1
|
Larsen JA, Barclay A, Vettore N, Klausen LK, Mangels LN, Coden A, Schmit JD, Lindorff-Larsen K, Buell AK. The mechanism of amyloid fibril growth from Φ-value analysis. Nat Chem 2025; 17:403-411. [PMID: 39820805 DOI: 10.1038/s41557-024-01712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/29/2024] [Indexed: 01/19/2025]
Abstract
Amyloid fibrils are highly stable misfolded protein assemblies that play an important role in several neurodegenerative and systemic diseases. Although structural information of the amyloid state is now abundant, mechanistic details about the misfolding process remain elusive. Inspired by the Φ-value analysis of protein folding, we combined experiments and molecular simulations to resolve amino-acid contacts and determine the structure of the transition-state ensemble-the rate-limiting step-for fibril elongation of PI3K-SH3 amyloid fibrils. The ensemble was validated experimentally by Tanford β analysis and computationally by free energy calculations. Although protein folding proceeds on funnel-shaped landscapes, here we find that the energy landscape for the misfolding reaction consists of a large 'golf course' region, defined by a single energy barrier and transition state, accessing a sharply funnelled region. Thus, misfolding occurs by rare, successful monomer-fibril end collisions interspersed by numerous unsuccessful binding attempts. Taken together, these insights provide a quantitative and highly resolved description of a protein misfolding reaction.
Collapse
Affiliation(s)
- Jacob Aunstrup Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Abigail Barclay
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicola Vettore
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Louise K Klausen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lena N Mangels
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Alberto Coden
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Shoup D, Priola SA. Chaperone-mediated disaggregation of infectious prions releases particles that seed new prion formation in a strain-specific manner. J Biol Chem 2025; 301:108062. [PMID: 39662829 PMCID: PMC11758957 DOI: 10.1016/j.jbc.2024.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
The mammalian prion protein can form infectious, nonnative, and protease resistant aggregates (PrPD), which cause lethal prion diseases like human Creutzfeldt-Jakob disease. PrPD seeds the formation of new infectious prions by interacting with and triggering the refolding of the normally soluble mammalian prion protein, PrPC, into more PrPD. Refolding of misfolded proteins in the cell is carried out by molecular chaperones such as Grp78. We have recently shown that Grp78 sensitizes PrPD to proteases, indicating structural alterations and leading to its degradation. However, the process of chaperone-mediated PrPD disaggregation, the chaperones involved, and the effect of disaggregation on PrPD seeding activity are unclear. We have now monitored the structural modification, disaggregation, and seeding activity of PrPD from two mouse adapted prion strains, 22L and 87V, in the presence of Grp78 and two forms of the Hsp110 disaggregase chaperone family, Hsp105 and Apg-2. We found that both forms of Hsp110 induced similar amounts of disaggregation and structural change in the protease resistant cores of PrPD from both strains. However, 22L PrPD was more susceptible to destabilization and disaggregation by the chaperones than 87V. Surprisingly, despite disaggregation of both strains, only the 22L PrPD aggregates released by the chaperones had seeding activity, with both forms of Hsp110 enhancing the Grp78 mediated release of these aggregates. Our data show that disassembly of PrPD by Grp78 and Hsp110 chaperones can release seeding particles of PrPD in a strain-specific manner, potentially facilitating prion replication and spread.
Collapse
Affiliation(s)
- Daniel Shoup
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| | - Suzette A Priola
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
3
|
Gardon L, Becker N, Rähse N, Hölbling C, Apostolidis A, Schulz CM, Bochinsky K, Gremer L, Heise H, Lakomek NA. Amyloid fibril formation kinetics of low-pH denatured bovine PI3K-SH3 monitored by three different NMR techniques. Front Mol Biosci 2023; 10:1254721. [PMID: 38046811 PMCID: PMC10691488 DOI: 10.3389/fmolb.2023.1254721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction: Misfolding of amyloidogenic proteins is a molecular hallmark of neurodegenerative diseases in humans. A detailed understanding of the underlying molecular mechanisms is mandatory for developing innovative therapeutic approaches. The bovine PI3K-SH3 domain has been a model system for aggregation and fibril formation. Methods: We monitored the fibril formation kinetics of low pH-denatured recombinantly expressed [U-13C, 15N] labeled bovine PI3K-SH3 by a combination of solution NMR, high-resolution magic angle spinning (HR-MAS) NMR and solid-state NMR spectra. Solution NMR offers the highest sensitivity and, therefore, allows for the recording of two-dimensional NMR spectra with residue-specific resolution for individual time points of the time series. However, it can only follow the decay of the aggregating monomeric species. In solution NMR, aggregation occurs under quiescent experimental conditions. Solid-state NMR has lower sensitivity and allows only for the recording of one-dimensional spectra during the time series. Conversely, solid-state NMR is the only technique to detect disappearing monomers and aggregated species in the same sample by alternatingly recoding scalar coupling and dipolar coupling (CP)-based spectra. HR-MAS NMR is used here as a hybrid method bridging solution and solid-state NMR. In solid-state NMR and HR-MAS NMR the sample is agitated due to magic angle spinning. Results: Good agreement of the decay rate constants of monomeric SH3, measured by the three different NMR methods, is observed. Moderate MAS up to 8 kHz seems to influence the aggregation kinetics of seeded fibril formation only slightly. Therefore, under sufficient seeding (1% seeds used here), quiescent conditions (solution NMR), and agitated conditions deliver similar results, arguing against primary nucleation induced by MAS as a major contributor. Using solid-state NMR, we find that the amount of disappeared monomer corresponds approximately to the amount of aggregated species under the applied experimental conditions (250 µM PI3K-SH3, pH 2.5, 298 K, 1% seeds) and within the experimental error range. Data can be fitted by simple mono-exponential conversion kinetics, with lifetimes τ in the 14-38 h range. Atomic force microscopy confirms that fibrils substantially grew in length during the aggregation experiment. This argues for fibril elongation as the dominant growth mechanism in fibril mass (followed by the CP-based solid-state NMR signal). Conclusion: We suggest a combined approach employing both solution NMR and solid-state NMR, back-to-back, on two aliquots of the same sample under seeding conditions as an additional approach to follow monomer depletion and growth of fibril mass simultaneously. Atomic force microscopy images confirm fibril elongation as a major contributor to the increase in fibril mass.
Collapse
Affiliation(s)
- Luis Gardon
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nina Becker
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nick Rähse
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Christoph Hölbling
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Athina Apostolidis
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Celina M. Schulz
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Kevin Bochinsky
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Henrike Heise
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nils-Alexander Lakomek
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
5
|
Schaefer A, Naser D, Siebeneichler B, Tarasca MV, Meiering EM. Methodological advances and strategies for high resolution structure determination of cellular protein aggregates. J Biol Chem 2022; 298:102197. [PMID: 35760099 PMCID: PMC9396402 DOI: 10.1016/j.jbc.2022.102197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins is at the nexus of molecular processes crucial to aging, disease, and employing proteins for biotechnology and medical applications. There has been much recent progress in determining the structural features of protein aggregates that form in cells; yet, owing to prevalent heterogeneity in aggregation, many aspects remain obscure and often experimentally intractable to define. Here, we review recent results of structural studies for cell-derived aggregates of normally globular proteins, with a focus on high-resolution methods for their analysis and prediction. Complementary results obtained by solid-state NMR spectroscopy, FTIR spectroscopy and microspectroscopy, cryo-EM, and amide hydrogen/deuterium exchange measured by NMR and mass spectrometry, applied to bacterial inclusion bodies and disease inclusions, are uncovering novel information on in-cell aggregation patterns as well as great diversity in the structural features of useful and aberrant protein aggregates. Using these advances as a guide, this review aims to advise the reader on which combination of approaches may be the most appropriate to apply to their unique system.
