assays. Consequently, we conclude that the diversity of peptide sequences and structures suitable for use as target biomarkers in astrobiology can be constrained to a few well conserved sets, and they can be detected even if they are adsorbed in organomineral complexes.
Collapse
Affiliation(s)
- Pedro Mustieles-del-Ser
- Centro
de Astrobiología (CAB) INTA-CSIC, Torrejón de Ardoz 28850, Spain
- Departments
of Physics and Mathematics, and Automatics, Universidad de Alcalá (UAH), Alcalá de Henares 28805, Spain
| | | | - Víctor Parro
- Centro
de Astrobiología (CAB) INTA-CSIC, Torrejón de Ardoz 28850, Spain
| |
Collapse
|
12
|
Carrillo D, Duran-Meza E, Castillo-Caceres C, Alarcon DE, Guzman H, Diaz-Espinoza R. Catalytic amyloids for nucleotide hydrolysis. Methods Enzymol 2024; 697:269-291. [PMID: 38816126 DOI: 10.1016/bs.mie.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The design of small peptides that assemble into catalytically active intermolecular structures has proven to be a successful strategy towards developing minimalistic catalysts that exhibit some of the unique functional features of enzymes. Among these, catalytic amyloids have emerged as a fruitful source to unravel many different activities. These assemblies can potentially have broad applications that range from biotechnology to prebiotic chemistry. Although many peptides that assemble into catalytic amyloids have been developed in recent years, the elucidation of convergent mechanistic aspects of the catalysis and the structure/function relationship is still a challenge. Novel catalytic activities are necessary to better address these issues and expand the current repertoire of applicability. In this chapter, we described a methodology to produce catalytic amyloids that are specifically active towards the hydrolysis of phosphoanhydride bonds of nucleotides. The design of potentially active amyloid-prone peptide sequences is explored using as template the active site of enzymes with nucleotidyltransferase activity. The procedures include an approach for sequence design, in vitro aggregation assays, morphological characterization of the amyloid state and a comprehensive methodology to measure activity in vitro using nucleoside and deoxynucleosides triphosphates as model substrates. The proposed strategy can also be implemented to explore different types of activities for the design of future catalytic amyloids.
Collapse
Affiliation(s)
- Daniel Carrillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Eva Duran-Meza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile; Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Claudio Castillo-Caceres
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Diego Eduardo Alarcon
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Hardy Guzman
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
13
|
Dornes A, Mais CN, Bange G. Structure of the GDP-bound state of the SRP GTPase FlhF. Acta Crystallogr F Struct Biol Commun 2024; 80:53-58. [PMID: 38376823 PMCID: PMC10910532 DOI: 10.1107/s2053230x24000979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
The GTPase FlhF, a signal recognition particle (SRP)-type enzyme, is pivotal for spatial-numerical control and bacterial flagella assembly across diverse species, including pathogens. This study presents the X-ray structure of FlhF in its GDP-bound state at a resolution of 2.28 Å. The structure exhibits the classical N- and G-domain fold, consistent with related SRP GTPases such as Ffh and FtsY. Comparative analysis with GTP-loaded FlhF elucidates the conformational changes associated with GTP hydrolysis. These topological reconfigurations are similarly evident in Ffh and FtsY, and play a pivotal role in regulating the functions of these hydrolases.
Collapse
Affiliation(s)
- Anita Dornes
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Karl-von-Frisch-Strasse 14, 35043 Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Karl-von-Frisch-Strasse 14, 35043 Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Karl-von-Frisch-Strasse 14, 35043 Marburg, Germany
- Molecular Physiology of Microbes, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 14, 35043 Marburg, Germany
| |
Collapse
|
14
|
Li ZL, Sun CQ, Qing ZL, Li ZM, Liu HL. Engineering the thermal stability of a polyphosphate kinase by ancestral sequence reconstruction to expand the temperature boundary for an industrially applicable ATP regeneration system. Appl Environ Microbiol 2024; 90:e0157423. [PMID: 38236018 PMCID: PMC10880597 DOI: 10.1128/aem.01574-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
ATP-dependent energy-consuming enzymatic reactions are widely used in cell-free biocatalysis. However, the direct addition of large amounts of expensive ATP can greatly increase cost, and enzymatic production is often difficult to achieve as a result. Although a polyphosphate kinase (PPK)-polyphosphate-based ATP regeneration system has the potential to solve this challenge, the generally poor thermal stability of PPKs limits the widespread use of this method. In this paper, we evaluated the thermal stability of a PPK from Sulfurovum lithotrophicum (SlPPK2). After directed evolution and computation-supported design, we found that SlPPK2 is very recalcitrant and cannot acquire beneficial mutations. Inspired by the usually outstanding stability of ancestral enzymes, we reconstructed the ancestral sequence of the PPK family and used it as a guide to construct three heat-stable variants of SlPPK2, of which the L35F/T144S variant has a half-life of more than 14 h at 60°C. Molecular dynamics simulations were performed on all enzymes to analyze the reasons for the increased thermal stability. The results showed that mutations at these two positions act synergistically from the interior and surface of the protein, leading to a more compact structure. Finally, the robustness of the L35F/T144S variant was verified in the synthesis of nucleotides at high temperature. In practice, the use of this high-temperature ATP regeneration system can effectively avoid byproduct accumulation. Our work extends the temperature boundary of ATP regeneration and has great potential for industrial applications.IMPORTANCEATP regeneration is an important basic applied study in the field of cell-free biocatalysis. Polyphosphate kinase (PPK) is an enzyme tool widely used for energy regeneration during enzymatic reactions. However, the thermal stability of the PPKs reported to date that can efficiently regenerate ATP is usually poor, which greatly limits their application. In this study, the thermal stability of a difficult-to-engineer PPK from Sulfurovum lithotrophicum was improved, guided by an ancestral sequence reconstruction strategy. The optimal variant has a 4.5-fold longer half-life at 60°C than the wild-type enzyme, thus enabling the extension of the temperature boundary for ATP regeneration. The ability of this variant to regenerate ATP was well demonstrated during high-temperature enzymatic production of nucleotides.