Collapse
Affiliation(s)
- Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
6
|
Arsac JN, Sedru M, Dartiguelongue M, Vulin J, Davoust N, Baron T, Mollereau B. Chronic Exposure to Paraquat Induces Alpha-Synuclein Pathogenic Modifications in Drosophila. Int J Mol Sci 2021; 22:11613. [PMID: 34769043 PMCID: PMC8584077 DOI: 10.3390/ijms222111613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive accumulation of neuronal intracellular aggregates largely composed of alpha-Synuclein (αSyn) protein. The process of αSyn aggregation is induced during aging and enhanced by environmental stresses, such as the exposure to pesticides. Paraquat (PQ) is an herbicide which has been widely used in agriculture and associated with PD. PQ is known to cause an increased oxidative stress in exposed individuals but the consequences of such stress on αSyn conformation remains poorly understood. To study αSyn pathogenic modifications in response to PQ, we exposed Drosophila expressing human αSyn to a chronic PQ protocol. We first showed that PQ exposure and αSyn expression synergistically induced fly mortality. The exposure to PQ was also associated with increased levels of total and phosphorylated forms of αSyn in the Drosophila brain. Interestingly, PQ increased the detection of soluble αSyn in highly denaturating buffer but did not increase αSyn resistance to proteinase K digestion. These results suggest that PQ induces the accumulation of toxic soluble and misfolded forms of αSyn but that these toxic forms do not form fibrils or aggregates that are detected by the proteinase K assay. Collectively, our results demonstrate that Drosophila can be used to study the effect of PQ or other environmental neurotoxins on αSyn driven pathology.
Collapse
Affiliation(s)
- Jean-Noël Arsac
- French Agency for Food, Environmental and Occupational Health & Safety (Anses) Laboratory of Lyon, Neurodegenerative Diseases Unit, University of Lyon, F-69342 Lyon, France; (J.-N.A.); (M.D.); (J.V.)
| | - Marianne Sedru
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, F-69342 Lyon, France; (M.S.); (N.D.)
| | - Mireille Dartiguelongue
- French Agency for Food, Environmental and Occupational Health & Safety (Anses) Laboratory of Lyon, Neurodegenerative Diseases Unit, University of Lyon, F-69342 Lyon, France; (J.-N.A.); (M.D.); (J.V.)
| | - Johann Vulin
- French Agency for Food, Environmental and Occupational Health & Safety (Anses) Laboratory of Lyon, Neurodegenerative Diseases Unit, University of Lyon, F-69342 Lyon, France; (J.-N.A.); (M.D.); (J.V.)
| | - Nathalie Davoust
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, F-69342 Lyon, France; (M.S.); (N.D.)
| | - Thierry Baron
- French Agency for Food, Environmental and Occupational Health & Safety (Anses) Laboratory of Lyon, Neurodegenerative Diseases Unit, University of Lyon, F-69342 Lyon, France; (J.-N.A.); (M.D.); (J.V.)
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, F-69342 Lyon, France; (M.S.); (N.D.)
| |
Collapse
|
7
|
Palazzi L, Fongaro B, Leri M, Acquasaliente L, Stefani M, Bucciantini M, Polverino de Laureto P. Structural Features and Toxicity of α-Synuclein Oligomers Grown in the Presence of DOPAC. Int J Mol Sci 2021; 22:ijms22116008. [PMID: 34199427 PMCID: PMC8199589 DOI: 10.3390/ijms22116008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022] Open
Abstract
The interplay between α-synuclein and dopamine derivatives is associated with oxidative stress-dependent neurodegeneration in Parkinson’s disease (PD). The formation in the dopaminergic neurons of intraneuronal inclusions containing aggregates of α-synuclein is a typical hallmark of PD. Even though the biochemical events underlying the aberrant aggregation of α-synuclein are not completely understood, strong evidence correlates this process with the levels of dopamine metabolites. In vitro, 3,4-dihydroxyphenylacetaldehyde (DOPAL) and the other two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET), share the property to inhibit the growth of mature amyloid fibrils of α-synuclein. Although this effect occurs with the formation of differently toxic products, the molecular basis of this inhibition is still unclear. Here, we provide information on the effect of DOPAC on the aggregation properties of α-synuclein and its ability to interact with membranes. DOPAC inhibits α-synuclein aggregation, stabilizing monomer and inducing the formation of dimers and trimers. DOPAC-induced oligomers did not undergo conformational transition in the presence of membranes, and penetrated the cell, where they triggered autophagic processes. Cellular assays showed that DOPAC reduced cytotoxicity and ROS production induced by α-synuclein aggregates. Our findings show that the early radicals resulting from DOPAC autoxidation produced covalent modifications of the protein, which were not by themselves a primary cause of either fibrillation or membrane binding inhibition. These findings are discussed in the light of the potential mechanism of DOPAC protection against the toxicity of α-synuclein aggregates to better understand protein and catecholamine biology and to eventually suggest a scaffold that can help in the design of candidate molecules able to interfere in α-synuclein aggregation.
Collapse
Affiliation(s)
- Luana Palazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Patrizia Polverino de Laureto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
- Correspondence:
| |
Collapse
|
8
|
Thermodynamics of amyloid fibril formation from non-equilibrium experiments of growth and dissociation. Biophys Chem 2021; 271:106549. [PMID: 33578107 DOI: 10.1016/j.bpc.2021.106549] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Amyloid fibrils are ordered, non-covalent polymers of proteins that are linked to a range of diseases, as well as biological functions. Amyloid fibrils are often considered thermodynamically so stable that they appear to be irreversible, explaining why very few quantitative thermodynamic studies have been performed on amyloid fibrils, compared to the very large body of kinetic studies. Here we explore the thermodynamics of amyloid fibril formation by the protein PI3K-SH3, which forms amyloid fibrils under acidic conditions. We use quartz crystal microbalance (QCM) and develop novel temperature perturbation experiments based on differential scanning fluorimetry (DSF) to measure the temperature dependence of the fibril growth and dissociation rates, allowing us to quantitatively describe the thermodynamic stability of PI3K-SH3 amyloid fibrils between 10 and 75°C.
Collapse
|
9
|
Comprehensive biophysical and functional study of ziv-aflibercept: characterization and forced degradation. Sci Rep 2020; 10:2675. [PMID: 32060315 PMCID: PMC7021693 DOI: 10.1038/s41598-020-59465-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 12/02/2022] Open
Abstract
Aflibercept (AFL) is an Fc fusion protein used in the treatment of colorectal cancers and different ophthalmological diseases. There are two medicines in which AFL is the active substance: Zaltrap and Eylea, referred as ziv-AFL and AFL respectively. No proper accelerated degradation studies were published on either AFL or ziv-AFL. These studies are essential during research, development and manufacturing stages. Here, we characterized ziv-AFL and submitted it to different stress conditions: light, 60 °C, freeze-thaw cycles, changes in pH, high hypertonic solution and strong denaturing conditions. We used an array of techniques to detect aggregation (SE-HPLC/DAD and DLS), changes in secondary structure (Far-UV circular dichroism), changes in conformation or tertiary structure (Intrinsic tryptophan fluorescence) and alterations in functionality (ELISA). Results indicate that aggregation is common degradation pathway. Two different types of aggregates were detected: dimers and high molecular weight aggregates attributed to β-amyloid-like structures. Secondary structure was maintained in most of the stress tests, while conformation was altered by almost all the tests except for the freeze-thaw cycles. Functionality, evaluated by its immunochemical reaction with VEGF, was found to be stable but with decrease when exposed to light and with likely partial inactivation of the drug when pH was altered.
Collapse
|
10
|
Khan JM, Malik A, Ahmad Khan M, Sharma P, Sen P. Pre-micellar concentrations of sodium dodecylbenzene sulphonate induce amyloid-like fibril formation in myoglobin at pH 4.5. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Palazzi L, Leri M, Cesaro S, Stefani M, Bucciantini M, Polverino de Laureto P. Insight into the molecular mechanism underlying the inhibition of α-synuclein aggregation by hydroxytyrosol. Biochem Pharmacol 2019; 173:113722. [PMID: 31756328 DOI: 10.1016/j.bcp.2019.113722] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/15/2019] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in the elderly people. To date, drugs able to reverse the disease are not available; the gold standard is levodopa that only relieves clinical symptoms, yet with severe side effects after prolonged administration. Many efforts are underway to find alternative targets for PD prevention or treatment, the most promising being α-synuclein (Syn). Recently, we reported that oleuropein aglycone (OleA) interferes with amyloid aggregation of Syn both stabilizing its monomeric state and inducing the formation of harmless, off-pathway oligomers. This study is focused at describing the interaction between Syn and hydroxytyrosol (HT), the phenolic moiety and main metabolite of OleA, and the interferences with Syn aggregation by using biophysical and biological techniques. Our results show that HT dose-dependently inhibits Syn aggregation and that covalent and non-covalent binding mediate HT-Syn interaction. HT does not modify the natively unfolded structure of Syn, rather, it stabilizes specific regions of the molecule leading to inhibition of protein fibrillation. Cellular assays showed that HT reduces the toxicity of Syn aggregates. Moreover, Syn aggregates interaction with the cell membrane, an important factor for prion-like properties of Syn on-pathway oligomers, was reduced in cells exposed to Syn aggregates grown in the presence of HT.
Collapse
Affiliation(s)
- Luana Palazzi
- Department of Pharmaceutical Sciences, CRIBI Biotechnology Centre, University of Padova, Italy
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze, Italy
| | - Samuele Cesaro
- Department of Pharmaceutical Sciences, CRIBI Biotechnology Centre, University of Padova, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy
| | | |
Collapse
|
12
|
Röder C, Vettore N, Mangels LN, Gremer L, Ravelli RBG, Willbold D, Hoyer W, Buell AK, Schröder GF. Atomic structure of PI3-kinase SH3 amyloid fibrils by cryo-electron microscopy. Nat Commun 2019; 10:3754. [PMID: 31434882 PMCID: PMC6704188 DOI: 10.1038/s41467-019-11320-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
High resolution structural information on amyloid fibrils is crucial for the understanding of their formation mechanisms and for the rational design of amyloid inhibitors in the context of protein misfolding diseases. The Src-homology 3 domain of phosphatidyl-inositol-3-kinase (PI3K-SH3) is a model amyloid system that plays a pivotal role in our basic understanding of protein misfolding and aggregation. Here, we present the atomic model of the PI3K-SH3 amyloid fibril with a resolution determined to 3.4 Å by cryo-electron microscopy (cryo-EM). The fibril is composed of two intertwined protofilaments that create an interface spanning 13 residues from each monomer. The model comprises residues 1-77 out of 86 amino acids in total, with the missing residues located in the highly flexible C-terminus. The fibril structure allows us to rationalise the effects of chemically conservative point mutations as well as of the previously reported sequence perturbations on PI3K-SH3 fibril formation and growth.
Collapse
Affiliation(s)
- Christine Röder
- Institute of Complex Systems, Structural Biochemistry (ICS-6) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Nicola Vettore
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lena N Mangels
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Complex Systems, Structural Biochemistry (ICS-6) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Raimond B G Ravelli
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Complex Systems, Structural Biochemistry (ICS-6) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Alexander K Buell
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark.
| | - Gunnar F Schröder
- Institute of Complex Systems, Structural Biochemistry (ICS-6) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
13
|
Austerberry JI, Thistlethwaite A, Fisher K, Golovanov AP, Pluen A, Esfandiary R, van der Walle CF, Warwicker J, Derrick JP, Curtis R. Arginine to Lysine Mutations Increase the Aggregation Stability of a Single-Chain Variable Fragment through Unfolded-State Interactions. Biochemistry 2019; 58:3413-3421. [DOI: 10.1021/acs.biochem.9b00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- James I. Austerberry
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Angela Thistlethwaite
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Alexander P. Golovanov
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Alain Pluen
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Reza Esfandiary
- Dosage Form Design & Development, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | | | - Jim Warwicker
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Jeremy P. Derrick
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
14
|
Al-Shabib NA, Khan JM, Malik A, Sen P, Alsenaidy MA, Husain FM, Alsenaidy AM, Khan RH, Choudhry H, Zamzami MA, Khan MI, Shahzad SA. A quercetin-based flavanoid (rutin) reverses amyloid fibrillation in β-lactoglobulin at pH 2.0 and 358 K. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:40-48. [PMID: 30763917 DOI: 10.1016/j.saa.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/14/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
β-lactoglobulin (BLG) is a well characterized milk protein and a model for folding and aggregation studies. Rutin is a quercetin based-flavanoid and a famous dietary supplement. It is a potential protector from coronary heart disease, cancers, and inflammatory bowel disease. In this study, amyloid fibrillation is reported in BLG at pH 2.0 and temperature 358 K. It is inhibited to some extent by rutin with a rate of 99.3 h-1 M-1. Amyloid fibrillation started taking place after 10 h of incubation and completed near 40 h at a rate of 16.6 × 10-3 h-1, with a plateau during 40-108 h. Disruption of tertiary structure of BLG and increased solvent accessibility of hydrophobic core seem to trigger intermolecular assembly. Increase in 7% β-sheet structure at the cost of 10% α-helical structures and the electron micrograph of BLG fibrils at 108 h further support the formation of amyloid. Although it could not block amyloidosis completely, and even the time required to reach plateau remains the same, a decrease of growth rate from 16.6 × 10-3 to 13.5 × 10-3 h-1 was observed in the presence of 30.0 μM rutin. Rutin seems to block solvent accessibility of the hydrophobic core of BLG. A decrease in the fibril population was observed in electron micrographs, with the increase in rutin concentration. All evidences indicate reversal of fibrillation in BLG in the presence of rutin.
Collapse
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia.
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Ajamaluddin Malik
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Priyankar Sen
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Mohammad A Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Abdulrahman M Alsenaidy
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Hasan Khan
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohmmad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Ali Shahzad
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Surin AK, Grishin SY, Galzitskaya OV. Identification of Amyloidogenic Regions in the Spine of Insulin Fibrils. BIOCHEMISTRY (MOSCOW) 2019; 84:47-55. [PMID: 30927525 DOI: 10.1134/s0006297919010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To reveal conformational changes resulting in the formation of insulin fibrils, it is necessary to identify amyloidogenic regions in the structure of protein monomers. Different models of insulin fibrillogenesis have been proposed previously. However, precise regions responsible for the formation of amyloid fibrils have not been identified. Using bioinformatics programs for predicting amyloidogenic regions, we have determined some common amyloidogenic sequences in the structure of insulin monomers. The use of limited proteolysis and mass spectrometry analysis of the obtained protein fragments resistant to the action of proteases allowed us to identify amino acid sequences in the insulin structure that can form the spine of the insulin fibrils. The obtained results are in agreement with the earlier proposed model of fibril formation from the ring-like oligomers and can be used for designing insulin analogs resistant to amyloidogenesis.
Collapse
Affiliation(s)
- A K Surin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia.,Gamaleya Research Center of Epidemiology and Microbiology, Moscow, 123098, Russia
| | - S Yu Grishin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
16
|
Mason TO, Buell AK. The Kinetics, Thermodynamics and Mechanisms of Short Aromatic Peptide Self-Assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:61-112. [PMID: 31713197 DOI: 10.1007/978-981-13-9791-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The self-assembly of short aromatic peptides and peptide derivatives into a variety of different nano- and microstructures (fibrillar gels, crystals, spheres, plates) is a promising route toward the creation of bio-compatible materials with often unexpected and useful properties. Furthermore, such simple self-assembling systems have been proposed as model systems for the self-assembly of longer peptides, a process that can be linked to biological function and malfunction. Much effort has been made in the last 15 years to explore the space of peptide sequences, chemical modifications and solvent conditions in order to maximise the diversity of assembly morphologies and properties. However, quantitative studies of the corresponding mechanisms of, and driving forces for, peptide self-assembly have remained relatively scarce until recently. In this chapter we review the current state of understanding of the thermodynamic driving forces and self-assembly mechanisms of short aromatic peptides into supramolecular structures. We will focus on experimental studies of the assembly process and our perspective will be centered around diphenylalanine (FF), a key motif of the amyloid β sequence and a paradigmatic self-assembly building block. Our main focus is the basic physical chemistry and key structural aspects of such systems, and we will also compare the mechanism of dipeptide aggregation with that of longer peptide sequences into amyloid fibrils, with discussion on how these mechanisms may be revealed through detailed analysis of growth kinetics, thermodynamics and other fundamental properties of the aggregation process.
Collapse
Affiliation(s)
- Thomas O Mason
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DTU, Lyngby, Denmark.
| |
Collapse
|
17
|
Cereghetti G, Saad S, Dechant R, Peter M. Reversible, functional amyloids: towards an understanding of their regulation in yeast and humans. Cell Cycle 2018; 17:1545-1558. [PMID: 29963943 DOI: 10.1080/15384101.2018.1480220] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein aggregates, and in particular amyloids, are generally considered to be inherently irreversible aberrant clumps, and are often associated with pathologies, such as Alzheimer's disease, Parkinson's disease, or systemic amyloidosis. However, recent evidence demonstrates that some aggregates are not only fully reversible, but also perform essential physiological functions. Despite these new findings, very little is known about how these functional protein aggregates are regulated in a physiological context. Here, we take the yeast pyruvate kinase Cdc19 as an example of a protein forming functional, reversible, solid, amyloid-like aggregates in response to stress conditions. Cdc19 aggregation is regulated via an aggregation-prone low complexity region (LCR). In favorable growth conditions, this LCR is prevented from aggregating by phosphorylation or oligomerization, while upon glucose starvation it becomes exposed and allows aggregation. We suggest that LCR phosphorylation, oligomerization or partner-binding may be general and widespread mechanisms regulating LCR-mediated reversible protein aggregation. Moreover, we show that, as predicted by computational tools, Cdc19 forms amyloid-like aggregates in vitro. Interestingly, we also observe striking similarities between Cdc19 and its mammalian counterpart, PKM2. Indeed, also PKM2 harbors a LCR and contains several peptides with high amyloidogenic propensity, which coincide with known phosphorylation sites. Thus, we speculate that the formation of reversible, amyloid-like aggregates may be a general physiological mechanism for cells to adapt to stress conditions, and that the underlying regulatory mechanisms may be conserved from yeast to humans.