Collapse
Affiliation(s)
- Zong-Lin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chuan-Qi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhou-Lei Qing
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhi-Min Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| | - Hong-Lai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Cheng F, Li KX, Wu SS, Liu HY, Li H, Shen Q, Xue YP, Zheng YG. Biosynthesis of Nicotinamide Mononucleotide: Synthesis Method, Enzyme, and Biocatalytic System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3302-3313. [PMID: 38330904 DOI: 10.1021/acs.jafc.3c09217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Nicotinamide mononucleotide (NMN) has garnered substantial interest as a functional food product. Industrial NMN production relies on chemical methods, facing challenges in separation, purification, and regulatory complexities, leading to elevated prices. In contrast, NMN biosynthesis through fermentation or enzyme catalysis offers notable benefits like eco-friendliness, recyclability, and efficiency, positioning it as a primary avenue for future NMN synthesis. Enzymatic NMN synthesis encompasses the nicotinamide-initial route and nicotinamide ribose-initial routes. Key among these is nicotinamide riboside kinase (NRK), pivotal in the latter route. The NRK-mediated biosynthesis is emerging as a prominent trend due to its streamlined route, simplicity, and precise specificity. The essential aspect is to obtain an engineered NRK that exhibits elevated activity and robust stability. This review comprehensively assesses diverse NMN synthesis methods, offering valuable insights into efficient, sustainable, and economical production routes. It spotlights the emerging NRK-mediated biosynthesis pathway and its significance. The establishment of an adenosine triphosphate (ATP) regeneration system plays a pivotal role in enhancing NMN synthesis efficiency through NRK-catalyzed routes. The review aims to be a reference for researchers developing green and sustainable NMN synthesis, as well as those optimizing NMN production.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ke-Xin Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Shan-Shan Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Hai-Yun Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Huan Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
16
|
Rakesh S, Aravind L, Krishnan A. Reappraisal of the DNA phosphorothioate modification machinery: uncovering neglected functional modalities and identification of new counter-invader defense systems. Nucleic Acids Res 2024; 52:1005-1026. [PMID: 38163645 PMCID: PMC10853773 DOI: 10.1093/nar/gkad1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024] Open
Abstract
The DndABCDE systems catalysing the unusual phosphorothioate (PT) DNA backbone modification, and the DndFGH systems, which restrict invasive DNA, have enigmatic and paradoxical features. Using comparative genomics and sequence-structure analyses, we show that the DndABCDE module is commonly functionally decoupled from the DndFGH module. However, the modification gene-neighborhoods encode other nucleases, potentially acting as the actual restriction components or suicide effectors limiting propagation of the selfish elements. The modification module's core consists of a coevolving gene-pair encoding the DNA-scanning apparatus - a DndD/CxC-clade ABC ATPase and DndE with two ribbon-helix-helix (MetJ/Arc) DNA-binding domains. Diversification of DndE's DNA-binding interface suggests a multiplicity of target specificities. Additionally, many systems feature DNA cytosine methylase genes instead of PT modification, indicating the DndDE core can recruit other nucleobase modifications. We show that DndFGH is a distinct counter-invader system with several previously uncharacterized domains, including a nucleotide kinase. These likely trigger its restriction endonuclease domain in response to multiple stimuli, like nucleotides, while blocking protective modifications by invader methylases. Remarkably, different DndH variants contain a HerA/FtsK ATPase domain acquired from multiple sources, including cellular genome-segregation systems and mobile elements. Thus, we uncovered novel HerA/FtsK-dependent defense systems that might intercept invasive DNA during replication, conjugation, or packaging.
Collapse
Affiliation(s)
- Siuli Rakesh
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - L Aravind
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| |
Collapse
|
17
|
Hawkins DEDP, Godwin OC, Antson AA. Viral Genomic DNA Packaging Machinery. Subcell Biochem 2024; 104:181-205. [PMID: 38963488 PMCID: PMC7617512 DOI: 10.1007/978-3-031-58843-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.
Collapse
Affiliation(s)
- Dorothy E D P Hawkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK.
| | - Owen C Godwin
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
- Structural Biology, The Francis Crick Institute, London, UK
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK.
- Structural Biology, The Francis Crick Institute, London, UK.
| |
Collapse
|
18
|
Luthuli SD, Shonhai A. The multi-faceted roles of R2TP complex span across regulation of gene expression, translation, and protein functional assembly. Biophys Rev 2023; 15:1951-1965. [PMID: 38192347 PMCID: PMC10771493 DOI: 10.1007/s12551-023-01127-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/27/2023] [Indexed: 01/10/2024] Open
Abstract
Macromolecular complexes play essential roles in various cellular processes. The assembly of macromolecular assemblies within the cell must overcome barriers imposed by a crowded cellular environment which is characterized by an estimated concentration of biological macromolecules amounting to 100-450 g/L that take up approximately 5-40% of the cytoplasmic volume. The formation of the macromolecular assemblies is facilitated by molecular chaperones in cooperation with their co-chaperones. The R2TP protein complex has emerged as a co-chaperone of Hsp90 that plays an important role in macromolecular assembly. The R2TP complex is composed of a heterodimer of RPAP3:P1H1DI that is in turn complexed to members of the ATPase associated with diverse cellular activities (AAA +), RUVBL1 and RUVBL2 (R1 and R2) families. What makes the R2TP co-chaperone complex particularly important is that it is involved in a wide variety of cellular processes including gene expression, translation, co-translational complex assembly, and posttranslational protein complex formation. The functional versatility of the R2TP co-chaperone complex makes it central to cellular development; hence, it is implicated in various human diseases. In addition, their roles in the development of infectious disease agents has become of interest. In the current review, we discuss the roles of these proteins as co-chaperones regulating Hsp90 and its partnership with Hsp70. Furthermore, we highlight the structure-function features of the individual proteins within the R2TP complex and describe their roles in various cellular processes.
Collapse
Affiliation(s)
- Sifiso Duncan Luthuli
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
19
|
Wirth NT, Rohr K, Danchin A, Nikel PI. Recursive genome engineering decodes the evolutionary origin of an essential thymidylate kinase activity in Pseudomonas putida KT2440. mBio 2023; 14:e0108123. [PMID: 37732760 PMCID: PMC10653934 DOI: 10.1128/mbio.01081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Investigating fundamental aspects of metabolism is vital for advancing our understanding of the diverse biochemical capabilities and biotechnological applications of bacteria. The origin of the essential thymidylate kinase function in the model bacterium Pseudomonas putida KT2440, seemingly interrupted due to the presence of a large genomic island that disrupts the cognate gene, eluded a satisfactory explanation thus far. This is a first-case example of an essential metabolic function, likely acquired by horizontal gene transfer, which "landed" in a locus encoding the same activity. As such, foreign DNA encoding an essential dNMPK could immediately adjust to the recipient host-instead of long-term accommodation and adaptation. Understanding how these functions evolve is a major biological question, and the work presented here is a decisive step toward this direction. Furthermore, identifying essential and accessory genes facilitates removing those deemed irrelevant in industrial settings-yielding genome-reduced cell factories with enhanced properties and genetic stability.