Collapse
Affiliation(s)
- Gea Cereghetti
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland.,b Life Science Zürich , Molecular Life Sciences , Zürich , Switzerland
| | - Shady Saad
- c Department of Chemical and Systems Biology , Stanford University , Stanford, CA , USA
| | - Reinhard Dechant
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland
| | - Matthias Peter
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland
| |
Collapse
|
18
|
Oleuropein aglycone stabilizes the monomeric α-synuclein and favours the growth of non-toxic aggregates. Sci Rep 2018; 8:8337. [PMID: 29844450 PMCID: PMC5974307 DOI: 10.1038/s41598-018-26645-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
α-synuclein plays a key role in the pathogenesis of Parkinson’s disease (PD); its deposits are found as amyloid fibrils in Lewy bodies and Lewy neurites, the histopathological hallmarks of PD. Amyloid fibrillation is a progressive polymerization path starting from peptide/protein misfolding and proceeding through the transient growth of oligomeric intermediates widely considered as the most toxic species. Consequently, a promising approach of intervention against PD might be preventing α-synuclein build-up, misfolding and aggregation. A possible strategy involves the use of small molecules able to slow down the aggregation process or to alter oligomer conformation favouring the growth of non-pathogenic species. Here, we show that oleuropein aglycone (OleA), the main olive oil polyphenol, exhibits anti-amyloidogenic power in vitro by interacting with, and stabilizing, α-synuclein monomers thus hampering the growth of on-pathway oligomers and favouring the growth of stable and harmless aggregates with no tendency to evolve into other cytotoxic amyloids. We investigated the molecular basis of such interference by both biophysical techniques and limited proteolysis; aggregate morphology was monitored by electron microscopy. We also found that OleA reduces the cytotoxicity of α-synuclein aggregates by hindering their binding to cell membrane components and preventing the resulting oxidative damage to cells.
Collapse
|
19
|
Katina NS, Suvorina MY, Grigorashvili EI, Marchenkov VV, Ryabova NA, Nikulin AD, Surin AK. Identification of Regions in Apomyoglobin that Form Intermolecular Interactions in Amyloid Aggregates Using High-Performance Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934817130056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nat Protoc 2017; 12:2391-2410. [DOI: 10.1038/nprot.2017.100] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Stadmiller SS, Gorensek-Benitez AH, Guseman AJ, Pielak GJ. Osmotic Shock Induced Protein Destabilization in Living Cells and Its Reversal by Glycine Betaine. J Mol Biol 2017; 429:1155-1161. [PMID: 28263768 PMCID: PMC5985519 DOI: 10.1016/j.jmb.2017.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/18/2022]
Abstract
Many organisms can adapt to changes in the solute content of their surroundings (i.e., the osmolarity). Hyperosmotic shock causes water efflux and a concomitant reduction in cell volume, which is countered by the accumulation of osmolytes. This volume reduction increases the crowded nature of the cytoplasm, which is expected to affect protein stability. In contrast to traditional theory, which predicts that more crowded conditions can only increase protein stability, recent work shows that crowding can destabilize proteins through transient attractive interactions. Here, we quantify protein stability in living Escherichia coli cells before and after hyperosmotic shock in the presence and absence of the osmolyte, glycine betaine. The 7-kDa N-terminal src-homology 3 domain of Drosophila signal transduction protein drk is used as the test protein. We find that hyperosmotic shock decreases SH3 stability in cells, consistent with the idea that transient attractive interactions are important under physiologically relevant crowded conditions. The subsequent uptake of glycine betaine returns SH3 to the stability observed without osmotic shock. These results highlight the effect of transient attractive interactions on protein stability in cells and provide a new explanation for why stressed cells accumulate osmolytes.
Collapse
Affiliation(s)
- Samantha S Stadmiller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | - Alex J Guseman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27514, USA.
| |
Collapse
|
22
|
De Smet F, Saiz Rubio M, Hompes D, Naus E, De Baets G, Langenberg T, Hipp MS, Houben B, Claes F, Charbonneau S, Delgado Blanco J, Plaisance S, Ramkissoon S, Ramkissoon L, Simons C, van den Brandt P, Weijenberg M, Van England M, Lambrechts S, Amant F, D'Hoore A, Ligon KL, Sagaert X, Schymkowitz J, Rousseau F. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation. J Pathol 2017; 242:24-38. [PMID: 28035683 DOI: 10.1002/path.4872] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023]
Abstract
Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Frederik De Smet
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium.,Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,The Broad Institute, Cambridge, MA, USA
| | - Mirian Saiz Rubio
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Daphne Hompes
- Department of Abdominal Surgery, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Evelyne Naus
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Greet De Baets
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Tobias Langenberg
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Bert Houben
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Filip Claes
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Sarah Charbonneau
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Javier Delgado Blanco
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Stephane Plaisance
- Nucleomics Core, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Shakti Ramkissoon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Lori Ramkissoon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Colinda Simons
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Piet van den Brandt
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Matty Weijenberg
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Manon Van England
- Department of Pathology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Frederic Amant
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Centre for Gynaecological Oncology Amsterdam, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Keith L Ligon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,The Broad Institute, Cambridge, MA, USA.,Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Children's Hospital Boston, Boston, MA, USA
| | - Xavier Sagaert
- Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Frederic Rousseau
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
23
|
Qu A, Huang F, Li A, Yang H, Zhou H, Long J, Shi L. The synergistic effect between KLVFF and self-assembly chaperones on both disaggregation of beta-amyloid fibrils and reducing consequent toxicity. Chem Commun (Camb) 2017; 53:1289-1292. [DOI: 10.1039/c6cc07803f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A new synergistic system combining KLVFF peptide and self-assembly chaperone can synchronize disaggregating amyloid fibrils and reducing consequent toxicity.
Collapse
Affiliation(s)
- Aoting Qu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
| | - Fan Huang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
| | - Ang Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
| | - Huiru Yang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin
- P. R. China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin
- P. R. China
| | - Linqi Shi
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
| |
Collapse
|
24
|
Chang NY, Li YC, Jheng CP, Kuo YT, Lee CI. Characterizing the denatured state ensemble of ubiquitin under native conditions using replica exchange molecular dynamics. RSC Adv 2016. [DOI: 10.1039/c6ra23300g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The representative structures of the denatured state ensemble of ubiquitin under a native condition and heat-denatured ubiquitin simulated from a fully extended conformation.
Collapse
Affiliation(s)
- Nai-yuan Chang
- Department of Chinese Medicine
- Ditmanson Medical Foundation Chia-Yi Christian Hospital
- Chia-Yi 600
- Republic of China
| | - Yi-Ci Li
- Department of Physics
- National Chung Cheng University
- Min-Hsiung Chia-Yi 621
- Republic of China
| | - Cheng-Ping Jheng
- Department of Life Science
- National Chung Cheng University
- Min-Hsiung Chia-Yi 621
- Republic of China
| | - Yu-Ting Kuo
- Department of Physics
- National Chung Cheng University
- Min-Hsiung Chia-Yi 621
- Republic of China
| | - Cheng-I Lee
- Department of Life Science
- National Chung Cheng University
- Min-Hsiung Chia-Yi 621
- Republic of China
| |
Collapse
|
25
|
Ponniah G, Nowak C, Kita A, Cheng G, Kori Y, Liu H. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry. Anal Biochem 2015; 497:1-7. [PMID: 26747642 DOI: 10.1016/j.ab.2015.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/28/2015] [Accepted: 12/14/2015] [Indexed: 01/10/2023]
Abstract
Limited proteolytic digestion is a method with a long history that has been used to study protein domain structures and conformational changes. A method of combining limited proteolytic digestion, stable isotope labeling, and mass spectrometry was established in the current study to investigate protein conformational changes. Recombinant monoclonal antibodies with or without the conserved oligosaccharides, and with or without oxidation of the conserved methionine residues, were used to test the newly proposed method. All of the samples were digested in ammonium bicarbonate buffer prepared in normal water. The oxidized deglycosylated sample was also digested in ammonium bicarbonate buffer prepared in (18)O-labeled water. The sample from the digestion in (18)O-water was spiked into each sample digested in normal water. Each mixed sample was subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). The molecular weight differences between the peptides digested in normal water versus (18)O-water were used to differentiate peaks from the samples. The relative peak intensities of peptides with or without the C-terminal incorporation of (18)O atoms were used to determine susceptibility of different samples to trypsin and chymotrypsin. The results demonstrated that the method was capable of detecting local conformational changes of the recombinant monoclonal antibodies caused by deglycosylation and oxidation.