Collapse
Affiliation(s)
- Nicolas T. Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Katja Rohr
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Antoine Danchin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| |
Collapse
|
20
|
Al-Dossary O, Furtado A, KharabianMasouleh A, Alsubaie B, Al-Mssallem I, Henry RJ. Long read sequencing to reveal the full complexity of a plant transcriptome by targeting both standard and long workflows. PLANT METHODS 2023; 19:112. [PMID: 37865785 PMCID: PMC10589961 DOI: 10.1186/s13007-023-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Long read sequencing allows the analysis of full-length transcripts in plants without the challenges of reliable transcriptome assembly. Long read sequencing of transcripts from plant genomes has often utilized sized transcript libraries. However, the value of including libraries of differing sizes has not been established. METHODS A comprehensive transcriptome of the leaves of Jojoba (Simmondsia chinensis) was generated from two different PacBio library preparations: standard workflow (SW) and long workflow (LW). RESULTS The importance of using both transcript groups in the analysis was demonstrated by the high proportion of unique sequences (74.6%) that were not shared between the groups. A total of 37.8% longer transcripts were only detected in the long dataset. The completeness of the combined transcriptome was indicated by the presence of 98.7% of genes predicted in the jojoba male reference genome. The high coverage of the transcriptome was further confirmed by BUSCO analysis showing the presence of 96.9% of the genes from the core viridiplantae_odb10 lineage. The high-quality isoforms post Cd-Hit merged dataset of the two workflows had a total of 167,866 isoforms. Most of the transcript isoforms were protein-coding sequences (71.7%) containing open reading frames (ORFs) ≥ 100 amino acids (aa). Alternative splicing and intron retention were the basis of most transcript diversity when analysed at the whole genome level and by specific analysis of the apetala2 gene families. CONCLUSION This suggests the need to specifically target the capture of longer transcripts to provide more comprehensive genome coverage in plant transcriptome analysis and reveal the high level of alternative splicing.
Collapse
Affiliation(s)
- Othman Al-Dossary
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Ardashir KharabianMasouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Bader Alsubaie
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Ibrahim Al-Mssallem
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
21
|
Binsabaan SA, Freeman KG, Hatfull GF, VanDemark AP. The Cytotoxic Mycobacteriophage Protein Phaedrus gp82 Interacts with and Modulates the Activity of the Host ATPase, MoxR. J Mol Biol 2023; 435:168261. [PMID: 37678706 PMCID: PMC10593117 DOI: 10.1016/j.jmb.2023.168261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Approximately 70% of bacteriophage-encoded proteins are of unknown function. Elucidating these protein functions represents opportunities to discover new phage-host interactions and mechanisms by which the phages modulate host activities. Here, we describe a pipeline for prioritizing phage-encoded proteins for structural analysis and characterize the gp82 protein encoded by mycobacteriophage Phaedrus. Structural and solution studies of gp82 show it is a trimeric protein containing two domains. Co-precipitation studies with the host Mycobacterium smegmatis identified the ATPase MoxR as an interacting partner protein. Phaedrus gp82-MoxR interaction requires the presence of a loop sequence within gp82 that is highly exposed and disordered in the crystallographic structure. We show that Phaedrus gp82 overexpression in M. smegmatis retards the growth of M. smegmatis on solid medium, resulting in a small colony phenotype. Overexpression of gp82 containing a mutant disordered loop or the overexpression of MoxR both rescue this phenotype. Lastly, we show that recombinant gp82 reduces levels of MoxR-mediated ATPase activity in vitro that is required for its chaperone function, and that the disordered loop plays an important role in this phenotype. We conclude that Phaedrus gp82 binds to and reduces mycobacterial MoxR activity, leading to reduced function of host proteins that require MoxR chaperone activity for their normal activity.
Collapse
Affiliation(s)
- Saeed A Binsabaan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260, USA
| | - Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh PA 15260, USA.
| |
Collapse
|
22
|
Bocanegra R, Ortíz-Rodríguez M, Zumeta L, Plaza-G A I, Faro E, Ibarra B. DNA replication machineries: Structural insights from crystallography and electron microscopy. Enzymes 2023; 54:249-271. [PMID: 37945174 DOI: 10.1016/bs.enz.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Since the discovery of DNA as the genetic material, scientists have been investigating how the information contained in this biological polymer is transmitted from generation to generation. X-ray crystallography, and more recently, cryo-electron microscopy techniques have been instrumental in providing essential information about the structure, functions and interactions of the DNA and the protein machinery (replisome) responsible for its replication. In this chapter, we highlight several works that describe the structure and structure-function relationships of the core components of the prokaryotic and eukaryotic replisomes. We also discuss the most recent studies on the structural organization of full replisomes.
Collapse
Affiliation(s)
| | | | - Lyra Zumeta
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | | | - Elías Faro
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
23
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
24
|
Genomic analysis and biological characterization of a novel Schitoviridae phage infecting Vibrio alginolyticus. Appl Microbiol Biotechnol 2023; 107:749-768. [PMID: 36520169 DOI: 10.1007/s00253-022-12312-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Vibrio alginolyticus is a Gram-negative bacterium commonly associated with mackerel poisoning. A bacteriophage that specifically targets and lyses this bacterium could be employed as a biocontrol agent for treating the bacterial infection or improving the shelf-life of mackerel products. However, only a few well-characterized V. alginolyticus phages have been reported in the literature. In this study, a novel lytic phage, named ΦImVa-1, specifically infecting V. alginolyticus strain ATCC 17749, was isolated from Indian mackerel. The phage has a short latent period of 15 min and a burst size of approximately 66 particles per infected bacterium. ΦImVa-1 remained stable for 2 h at a wide temperature (27-75 °C) and within a pH range of 5 to 10. Transmission electron microscopy revealed that ΦImVa-1 has an icosahedral head of approximately 60 nm in diameter with a short tail, resembling those in the Schitoviridae family. High throughput sequencing and bioinformatics analysis elucidated that ΦImVa-1 has a linear dsDNA genome of 77,479 base pairs (bp), with a G + C content of ~ 38.72% and 110 predicted gene coding regions (106 open reading frames and four tRNAs). The genome contains an extremely large virion-associated RNA polymerase gene and two smaller non-virion-associated RNA polymerase genes, which are hallmarks of schitoviruses. No antibiotic genes were found in the ΦImVa-1 genome. This is the first paper describing the biological properties, morphology, and the complete genome of a V. alginolyticus-infecting schitovirus. When raw mackerel fish flesh slices were treated with ΦImVa-1, the pathogen loads reduced significantly, demonstrating the potential of the phage as a biocontrol agent for V. alginolyticus strain ATCC 17749 in the food. KEY POINTS: • A novel schitovirus infecting Vibrio alginolyticus ATCC 17749 was isolated from Indian mackerel. • The complete genome of the phage was determined, analyzed, and compared with other phages. • The phage is heat stable making it a potential biocontrol agent in extreme environments.