Collapse
Affiliation(s)
| | - Christine Nowak
- Product Characterization, Alexion Pharmaceuticals, Cheshire, CT 06410, USA
| | - Adriana Kita
- Product Characterization, Alexion Pharmaceuticals, Cheshire, CT 06410, USA
| | - Guilong Cheng
- Product Characterization, Alexion Pharmaceuticals, Cheshire, CT 06410, USA
| | - Yekaterina Kori
- Product Characterization, Alexion Pharmaceuticals, Cheshire, CT 06410, USA
| | - Hongcheng Liu
- Product Characterization, Alexion Pharmaceuticals, Cheshire, CT 06410, USA.
| |
Collapse
|
26
|
Di Michele M, Stes E, Vandermarliere E, Arora R, Astorga-Wells J, Vandenbussche J, van Heerde E, Zubarev R, Bonnet P, Linders JTM, Jacoby E, Brehmer D, Martens L, Gevaert K. Limited Proteolysis Combined with Stable Isotope Labeling Reveals Conformational Changes in Protein (Pseudo)kinases upon Binding Small Molecules. J Proteome Res 2015; 14:4179-93. [PMID: 26293246 DOI: 10.1021/acs.jproteome.5b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Likely due to conformational rearrangements, small molecule inhibitors may stabilize the active conformation of protein kinases and paradoxically promote tumorigenesis. We combined limited proteolysis with stable isotope labeling MS to monitor protein conformational changes upon binding of small molecules. Applying this method to the human serine/threonine kinase B-Raf, frequently mutated in cancer, we found that binding of ATP or its nonhydrolyzable analogue AMP-PNP, but not ADP, stabilized the structure of both B-Raf(WT) and B-Raf(V600E). The ATP-competitive type I B-Raf inhibitor vemurafenib and the type II inhibitor sorafenib stabilized the kinase domain (KD) but had distinct effects on the Ras-binding domain. Stabilization of the B-Raf(WT) KD was confirmed by hydrogen/deuterium exchange MS and molecular dynamics simulations. Our results are further supported by cellular assays in which we assessed cell viability and phosphorylation profiles in cells expressing B-Raf(WT) or B-Raf(V600E) in response to vemurafenib or sorafenib. Our data indicate that an overall stabilization of the B-Raf structure by specific inhibitors activates MAPK signaling and increases cell survival, helping to explain clinical treatment failure. We also applied our method to monitor conformational changes upon nucleotide binding of the pseudokinase KSR1, which holds high potential for inhibition in human diseases.
Collapse
Affiliation(s)
- Michela Di Michele
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Elien Vandermarliere
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Rohit Arora
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans , Pôle de chimie, Rue de Chartres, 45100 Orléans, France
| | | | - Jonathan Vandenbussche
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Erika van Heerde
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheelelaberatoriet Scheeles väg 2, SE-171 77 Stockholm, Sweden
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans , Pôle de chimie, Rue de Chartres, 45100 Orléans, France
| | - Joannes T M Linders
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Edgar Jacoby
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Dirk Brehmer
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Davis PJ, Holmes D, Waltho JP, Staniforth RA. Limited Proteolysis Reveals That Amyloids from the 3D Domain-Swapping Cystatin B Have a Non-Native β-Sheet Topology. J Mol Biol 2015; 427:2418-2434. [DOI: 10.1016/j.jmb.2015.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/08/2015] [Accepted: 05/15/2015] [Indexed: 01/21/2023]
|
28
|
Piejko M, Dec R, Babenko V, Hoang A, Szewczyk M, Mak P, Dzwolak W. Highly amyloidogenic two-chain peptide fragments are released upon partial digestion of insulin with pepsin. J Biol Chem 2015; 290:5947-58. [PMID: 25586185 DOI: 10.1074/jbc.m114.608844] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteases play a well recognized role in the emergence of highly aggregation-prone protein fragments in vivo, whereas in vitro limited proteolysis is often employed to probe different phases of amyloidogenic pathways. Here, we show that addition of moderate amounts of pepsin to acidified bovine insulin at close to physiological temperature results in an abrupt self-assembly of amyloid-like fibrils from partially digested insulin fragments. Biochemical analysis of the pepsin-induced fibrils implicates peptide fragments (named H) consisting of the 13 or 15 N-terminal residues of the A-chain and 11 or 13 N-terminal residues of the B-chain linked by the disulfide bond between Cys-7A-Cys-7B as the main constituents. There are up to eight pepsin-cleavage sites remaining within the double chain peptide, which become protected upon fast fibrillation unless concentration of the enzyme is increased resulting in complete digestion of insulin. Controlled re-association of H-peptides leads to "explosive" fibrillation only under nonreducing conditions implying the key role of the disulfide bond in their amyloidogenicity. Such re-assembled amyloid is similar in terms of morphology and infrared features to typical bovine insulin fibrils, although it lacks the ability to seed the intact protein.
Collapse
Affiliation(s)
- Marcin Piejko
- From the Protein Biophysics Group, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, the Department of Analytical Biochemistry
| | - Robert Dec
- the Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Viktoria Babenko
- From the Protein Biophysics Group, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, the Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Agnieszka Hoang
- From the Protein Biophysics Group, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology
| | - Monika Szewczyk
- the Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Paweł Mak
- the Department of Analytical Biochemistry, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, and
| | - Wojciech Dzwolak
- From the Protein Biophysics Group, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, the Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
29
|
Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A, Boersema PJ, de Laureto PP, Nikolaev Y, Oliveira AP, Picotti P. Global analysis of protein structural changes in complex proteomes. Nat Biotechnol 2014; 32:1036-44. [PMID: 25218519 DOI: 10.1038/nbt.2999] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 07/25/2014] [Indexed: 01/28/2023]
Abstract
Changes in protein conformation can affect protein function, but methods to probe these structural changes on a global scale in cells have been lacking. To enable large-scale analyses of protein conformational changes directly in their biological matrices, we present a method that couples limited proteolysis with a targeted proteomics workflow. Using our method, we assessed the structural features of more than 1,000 yeast proteins simultaneously and detected altered conformations for ~300 proteins upon a change of nutrients. We find that some branches of carbon metabolism are transcriptionally regulated whereas others are regulated by enzyme conformational changes. We detect structural changes in aggregation-prone proteins and show the functional relevance of one of these proteins to the metabolic switch. This approach enables probing of both subtle and pronounced structural changes of proteins on a large scale.
Collapse
Affiliation(s)
- Yuehan Feng
- 1] Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland. [2]
| | - Giorgia De Franceschi
- 1] Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland. [2] CRIBI Biotechnology Centre, University of Padua, Padua, Italy. [3]
| | - Abdullah Kahraman
- 1] Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland. [2]
| | - Martin Soste
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andre Melnik
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paul J Boersema
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Yaroslav Nikolaev
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ana Paula Oliveira
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Greiner ER, Kelly JW, Palhano FL. Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils. PLoS One 2014; 9:e105433. [PMID: 25144803 PMCID: PMC4140755 DOI: 10.1371/journal.pone.0105433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022] Open
Abstract
Amyloid fibrils are associated with many maladies, including Alzheimer's disease (AD). The isolation of amyloids from natural materials is very challenging because the extreme structural stability of amyloid fibrils makes it difficult to apply conventional protein science protocols to their purification. A protocol to isolate and detect amyloids is desired for the diagnosis of amyloid diseases and for the identification of new functional amyloids. Our aim was to develop a protocol to purify amyloid from organisms, based on the particular characteristics of the amyloid fold, such as its resistance to proteolysis and its capacity to be recognized by specific conformational antibodies. We used a two-step strategy with proteolytic digestion as the first step followed by immunoprecipitation using the amyloid conformational antibody LOC. We tested the efficacy of this method using as models amyloid fibrils produced in vitro, tissue extracts from C. elegans that overexpress Aβ peptide, and cerebrospinal fluid (CSF) from patients diagnosed with AD. We were able to immunoprecipitate Aβ(1-40) amyloid fibrils, produced in vitro and then added to complex biological extracts, but not α-synuclein and gelsolin fibrils. This method was useful for isolating amyloid fibrils from tissue homogenates from a C. elegans AD model, especially from aged worms. Although we were able to capture picogram quantities of Aβ(1-40) amyloid fibrils produced in vitro when added to complex biological solutions, we could not detect any Aβ amyloid aggregates in CSF from AD patients. Our results show that although immunoprecipitation using the LOC antibody is useful for isolating Aβ(1-40) amyloid fibrils, it fails to capture fibrils of other amyloidogenic proteins, such as α-synuclein and gelsolin. Additional research might be needed to improve the affinity of these amyloid conformational antibodies for an array of amyloid fibrils without compromising their selectivity before application of this protocol to the isolation of amyloids.
Collapse
Affiliation(s)
- Erin R. Greiner
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jeffery W. Kelly
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Fernando L. Palhano
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Luan B, Lyle N, Pappu RV, Raleigh DP. Denatured state ensembles with the same radii of gyration can form significantly different long-range contacts. Biochemistry 2013; 53:39-47. [PMID: 24280003 DOI: 10.1021/bi4008337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Defining the structural, dynamic, and energetic properties of the unfolded state of proteins is critical for an in-depth understanding of protein folding, protein thermodynamics, and protein aggregation. Here we analyze long-range contacts and compactness in two apparently fully unfolded ensembles of the same protein: the acid unfolded state of the C-terminal domain of ribosomal protein L9 in the absence of high concentrations of urea as well as the urea unfolded state at low pH. Small angle X-ray scattering reveals that the two states are expanded with values of Rg differing by <7%. Paramagnetic relaxation enhancement (PRE) nuclear magnetic resonance studies, however, reveal that the acid unfolded state samples conformations that facilitate contacts between residues that are distant in sequence while the urea unfolded state ensemble does not. The experimental PRE profiles for the acid unfolded state differ significantly from these predicted using an excluded volume limit ensemble, but these long-range contacts are largely eliminated by the addition of 8 M urea. The work shows that expanded unfolded states can sample very different distributions of long-range contacts yet still have similar radii of gyration. The implications for protein folding and for the characterization of unfolded states are discussed.
Collapse
Affiliation(s)
- Bowu Luan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | | | | | | |
Collapse
|
32
|
Structural similarity of wild-type and ALS-mutant superoxide dismutase-1 fibrils using limited proteolysis and atomic force microscopy. Proc Natl Acad Sci U S A 2013; 110:10934-9. [PMID: 23781106 DOI: 10.1073/pnas.1309613110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abnormal assemblies formed by misfolded superoxide dismutase-1 (SOD1) proteins are the likely cause of SOD1-linked familial amyotrophic lateral sclerosis (fALS) and may be involved in some cases of sporadic ALS. To analyze the structure of the insoluble SOD1 amyloid fibrils, we first used limited proteolysis followed by mass spectrometric analysis. Digestion of amyloid fibrils formed from full-length N-acetylated WT SOD1 with trypsin, chymotrypsin, or Pronase revealed that the first 63 residues of the N terminus were protected from protease digestion by fibril formation. Furthermore, every tested ALS-mutant SOD1 protein (G37R, L38V, G41D, G93A, G93S, and D101N) showed a similar protected fragment after trypsin digestion. Our second approach to structural characterization used atomic force microscopy to image the SOD1 fibrils and revealed that WT and mutants showed similar twisted morphologies. WT fibrils had a consistent average helical pitch distance of 62.1 nm. The ALS-mutant SOD1 proteins L38V, G93A, and G93S formed fibrils with helical twist patterns very similar to those of WT, whereas small but significant structural deviations were observed for the mutant proteins G37R, G41D, and D101N. Overall, our studies suggest that human WT SOD1 and ALS-mutants tested have a common intrinsic propensity to fibrillate through the N terminus and that single amino acid substitutions can lead to changes in the helical twist pattern.
Collapse
|
33
|
Frigori RB, Rizzi LG, Alves NA. Microcanonical thermostatistics of coarse-grained proteins with amyloidogenic propensity. J Chem Phys 2013; 138:015102. [PMID: 23298062 DOI: 10.1063/1.4773007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The formation of fibrillar aggregates seems to be a common characteristic of polypeptide chains, although the observation of these aggregates may depend on appropriate experimental conditions. Partially folded intermediates seem to have an important role in the generation of protein aggregates, and a mechanism for this fibril formation considers that these intermediates also correspond to metastable states with respect to the fibrillar ones. Here, using a coarse-grained (CG) off-lattice model, we carry out a comparative analysis of the thermodynamic aspects characterizing the folding transition with respect to the propensity for aggregation of four different systems: two isoforms of the amyloid β-protein, the Src SH3 domain, and the human prion proteins (hPrP). Microcanonical analysis of the data obtained from replica exchange method is conducted to evaluate the free-energy barrier and latent heat in these models. The simulations of the amyloid β isoforms and Src SH3 domain indicated that the folding process described by this CG model is related to a negative specific heat, a phenomenon that can only be verified in the microcanonical ensemble in first-order phase transitions. The CG simulation of the hPrP heteropolymer yielded a continuous folding transition. The absence of a free-energy barrier and latent heat favors the presence of partially unfolded conformations, and in this context, this thermodynamic aspect could explain the reason why the hPrP heteropolymer is more aggregation-prone than the other heteropolymers considered in this study. We introduced the hydrophobic radius of gyration as an order parameter and found that it can be used to obtain reliable information about the hydrophobic packing and the transition temperatures in the folding process.
Collapse
Affiliation(s)
- Rafael B Frigori
- Departamento de Física, FFCLRP, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| | | | | |
Collapse
|
34
|
Meng W, Luan B, Lyle N, Pappu RV, Raleigh DP. The Denatured State Ensemble Contains Significant Local and Long-Range Structure under Native Conditions: Analysis of the N-Terminal Domain of Ribosomal Protein L9. Biochemistry 2013; 52:2662-71. [DOI: 10.1021/bi301667u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenli Meng
- Department
of Chemistry, Stony Brook University, Stony
Brook, New York 11794-3400,
United States
| | - Bowu Luan
- Department
of Chemistry, Stony Brook University, Stony
Brook, New York 11794-3400,
United States
| | - Nicholas Lyle
- Department
of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive,
Campus Box 1097, St. Louis, Missouri 63130-4899, United States
| | - Rohit V. Pappu
- Department
of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive,
Campus Box 1097, St. Louis, Missouri 63130-4899, United States
| | - Daniel P. Raleigh
- Department
of Chemistry, Stony Brook University, Stony
Brook, New York 11794-3400,
United States
- Graduate Program in Biochemistry
and Structural Biology and Graduate Program in Biophysics, Stony Brook University, Stony Brook, New York 11794,
United States
| |
Collapse
|
35
|
Salvatella X. Structural aspects of amyloid formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:73-101. [PMID: 23663966 DOI: 10.1016/b978-0-12-386931-9.00004-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloid fibrils are highly organized and generally insoluble protein aggregates rich in β secondary structure that can be formed by a wide range of sequences. They have been the object of intense scrutiny because their formation has been associated with a number of neurodegenerative disorders such as Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob's diseases. As a consequence of these efforts, much is now known about the properties of proteins that render them prone to form amyloid fibrils, about the mechanism of fibrillation, about the molecular structures of the fibrils, and about the forces that stabilize them. The relationship between the structural properties of the monomeric protein and those of the corresponding aggregate has been, in particular, intensively studied. In this chapter, we will provide an account of current knowledge on this intriguing relationship and provide the reader with key references about this topic.