Collapse
|
25
|
Genetic Alterations in Members of the Proteasome 26S Subunit, AAA-ATPase ( PSMC) Gene Family in the Light of Proteasome Inhibitor Resistance in Multiple Myeloma. Cancers (Basel) 2023; 15:cancers15020532. [PMID: 36672481 PMCID: PMC9856285 DOI: 10.3390/cancers15020532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
For the treatment of Multiple Myeloma, proteasome inhibitors are highly efficient and widely used, but resistance is a major obstacle to successful therapy. Several underlying mechanisms have been proposed but were only reported for a minority of resistant patients. The proteasome is a large and complex machinery. Here, we focus on the AAA ATPases of the 19S proteasome regulator (PSMC1-6) and their implication in PI resistance. As an example of cancer evolution and the acquisition of resistance, we conducted an in-depth analysis of an index patient by applying FISH, WES, and immunoglobulin-rearrangement sequencing in serial samples, starting from MGUS to newly diagnosed Multiple Myeloma to a PI-resistant relapse. The WES analysis uncovered an acquired PSMC2 Y429S mutation at the relapse after intensive bortezomib-containing therapy, which was functionally confirmed to mediate PI resistance. A meta-analysis comprising 1499 newly diagnosed and 447 progressed patients revealed a total of 36 SNVs over all six PSMC genes that were structurally accumulated in regulatory sites for activity such as the ADP/ATP binding pocket. Other alterations impact the interaction between different PSMC subunits or the intrinsic conformation of an individual subunit, consequently affecting the folding and function of the complex. Interestingly, several mutations were clustered in the central channel of the ATPase ring, where the unfolded substrates enter the 20S core. Our results indicate that PSMC SNVs play a role in PI resistance in MM.
Collapse
|
26
|
Characterizing a novel CMK-EngA fusion protein from Bifidobacterium: Implications for inter-domain regulation. Biochem Biophys Rep 2022; 33:101410. [PMID: 36578527 PMCID: PMC9791819 DOI: 10.1016/j.bbrep.2022.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
EngA is an essential and unique bacterial GTPase involved in ribosome biogenesis. The essentiality and species-specific variations among EngA homologues make the protein a potential target for future drug development. In this aspect, it is important to understand the variations of EngA among probiotic organisms and non-probiotic bacteria to understand species specificity. The search for variations among EngA homologues revealed a unique variant, exclusively found in Bifidobacterium and a few Actinobacteria species. Bifidobacterium possesses a multifunctional fusion protein, wherein EngA is fused with an N-terminal CMK (Cytidylate Monophosphate Kinase) domain. The resulting protein is therefore a large (70kDa size) with 3 consecutive P-loops and a 50 amino acid long linker connecting the EngA and CMK domains. EngA is known to regulate ribosome biogenesis via nucleotide-dependent conformational changes. The additional domain may introduce further intricate regulation in ribosome biogenesis or participate in newer biological processes. This study is the first attempt to characterise this novel class of bacterial EngA found in the Genus of Bifidobacteria.
Collapse
|
27
|
Two Distinct Modes of DNA Binding by an MCM Helicase Enable DNA Translocation. Int J Mol Sci 2022; 23:ijms232314678. [PMID: 36499022 PMCID: PMC9735655 DOI: 10.3390/ijms232314678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
A six-subunit ATPase ring forms the central hub of the replication forks in all domains of life. This ring performs a helicase function to separate the two complementary DNA strands to be replicated and drives the replication machinery along the DNA. Disruption of this helicase/ATPase ring is associated with genetic instability and diseases such as cancer. The helicase/ATPase rings of eukaryotes and archaea consist of six minichromosome maintenance (MCM) proteins. Prior structural studies have shown that MCM rings bind one encircled strand of DNA in a spiral staircase, suggesting that the ring pulls this strand of DNA through its central pore in a hand-over-hand mechanism where the subunit at the bottom of the staircase dissociates from DNA and re-binds DNA one step above the staircase. With high-resolution cryo-EM, we show that the MCM ring of the archaeal organism Saccharolobus solfataricus binds an encircled DNA strand in two different modes with different numbers of subunits engaged to DNA, illustrating a plausible mechanism for the alternating steps of DNA dissociation and re-association that occur during DNA translocation.
Collapse
|
28
|
Hajredini F, Alphonse S, Ghose R. BY-kinases: Protein tyrosine kinases like no other. J Biol Chem 2022; 299:102737. [PMID: 36423682 PMCID: PMC9800525 DOI: 10.1016/j.jbc.2022.102737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
BY-kinases (for bacterial tyrosine kinases) constitute a family of protein tyrosine kinases that are highly conserved in the bacterial kingdom and occur most commonly as essential components of multicomponent assemblies responsible for the biosynthesis, polymerization, and export of complex polysaccharides involved in biofilm or capsule formation. BY-kinase function has been attributed to a cyclic process involving formation of an oligomeric species, its disassembly into constituent monomers, and subsequent reassembly, depending on the overall phosphorylation level of a C-terminal cluster of tyrosine residues. However, the relationship of this process to the active/inactive states of the enzyme and the mechanism of its integration into the polysaccharide production machinery remain unclear. Here, we synthesize the substantial body of biochemical, cell-biological, structural, and computational data, acquired over the nearly 3 decades since the discovery of BY-kinases, to suggest means by which they fulfill their physiological function. We propose a mechanism involving temporal coordination of the assembly/disassembly process with the autokinase activity of the enzyme and its ability to be dephosphorylated by its counteracting phosphatase. We speculate that this temporal control enables BY-kinases to function as molecular timers that coordinate the diverse processes involved in the synthesis, polymerization, and export of complex sugar derivatives. We suggest that BY-kinases, which deploy distinctive catalytic domains resembling P-loop nucleoside triphosphatases, have uniquely adapted this ancient fold to drive functional processes through exquisite spatiotemporal control over protein-protein interactions and conformational changes. It is our hope that the hypotheses proposed here will facilitate future experiments targeting these unique protein kinases.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA,PhD Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA
| | - Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA,PhD Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA,PhD Programs in Chemistry, The Graduate Center of CUNY, New York, New York, USA,PhD Programs in Physics, The Graduate Center of CUNY, New York, New York, USA,For correspondence: Ranajeet Ghose
| |
Collapse
|
29
|
Zhang H, Liu J, Wang H, Fang H, Zhao P, Xia Q, Guo P. Structural insights into the substrate binding of phosphomevalonate kinase from the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 150:103849. [PMID: 36209956 DOI: 10.1016/j.ibmb.2022.103849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Phosphomevalonate kinase (PMK) is an important enzyme involved in the juvenile hormone (JH) biosynthesis pathway that catalyzes the phosphorylation of mevalonate 5-phosphate into mevalonate 5-diphosphate in the mevalonate pathway. Herein, we report the crystal structure of insect PMK from Bombyx mori (BmPMK) at a resolution of 1.60 Å. The overall structure of BmPMK adopts a compact α/β conformation with two parts: the core and lid regions. The interface between the core and lid regions forms a continuous and negatively charged groove to accommodate the substrates. Using computational simulation combined with site-directed mutagenesis and biochemical analysis, we define the binding mode of BmPMK with the cofactor and the substrate, which provides a structural basis for understanding the catalytic mechanism and the design of inhibitors of PMK. Moreover, BmPMK showed the optimal enzyme activity at pH 8.0, and the optimal temperature was 30 °C, using mevalonate 5-phosphate as the substrate. The expression profiles and kinetic analyses of BmPMK indicated that it plays critical role in the control of JH biosynthesis in silkworms. Collectively, these findings provide a better understanding of the structural and biochemical features of insect PMK.
Collapse
Affiliation(s)
- Huan Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Jie Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Hanlin Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Huan Fang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
30
|
Cofas-Vargas LF, Mendoza-Espinosa P, Avila-Barrientos LP, Prada-Gracia D, Riveros-Rosas H, García-Hernández E. Exploring the druggability of the binding site of aurovertin, an exogenous allosteric inhibitor of FOF1-ATP synthase. Front Pharmacol 2022; 13:1012008. [PMID: 36313289 PMCID: PMC9615146 DOI: 10.3389/fphar.2022.1012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to playing a central role in the mitochondria as the main producer of ATP, FOF1-ATP synthase performs diverse key regulatory functions in the cell membrane. Its malfunction has been linked to a growing number of human diseases, including hypertension, atherosclerosis, cancer, and some neurodegenerative, autoimmune, and aging diseases. Furthermore, inhibition of this enzyme jeopardizes the survival of several bacterial pathogens of public health concern. Therefore, FOF1-ATP synthase has emerged as a novel drug target both to treat human diseases and to combat antibiotic resistance. In this work, we carried out a computational characterization of the binding sites of the fungal antibiotic aurovertin in the bovine F1 subcomplex, which shares a large identity with the human enzyme. Molecular dynamics simulations showed that although the binding sites can be described as preformed, the inhibitor hinders inter-subunit communications and exerts long-range effects on the dynamics of the catalytic site residues. End-point binding free energy calculations revealed hot spot residues for aurovertin recognition. These residues were also relevant to stabilize solvent sites determined from mixed-solvent molecular dynamics, which mimic the interaction between aurovertin and the enzyme, and could be used as pharmacophore constraints in virtual screening campaigns. To explore the possibility of finding species-specific inhibitors targeting the aurovertin binding site, we performed free energy calculations for two bacterial enzymes with experimentally solved 3D structures. Finally, an analysis of bacterial sequences was carried out to determine conservation of the aurovertin binding site. Taken together, our results constitute a first step in paving the way for structure-based development of new allosteric drugs targeting FOF1-ATP synthase sites of exogenous inhibitors.
Collapse
Affiliation(s)
- Luis Fernando Cofas-Vargas
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
| | - Paola Mendoza-Espinosa
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | | | - Diego Prada-Gracia
- Unidad de Investigación en Biología Computacional y Diseño de Fármacos, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City, Mexico
| | - Enrique García-Hernández
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
- *Correspondence: Enrique García-Hernández,
| |
Collapse
|
31
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
32
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases. Biomolecules 2022; 12:1345. [PMID: 36291554 PMCID: PMC9599529 DOI: 10.3390/biom12101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
The P-loop fold nucleoside triphosphate (NTP) hydrolases (also known as Walker NTPases) function as ATPases, GTPases, and ATP synthases, are often of medical importance, and represent one of the largest and evolutionarily oldest families of enzymes. There is still no consensus on their catalytic mechanism. To clarify this, we performed the first comparative structural analysis of more than 3100 structures of P-loop NTPases that contain bound substrate Mg-NTPs or their analogues. We proceeded on the assumption that structural features common to these P-loop NTPases may be essential for catalysis. Our results are presented in two articles. Here, in the first, we consider the structural elements that stimulate hydrolysis. Upon interaction of P-loop NTPases with their cognate activating partners (RNA/DNA/protein domains), specific stimulatory moieties, usually Arg or Lys residues, are inserted into the catalytic site and initiate the cleavage of gamma phosphate. By analyzing a plethora of structures, we found that the only shared feature was the mechanistic interaction of stimulators with the oxygen atoms of gamma-phosphate group, capable of causing its rotation. One of the oxygen atoms of gamma phosphate coordinates the cofactor Mg ion. The rotation must pull this oxygen atom away from the Mg ion. This rearrangement should affect the properties of the other Mg ligands and may initiate hydrolysis according to the mechanism elaborated in the second article.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
33
|
Pesquera M, Martinez J, Maillot B, Wang K, Hofmann M, Raia P, Loubéry S, Steensma P, Hothorn M, Fitzpatrick TB. Structural and functional studies of Arabidopsis thaliana triphosphate tunnel metalloenzymes reveal roles for additional domains. J Biol Chem 2022; 298:102438. [PMID: 36049521 PMCID: PMC9582702 DOI: 10.1016/j.jbc.2022.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022] Open
Abstract
Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.
Collapse
Affiliation(s)
- Marta Pesquera
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Jacobo Martinez
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Benoît Maillot
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Kai Wang
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Manuel Hofmann
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Pierre Raia
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Sylvain Loubéry
- Plant Imaging Unit, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Priscille Steensma
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Michael Hothorn
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland.
| | - Teresa B Fitzpatrick
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
34
|
Fung HKH, Grimes S, Huet A, Duda RL, Chechik M, Gault J, Robinson C, Hendrix R, Jardine P, Conway J, Baumann C, Antson A. Structural basis of DNA packaging by a ring-type ATPase from an archetypal viral system. Nucleic Acids Res 2022; 50:8719-8732. [PMID: 35947691 PMCID: PMC9410871 DOI: 10.1093/nar/gkac647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022] Open
Abstract
Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.