Collapse
|
36
|
Pivato M, De Franceschi G, Tosatto L, Frare E, Kumar D, Aioanei D, Brucale M, Tessari I, Bisaglia M, Samori B, de Laureto PP, Bubacco L. Covalent α-synuclein dimers: chemico-physical and aggregation properties. PLoS One 2012; 7:e50027. [PMID: 23272053 PMCID: PMC3521728 DOI: 10.1371/journal.pone.0050027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/15/2012] [Indexed: 11/29/2022] Open
Abstract
The aggregation of α-synuclein into amyloid fibrils constitutes a key step in the onset of Parkinson's disease. Amyloid fibrils of α-synuclein are the major component of Lewy bodies, histological hallmarks of the disease. Little is known about the mechanism of aggregation of α-synuclein. During this process, α-synuclein forms transient intermediates that are considered to be toxic species. The dimerization of α-synuclein could represent a rate-limiting step in the aggregation of the protein. Here, we analyzed four covalent dimers of α-synuclein, obtained by covalent link of the N-terms, C-terms, tandem cloning of two sequences and tandem juxtaposition in one protein of the 1–104 and 29–140 sequences. Their biophysical properties in solution were determined by CD, FT-IR and NMR spectroscopies. SDS-induced folding was also studied. The fibrils formation was analyzed by ThT and polarization fluorescence assays. Their morphology was investigated by TEM and AFM-based quantitative morphometric analysis. All dimers were found to be devoid of ordered secondary structure under physiological conditions and undergo α-helical transition upon interaction with SDS. All protein species are able to form amyloid-like fibrils. The reciprocal orientation of the α-synuclein monomers in the dimeric constructs affects the kinetics of the aggregation process and a scale of relative amyloidogenic propensity was determined. Structural investigations by FT IR spectroscopy, and proteolytic mapping of the fibril core did not evidence remarkable difference among the species, whereas morphological analyses showed that fibrils formed by dimers display a lower and diversified level of organization in comparison with α-synuclein fibrils. This study demonstrates that although α-synuclein dimerization does not imply the acquisition of a preferred conformation by the participating monomers, it can strongly affect the aggregation properties of the molecules. The results presented highlight a substantial role of the relative orientation of the individual monomer in the definition of the fibril higher structural levels.
Collapse
Affiliation(s)
- Micaela Pivato
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | | | - Laura Tosatto
- University of Padova, Department of Biology, Padova, Italy
| | - Erica Frare
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Dhruv Kumar
- University of Bologna, Department of Biochemistry, Bologna, Italy
| | - Daniel Aioanei
- University of Bologna, Department of Biochemistry, Bologna, Italy
| | - Marco Brucale
- CNR, Institute of Nanostructured Materials (ISMN), Montelibretti, Roma, Italy
| | | | - Marco Bisaglia
- University of Padova, Department of Biology, Padova, Italy
| | - Bruno Samori
- University of Bologna, Department of Biochemistry, Bologna, Italy
| | | | - Luigi Bubacco
- University of Padova, Department of Biology, Padova, Italy
- * E-mail: (PPDL); (LB)
| |
Collapse
|
37
|
French KC, Makhatadze GI. Core sequence of PAPf39 amyloid fibrils and mechanism of pH-dependent fibril formation: the role of monomer conformation. Biochemistry 2012; 51:10127-36. [PMID: 23215256 DOI: 10.1021/bi301406d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PAPf39, a 39-residue peptide fragment from human prostatic acidic phosphatase, has been shown to form amyloid fibrils in semen (SEVI), which increase HIV infectivity by up to 5 orders of magnitude. The sequence of the PAPf39 fibrillar core was identified using hydrogen-deuterium exchange (HDX) mass spectrometry and protease protection assays. The central and C-terminal regions are highly protected from HDX and proteolytic cleavage and, thus, are part of the fibrillar core. Conversely, the N-terminal region is unprotected from HDX and proteolytic cleavage, suggesting that it is exposed and not part of the fibrillar core. This finding was tested using two N-terminal truncated variants, PAPf39Δ1-8 and PAPf39Δ1-13. Both variants formed amyloid fibrils at neutral pH. However, these variants showed a markedly different pH dependence of fibril formation versus that of PAPf39. PAPf39 fibrils can form at pH 7.7, but not at pH 5.5 or 2.5, while both N-terminally truncated variants can form fibrils at these pH values. Thus, the N-terminal region is not necessary for fibril formation but modulates the pH dependence of PAPf39 fibril formation. PAPf39Δ1-8 and PAPf39Δ1-13 are capable of seeding PAPf39 fibril formation at neutral pH, suggesting that these variants are structurally compatible with PAPf39, yet no mixed fibril formation occurs between the truncated variants and PAPf39 at low pH. This suggests that pH affects the PAPf39 monomer conformational ensemble, which is supported by far-UV circular dichroism spectroscopy. A conceptual model describing the pH dependence of PAPf39 aggregation is proposed and provides potential biological implications.
Collapse
Affiliation(s)
- Kinsley C French
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | |
Collapse
|
38
|
Naeem A, Fazili NA. Defective protein folding and aggregation as the basis of neurodegenerative diseases: the darker aspect of proteins. Cell Biochem Biophys 2012; 61:237-50. [PMID: 21573992 DOI: 10.1007/s12013-011-9200-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of a polypeptide to fold into a unique, functional, and three-dimensional structure depends on the intrinsic properties of the amino acid sequence, function of the molecular chaperones, proteins, and enzymes. Every polypeptide has a finite tendency to misfold and this forms the darker side of the protein world. Partially folded and misfolded proteins that escape the cellular quality control mechanism have the high tendency to form inter-molecular hydrogen bonding between the same protein molecules resulting in aggregation. This review summarizes the underlying and universal mechanism of protein folding. It also deals with the factors responsible for protein misfolding and aggregation. This article describes some of the consequences of such behavior particularly in the context of neurodegenerative conformational diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis and other non-neurodegenerative conformational diseases such as cancer and cystic fibrosis etc. This will encourage a more proactive approach to the early diagnosis of conformational diseases and nutritional counseling for patients.
Collapse
Affiliation(s)
- Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| | | |
Collapse
|
39
|
Brandenburg E, von Berlepsch H, Gerling UIM, Böttcher C, Koksch B. Inhibition of amyloid aggregation by formation of helical assemblies. Chemistry 2012; 17:10651-61. [PMID: 22003512 DOI: 10.1002/chem.201100670] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The formation of amyloid aggregates is responsible for a wide range of diseases, including Alzheimer's and Parkinson's disease. Although the amyloid-forming proteins have different structures and sequences, all undergo a conformational change to form amyloid aggregates that have a characteristic cross-β-structure. The mechanistic details of this process are poorly understood, but different strategies for the development of inhibitors of amyloid formation have been proposed. In most cases, chemically diverse compounds bind to an elongated form of the protein in a β-strand conformation and thereby exert their therapeutic effect. However, this approach could favor the formation of prefibrillar oligomeric species, which are thought to be toxic. Herein, we report an alternative approach in which a helical coiled-coil-based inhibitor peptide has been designed to engage a coiled-coil-based amyloid-forming model peptide in a stable coiled-coil arrangement, thereby preventing rearrangement into a β-sheet conformation and the subsequent formation of amyloid-like fibrils. Moreover, we show that the helix-forming peptide is able to disassemble mature amyloid-like fibrils.
Collapse
|
40
|
Kryndushkin DS, Wickner RB, Tycko R. The core of Ure2p prion fibrils is formed by the N-terminal segment in a parallel cross-β structure: evidence from solid-state NMR. J Mol Biol 2011; 409:263-77. [PMID: 21497604 PMCID: PMC3095661 DOI: 10.1016/j.jmb.2011.03.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 02/02/2023]
Abstract
Intracellular fibril formation by Ure2p produces the non-Mendelian genetic element [URE3] in Saccharomyces cerevisiae, making Ure2p a prion protein. We show that solid-state NMR spectra of full-length Ure2p fibrils, seeded with infectious prions from a specific [URE3] strain and labeled with uniformly (15)N-(13)C-enriched Ile, include strong, sharp signals from Ile residues in the globular C-terminal domain (CTD) with both helical and nonhelical (13)C chemical shifts. Treatment with proteinase K eliminates these CTD signals, leaving only nonhelical signals from the Gln-rich and Asn-rich N-terminal segment, which are also observed in the solid-state NMR spectra of Ile-labeled fibrils formed by residues 1-89 of Ure2p. Thus, the N-terminal segment, or "prion domain" (PD), forms the fibril core, while CTD units are located outside the core. We additionally show that, after proteinase K treatment, Ile-labeled Ure2p fibrils formed without prion seeding exhibit a broader set of solid-state NMR signals than do prion-seeded fibrils, consistent with the idea that structural variations within the PD core account for prion strains. Measurements of (13)C-(13)C magnetic dipole-dipole couplings among (13)C-labeled Ile carbonyl sites in full-length Ure2p fibrils support an in-register parallel β-sheet structure for the PD core of Ure2p fibrils. Finally, we show that a model in which CTD units are attached rigidly to the parallel β-sheet core is consistent with steric constraints.