Collapse
Affiliation(s)
- Herman K H Fung
- Department of Biology, University of York, York, YO10 5DD, UK
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexis Huet
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
35
|
Hsueh BY, Severin GB, Elg CA, Waldron EJ, Kant A, Wessel AJ, Dover JA, Rhoades CR, Ridenhour BJ, Parent KN, Neiditch MB, Ravi J, Top EM, Waters CM. Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria. Nat Microbiol 2022; 7:1210-1220. [PMID: 35817890 PMCID: PMC9830645 DOI: 10.1038/s41564-022-01162-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/24/2022] [Indexed: 02/03/2023]
Abstract
Vibrio cholerae biotype El Tor is perpetuating the longest cholera pandemic in recorded history. The genomic islands VSP-1 and VSP-2 distinguish El Tor from previous pandemic V. cholerae strains. Using a co-occurrence analysis of VSP genes in >200,000 bacterial genomes we built gene networks to infer biological functions encoded in these islands. This revealed that dncV, a component of the cyclic-oligonucleotide-based anti-phage signalling system (CBASS) anti-phage defence system, co-occurs with an uncharacterized gene vc0175 that we rename avcD for anti-viral cytodine deaminase. We show that AvcD is a deoxycytidylate deaminase and that its activity is post-translationally inhibited by a non-coding RNA named AvcI. AvcID and bacterial homologues protect bacterial populations against phage invasion by depleting free deoxycytidine nucleotides during infection, thereby decreasing phage replication. Homologues of avcD exist in all three domains of life, and bacterial AvcID defends against phage infection by combining traits of two eukaryotic innate viral immunity proteins, APOBEC and SAMHD1.
Collapse
Affiliation(s)
- Brian Y Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Geoffrey B Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Clinton A Elg
- Department of Biological Sciences, Institute for Interdisciplinary Data Sciences, Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, USA
| | - Evan J Waldron
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Abhiruchi Kant
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Alex J Wessel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - John A Dover
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christopher R Rhoades
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Benjamin J Ridenhour
- Department of Mathematics and Statistical Sciences, University of Idaho, Moscow, ID, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Matthew B Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Janani Ravi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Eva M Top
- Department of Biological Sciences, Institute for Interdisciplinary Data Sciences, Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
36
|
Wang J, Wu J, Li Z, Chen X, Liu W, Yao J. Protein engineering of CMP kinases to improve thermal stability and resultant production of 3′-sialyllactose. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2095302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Jingjing Wang
- School of Engineering, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
- Department of Bioenergy and Bioengineering, Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan, Anhui, PR China
| | - Zhongkui Li
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
- Department of Bioenergy and Bioengineering, Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan, Anhui, PR China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
- Department of Bioenergy and Bioengineering, Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan, Anhui, PR China
| | - Weiwei Liu
- School of Engineering, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
- Department of Bioenergy and Bioengineering, Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan, Anhui, PR China
| |
Collapse
|
37
|
Computational Design of Inhibitors Targeting the Catalytic β Subunit of Escherichia coli FOF1-ATP Synthase. Antibiotics (Basel) 2022; 11:antibiotics11050557. [PMID: 35625201 PMCID: PMC9138118 DOI: 10.3390/antibiotics11050557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action. FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic β subunit, a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide, designed through molecular dynamics simulations and sequence mining approaches, respectively, exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia sequences of the key structural helix-turn-turn motif of the C-terminal domain of the β subunit revealed highly and moderately conserved positions that could be exploited for the development of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders computationally designed against the catalytic subunit of FOF1-ATP synthase.
Collapse
|
38
|
Convergent evolution in two bacterial replicative helicase loaders. Trends Biochem Sci 2022; 47:620-630. [DOI: 10.1016/j.tibs.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
|
39
|
Myat AA, Zhou Y, Gao Y, Zhao X, Liang C, Abid MA, Wang P, Akram U, Abbas M, Askari M, Guo S, Zhang R, Meng Z. Overexpression of GhKTI12 Enhances Seed Yield and Biomass Production in Nicotiana Tabacum. Genes (Basel) 2022; 13:426. [PMID: 35327981 PMCID: PMC8953243 DOI: 10.3390/genes13030426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Crop molecular breeding primarily focuses on increasing the trait of plant yield. An elongator-associated protein, KTI12, is closely associated with plant biomass and yield. KTI12 is involved in developmental processes of most organs, including the leaf, root, flower, and seed, through regulating cell division and differentiation. Previous work has shown that in upland cotton (Gossypium hirsutum), GhKTI12 regulates plant height, flowering, and tolerance to salt and drought stress. However, little is known about the molecular regulation mechanism of GhKTI12 in plant developmental processes. In this study, we identified the main GhKTI12 (Gh_D02G144400) gene and transformed it into tobacco (Nicotonia tabacum cv NC89). From seven transgenic lines, we obtained three (OE5, OE6 and OE8) with high expression of GhKTI12; compared with wild type plants, these three lines exhibited larger plant size, later flowering, and higher seed yield. Microscopic observation revealed that the number of leaf epidermal cells and stem parenchyma cells was increased by ~55%. Biochemical analysis showed that chlorophyll content and starch accumulation were significantly increased in younger leaves at the top canopy of transgenic plants, which may contribute to improved photosynthetic rate and, in turn, increased seed yield. To understand the molecular mechanism of GhKTI12 in transgenic plants development, two lines (OE6 and OE8) with higher expression levels of GhKTI12 were used as representative plants to conduct RNA-seq analysis. Through transcriptome analysis of the plant's shoot apical meristematic tissue of these two lines, we identified 518 upregulated genes and 406 downregulated genes common to both overexpression lines. A large number of cellular component genes associated with cell division and differentiation, such as RD21, TET8, KTN80, AOX1, AOX2, CP1, and KIC, were found to be upregulated, and genes showing the most downregulation included MADS-box genes related to flowering time, such as MADS6, AP1, AP3, AGL8, AGL6, SEP1, and SEP2. Downregulation of these genes caused delayed flowering time and longer vegetative stage during development. Combined with the upregulation of the yield-related gene RD21, the GhKTI12 transgenic plants could produce a higher seed yield. We here show that the overexpression of GhKTI12 could positively improve key agronomic traits in tobacco by regulating cell proliferation, photosynthesis, and organ development, and suggest that homologs of GhKTI12 may also be important in the genetic improvement of other crop plants.
Collapse
Affiliation(s)
- Aye Aye Myat
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Yu Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Yuan Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Xiang Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Umar Akram
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
- Institute of Plant Breeding and Biotechnology, MNS—University of Agriculture, Multan 60000, Pakistan
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Muhammad Askari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| |
Collapse
|
40
|
Delerue T, Anantharaman V, Gilmore MC, Popham DL, Cava F, Aravind L, Ramamurthi KS. Bacterial developmental checkpoint that directly monitors cell surface morphogenesis. Dev Cell 2022; 57:344-360.e6. [PMID: 35065768 PMCID: PMC8991396 DOI: 10.1016/j.devcel.2021.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
Bacillus subtilis spores are encased in two concentric shells: an outer proteinaceous "coat" and an inner peptidoglycan "cortex," separated by a membrane. Cortex assembly depends on coat assembly initiation, but how cells achieve this coordination across the membrane is unclear. Here, we report that the protein SpoVID monitors the polymerization state of the coat basement layer via an extension to a functional intracellular LysM domain that arrests sporulation when coat assembly is initiated improperly. Whereas extracellular LysM domains bind mature peptidoglycan, SpoVID LysM binds to the membrane-bound lipid II peptidoglycan precursor. We propose that improper coat assembly exposes the SpoVID LysM domain, which then sequesters lipid II and prevents cortex assembly. SpoVID defines a widespread group of firmicute proteins with a characteristic N-terminal domain and C-terminal peptidoglycan-binding domains that might combine coat and cortex assembly roles to mediate a developmental checkpoint linking the morphogenesis of two spatially separated supramolecular structures.
Collapse
Affiliation(s)
- Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C. Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,Lead contact,Correspondence:
| |
Collapse
|
41
|
Neville N, Roberge N, Jia Z. Polyphosphate Kinase 2 (PPK2) Enzymes: Structure, Function, and Roles in Bacterial Physiology and Virulence. Int J Mol Sci 2022; 23:ijms23020670. [PMID: 35054854 PMCID: PMC8776046 DOI: 10.3390/ijms23020670] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
Inorganic polyphosphate (polyP) has been implicated in an astonishing array of biological functions, ranging from phosphorus storage to molecular chaperone activity to bacterial virulence. In bacteria, polyP is synthesized by polyphosphate kinase (PPK) enzymes, which are broadly subdivided into two families: PPK1 and PPK2. While both enzyme families are capable of catalyzing polyP synthesis, PPK1s preferentially synthesize polyP from nucleoside triphosphates, and PPK2s preferentially consume polyP to phosphorylate nucleoside mono- or diphosphates. Importantly, many pathogenic bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii encode at least one of each PPK1 and PPK2, suggesting these enzymes may be attractive targets for antibacterial drugs. Although the majority of bacterial polyP studies to date have focused on PPK1s, PPK2 enzymes have also begun to emerge as important regulators of bacterial physiology and downstream virulence. In this review, we specifically examine the contributions of PPK2s to bacterial polyP homeostasis. Beginning with a survey of the structures and functions of biochemically characterized PPK2s, we summarize the roles of PPK2s in the bacterial cell, with a particular emphasis on virulence phenotypes. Furthermore, we outline recent progress on developing drugs that inhibit PPK2 enzymes and discuss this strategy as a novel means of combatting bacterial infections.
Collapse
|
42
|
Zhang C, Li Y, Samad A, Zheng P, Ji Z, Chen F, Zhang H, Jin T. Structure and mutation analysis of the hexameric P4 from Pseudomonas aeruginosa phage phiYY. Int J Biol Macromol 2022; 194:42-49. [PMID: 34856215 DOI: 10.1016/j.ijbiomac.2021.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
phiYY is a foremost member of Cystoviridae isolated from Pseudomonas aeruginosa. Its P4 protein with NTPase activity is a molecular motor for their genome packing during viral particle assembly. Previously studies on the P4 from four Pseudomonas phages phi6, phi8, phi12 and phi13 reveal that despite of belonging to the same protein family, they are unique in sequence, structure and biochemical properties. To better understand the structure and function of phiYY P4, four crystal structures of phiYY P4 in apo-form or combined with different ligands were solved at the resolution between 1.85 Å and 2.43 Å, which showed drastic conformation change of the H1 motif in ligand-bound forms compared with in apo-form, a four residue-mutation at the ligand binding pocket abolished its ATPase activity. Furthermore, the truncation mutation of the 50 residues at the C-terminal did not impair the hexamerization and ATP hydrolysis.
Collapse
Affiliation(s)
- Caiying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yuelong Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Abdus Samad
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Peiyi Zheng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zheng Ji
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Feng Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; CAS Center for Excellence in Molecular Cell Science, Shanghai, China.
| |
Collapse
|
43
|
Architectural and functional details of CF IA proteins involved in yeast 3'-end pre-mRNA processing and its significance for eukaryotes: A concise review. Int J Biol Macromol 2021; 193:387-400. [PMID: 34699898 DOI: 10.1016/j.ijbiomac.2021.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
In eukaryotes, maturation of pre-mRNA relies on its precise 3'-end processing. This processing involves co-transcriptional steps regulated by sequence elements and other proteins. Although, it holds tremendous importance, defect in the processing machinery will result in erroneous pre-mRNA maturation leading to defective translation. Remarkably, more than 20 proteins in humans and yeast share homology and execute this processing. The defects in this processing are associated with various diseases in humans. We shed light on the CF IA subunit of yeast Saccharomyces cerevisiae that contains four proteins (Pcf11, Clp1, Rna14 and Rna15) involved in this processing. Structural details of various domains of CF IA and their roles during 3'-end processing, like cleavage and polyadenylation at 3'-UTR of pre-mRNA and other cellular events are explained. Further, the chronological development and important discoveries associated with 3'-end processing are summarized. Moreover, the mammalian homologues of yeast CF IA proteins, along with their key roles are described. This knowledge would be helpful for better comprehension of the mechanism associated with this marvel; thus opening up vast avenues in this area.
Collapse
|
44
|
Brylski O, Shrestha P, Gnutt P, Gnutt D, Mueller JW, Ebbinghaus S. Cellular ATP Levels Determine the Stability of a Nucleotide Kinase. Front Mol Biosci 2021; 8:790304. [PMID: 34966785 PMCID: PMC8710738 DOI: 10.3389/fmolb.2021.790304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The energy currency of the cell ATP, is used by kinases to drive key cellular processes. However, the connection of cellular ATP abundance and protein stability is still under investigation. Using Fast Relaxation Imaging paired with alanine scanning and ATP depletion experiments, we study the nucleotide kinase (APSK) domain of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) synthase, a marginally stable protein. Here, we show that the in-cell stability of the APSK is determined by ligand binding and directly connected to cellular ATP levels. The observed protein stability change for different ligand-bound states or under ATP-depleted conditions ranges from ΔGf 0 = -10.7 to +13.8 kJ/mol, which is remarkable since it exceeds changes measured previously, for example upon osmotic pressure, cellular stress or differentiation. The results have implications for protein stability during the catalytic cycle of APS kinase and suggest that the cellular ATP level functions as a global regulator of kinase activity.
Collapse
Affiliation(s)
- Oliver Brylski
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| | - Puja Shrestha
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Patricia Gnutt
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, United Kingdom
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| |
Collapse
|
45
|
Abstract
Ring-shaped hexameric helicases are essential motor proteins that separate duplex nucleic acid strands for DNA replication, recombination, and transcriptional regulation. Two evolutionarily distinct lineages of these enzymes, predicated on RecA and AAA+ ATPase folds, have been identified and characterized to date. Hexameric helicases couple NTP hydrolysis with conformational changes that move nucleic acid substrates through a central pore in the enzyme. How hexameric helicases productively engage client DNA or RNA segments and use successive rounds of NTPase activity to power translocation and unwinding have been longstanding questions in the field. Recent structural and biophysical findings are beginning to reveal commonalities in NTP hydrolysis and substrate translocation by diverse hexameric helicase families. Here, we review these molecular mechanisms and highlight aspects of their function that are yet to be understood.
Collapse
|
46
|
Hajredini F, Ghose R. A Conserved Structural Role for the Walker-A Lysine in P-Loop Containing Kinases. Front Mol Biosci 2021; 8:747206. [PMID: 34660698 PMCID: PMC8517177 DOI: 10.3389/fmolb.2021.747206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/01/2022] Open
Abstract
Bacterial tyrosine kinases (BY-kinases) and shikimate kinases (SKs) comprise two structurally divergent P-loop containing enzyme families that share similar catalytic site geometries, most notably with respect to their Walker-A, Walker-B, and DxD motifs. We had previously demonstrated that in BY-kinases, a specific interaction between the Walker-A and Walker-B motifs, driven by the conserved “catalytic” lysine housed on the former, leads to a conformation that is unable to efficiently coordinate Mg2+•ATP and is therefore incapable of chemistry. Here, using enhanced sampling molecular dynamics simulations, we demonstrate that structurally similar interactions between the Walker-A and Walker-B motifs, also mediated by the catalytic lysine, stabilize a state in SKs that deviates significantly from one that is necessary for the optimal coordination of Mg2+•ATP. This structural role of the Walker-A lysine is a general feature in SKs and is found to be present in members that encode a Walker-B sequence characteristic of the family (Coxiella burnetii SK), and in those that do not (Mycobacterium tuberculosis SK). Thus, the structural role of the Walker-A lysine in stabilizing an inactive state, distinct from its catalytic function, is conserved between two distantly related P-loop containing kinase families, the SKs and the BY-kinases. The universal conservation of this element, and of the key characteristics of its associated interaction partners within the Walker motifs of P-loop containing enzymes, suggests that this structural role of the Walker-A lysine is perhaps a widely deployed regulatory mechanism within this ancient family.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, United States.,PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY, United States
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, United States.,PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY, United States.,PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY, United States.,PhD Program in Physics, The Graduate Center of CUNY, New York, NY, United States
| |
Collapse
|
47
|
Khan YA, White KI, Brunger AT. The AAA+ superfamily: a review of the structural and mechanistic principles of these molecular machines. Crit Rev Biochem Mol Biol 2021; 57:156-187. [PMID: 34632886 DOI: 10.1080/10409238.2021.1979460] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+ proteins) are a superfamily of proteins found throughout all domains of life. The hallmark of this family is a conserved AAA+ domain responsible for a diverse range of cellular activities. Typically, AAA+ proteins transduce chemical energy from the hydrolysis of ATP into mechanical energy through conformational change, which can drive a variety of biological processes. AAA+ proteins operate in a variety of cellular contexts with diverse functions including disassembly of SNARE proteins, protein quality control, DNA replication, ribosome assembly, and viral replication. This breadth of function illustrates both the importance of AAA+ proteins in health and disease and emphasizes the importance of understanding conserved mechanisms of chemo-mechanical energy transduction. This review is divided into three major portions. First, the core AAA+ fold is presented. Next, the seven different clades of AAA+ proteins and structural details and reclassification pertaining to proteins in each clade are described. Finally, two well-known AAA+ proteins, NSF and its close relative p97, are reviewed in detail.
Collapse
Affiliation(s)
- Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
48
|
Hajredini F, Ghose R. An ATPase with a twist: A unique mechanism underlies the activity of the bacterial tyrosine kinase, Wzc. SCIENCE ADVANCES 2021; 7:eabj5836. [PMID: 34550748 PMCID: PMC8457666 DOI: 10.1126/sciadv.abj5836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BY-kinases constitute a protein tyrosine kinase family that encodes unique catalytic domains that deviate from those of eukaryotic kinases resembling P-loop nucleotide triphosphatases (NTPases) instead. We have used computational and supporting biochemical approaches using the catalytic domain of the Escherichia coli BY-kinase, Wzc, to illustrate mechanistic divergences between BY-kinases and NTPases despite their deployment of similar catalytic motifs. In NTPases, the “arginine finger” drives the reactive conformation of ATP while also displacing its solvation shell, thereby making favorable enthalpic and entropic contributions toward βγ-bond cleavage. In BY-kinases, the reactive state of ATP is enabled by ATP·Mg2+-induced global conformational transitions coupled to the conformation of the Walker-A lysine. While the BY-kinase arginine finger does promote the desolvation of ATP, it does so indirectly by generating an ordered active site in combination with other structural elements. Bacteria, using these mechanistic variations, have thus repurposed an ancient fold to phosphorylate on tyrosine.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
- Corresponding author.
| |
Collapse
|
49
|
Gurrieri L, Fermani S, Zaffagnini M, Sparla F, Trost P. Calvin-Benson cycle regulation is getting complex. TRENDS IN PLANT SCIENCE 2021; 26:898-912. [PMID: 33893047 DOI: 10.1016/j.tplants.2021.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
Oxygenic phototrophs use the Calvin-Benson cycle to fix CO2 during photosynthesis. In the dark, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), two enzymes of the Calvin-Benson cycle, form an inactive complex with the regulatory protein CP12, mainly under the control of thioredoxins and pyridine nucleotides. In the light, complex dissociation allows GAPDH and PRK reactivation. The GAPDH/CP12/PRK complex is conserved from cyanobacteria to angiosperms and coexists in land plants with an autoassembling GAPDH that is analogously regulated. With the recently described 3D structures of PRK and GAPDH/CP12/PRK, the structural proteome of this ubiquitous regulatory system has been completed. This outcome opens a new avenue for understanding the regulatory potential of photosynthetic carbon fixation by laying the foundation for its knowledge-based manipulation.
Collapse
Affiliation(s)
- Libero Gurrieri
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Simona Fermani
- Department of Chemistry Giacomo Ciamician, University of Bologna, I-40126 Bologna, Italy; CIRI Health Sciences and Technologies, University of Bologna, I-40126 Bologna, Italy
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy.
| |
Collapse
|
50
|
Tavanti M, Hosford J, Lloyd RC, Brown MJB. Recent Developments and Challenges for the Industrial Implementation of Polyphosphate Kinases. ChemCatChem 2021. [DOI: 10.1002/cctc.202100688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Michele Tavanti
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
- Early Chemical development Pharmaceutical Sciences, R&D AstraZeneca Astrazeneca PLC 1 Francis Crick Avenue Cambridge Biomedical Campus Cambridge CB20AA UK
| | - Joseph Hosford
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Richard C. Lloyd
- Chemical Development Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Murray J. B. Brown
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| |
Collapse
|