Collapse
Affiliation(s)
- Dmitry S. Kryndushkin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Reed B. Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
41
|
Greenwald J, Riek R. Biology of amyloid: structure, function, and regulation. Structure 2011; 18:1244-60. [PMID: 20947013 DOI: 10.1016/j.str.2010.08.009] [Citation(s) in RCA: 443] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/18/2010] [Accepted: 08/30/2010] [Indexed: 01/23/2023]
Abstract
Amyloids are highly ordered cross-β sheet protein aggregates associated with many diseases including Alzheimer's disease, but also with biological functions such as hormone storage. The cross-β sheet entity comprising an indefinitely repeating intermolecular β sheet motif is unique among protein folds. It grows by recruitment of the corresponding amyloid protein, while its repetitiveness can translate what would be a nonspecific activity as monomer into a potent one through cooperativity. Furthermore, the one-dimensional crystal-like repeat in the amyloid provides a structural framework for polymorphisms. This review summarizes the recent high-resolution structural studies of amyloid fibrils in light of their biological activities. We discuss how the unique properties of amyloids gives rise to many activities and further speculate about currently undocumented biological roles for the amyloid entity. In particular, we propose that amyloids could have existed in a prebiotic world, and may have been the first functional protein fold in living cells.
Collapse
Affiliation(s)
- Jason Greenwald
- ETH Zurich, Physical Chemistry, ETH Honggerberg, 8093 Zurich, Switzerland
| | | |
Collapse
|
42
|
Liu G, Prabhakar A, Aucoin D, Simon M, Sparks S, Robbins KJ, Sheen A, Petty SA, Lazo ND. Mechanistic studies of peptide self-assembly: transient α-helices to stable β-sheets. J Am Chem Soc 2010; 132:18223-32. [PMID: 21138275 DOI: 10.1021/ja1069882] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathologic self-assembly of proteins is associated with typically late-onset disorders such as Alzheimer's disease, Parkinson's disease, and type 2 diabetes. Important mechanistic details of the self-assembly are unknown, but there is increasing evidence supporting the role of transient α-helices in the early events. Islet amyloid polypeptide (IAPP) is a 37-residue polypeptide that self-assembles into aggregates that are toxic to the insulin-producing β cells. To elucidate early events in the self-assembly of IAPP, we used limited proteolysis to identify an exposed and flexible region in IAPP monomer. This region includes position 20 where a serine-to-glycine substitution (S20G) is associated with enhanced formation of amyloid fibrils and early onset type 2 diabetes. To perform detailed biophysical studies of the exposed and flexible region, we synthesized three peptides including IAPP(11-25)WT (wild type), IAPP(11-25)S20G, and IAPP(11-25)S20P. Solution-state NMR shows that all three peptides transiently populate the α-helical conformational space, but the S20P peptide, which does not self-assemble, transiently samples a broken helix. Under similar sample conditions, the WT and S20G peptides populate the α-helical intermediate state and β-sheet end state, respectively, of fibril formation. Our results suggest a mechanism for self-assembly that includes the stabilization of transient α-helices through the formation of NMR-invisible helical intermediates followed by an α-helix to β-sheet conformational rearrangement. Furthermore, our results suggest that reducing intermolecular helix-helix contacts as in the S20P peptide is an attractive strategy for the design of blockers of peptide self-assembly.
Collapse
Affiliation(s)
- Gai Liu
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bayro MJ, Maly T, Birkett NR, MacPhee CE, Dobson CM, Griffin RG. High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils: backbone conformation and implications for protofilament assembly and structure . Biochemistry 2010; 49:7474-84. [PMID: 20707313 PMCID: PMC2932965 DOI: 10.1021/bi100864t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The SH3 domain of the PI3 kinase (PI3-SH3 or PI3K-SH3) readily aggregates into fibrils in vitro and has served as an important model system in the investigation of the molecular properties and mechanism of formation of amyloid fibrils. We describe the molecular conformation of PI3-SH3 in amyloid fibril form as revealed by magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy. The MAS NMR spectra of these fibrils display excellent resolution, with narrow (13)C and (15)N line widths, representing a high degree of structural order and the absence of extensive molecular motion for the majority of the polypeptide chain. We have identified the spin systems of 82 of the 86 residues in the protein and obtained sequential resonance assignments for 75 of them. Chemical shift analysis indicates that the protein subunits making up the fibril adopt a compact conformation consisting of four well-defined beta-sheet regions and four random-coil elements with varying degrees of local dynamics or disorder. The backbone conformation of PI3-SH3 in fibril form differs significantly from that of the native state of the protein, both in secondary structure and in the location of dynamic or disordered segments. The site-specific MAS NMR analysis of PI3-SH3 fibrils we report here is compared with previously published mechanistic and structural data, resulting in a detailed interpretation of the factors that mediate fibril formation by PI3-SH3 and allowing us to propose a possible model of the core structure of the fibrils. Our results confirm the structural similarities between PI3-SH3 fibrils and amyloid assemblies directly related to degenerative and infectious diseases.
Collapse
Affiliation(s)
- Marvin J. Bayro
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thorsten Maly
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil R. Birkett
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cait E. MacPhee
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, UK
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
44
|
Lim KH, Le YTH, Collver HH, Putnam-Evans C, Kenney JM. Characterization of amyloidogenic intermediate states through a combined use of CD and NMR spectroscopy. Biophys Chem 2010; 151:155-9. [PMID: 20619955 DOI: 10.1016/j.bpc.2010.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/30/2022]
Abstract
Characterization of amyloidogenic intermediate states is of central importance in understanding the molecular mechanism of amyloid formation. In this study, we utilized CD and NMR spectroscopy to investigate secondary structure of the monomeric amyloidogenic intermediate of a beta-structured SH3 domain, which was induced by trifluoroethanol (TFE). The combined biophysical studies showed that the native state SH3 domain is gradually converted to the amyloidogenic intermediate state at TFE concentrations of 20-26% (v/v) and the aggregation-prone state contains substantial amount of the beta-sheet conformation ( approximately 30%) with disordered (54%) and some helical characters (16%). Under weaker amyloidogenic conditions of higher TFE concentrations (>40%), the beta-sheet structures were gradually changed to helical conformations and the relative content of the helical and beta-sheet conformations was highly correlated with the aggregation propensity of the SH3 domain. This indicates that the beta-sheet characters of the amyloidogenic states may be critical to the effective amyloid formation.
Collapse
Affiliation(s)
- Kwang Hun Lim
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States.
| | | | | | | | | |
Collapse
|
45
|
Malisauskas M, Weise C, Yanamandra K, Wolf-Watz M, Morozova-Roche L. Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties. J Mol Biol 2009; 396:60-74. [PMID: 19913026 DOI: 10.1016/j.jmb.2009.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 11/24/2022]
Abstract
Amyloid formation is a universal behavior of proteins central to many important human pathologies and industrial processes. The extreme stability of amyloids towards chemical and proteolytic degradation is an acquired property compared to the precursor proteins and is a major prerequisite for their accumulation. Here, we report a study on the lability of human insulin amyloid as a function of pH and amyloid ageing. Using a range of methods such as atomic force microscopy, thioflavin T fluorescence, circular dichroism, and gas-phase electrophoretic mobility macromolecule analysis, we probed the propensity of human insulin amyloid to propagate or dissociate in a wide span of pH values and ageing in a low concentration regime. We generated a three-dimensional amyloid lability landscape in coordinates of pH and amyloid ageing, which displays three distinctive features: (i) a maximum propensity to grow near pH 3.8 and an age corresponding to the inflection point of the growth phase, (ii) an abrupt cutoff between growth and disaggregation at pH 8-10, and (iii) isoclines shifted towards older age during the amyloid growth phase at pH 4-9, reflecting the greater stability of aged amyloid. Thus, lability of amyloid strongly depends on the ionization state of insulin and on the structure and maturity of amyloid fibrils. The stability of insulin amyloid towards protease K was assessed by using real-time atomic force microscopy and thioflavin T fluorescence. We estimated that amyloid fibrils can be digested both from the free ends and within the length of the fibril with a rate of ca 4 nm/min. Our results highlight that amyloid structures, depending on solution conditions, can be less stable than commonly perceived. These results have wide implications for understanding the propagation of amyloids via a seeding mechanism as well as for understanding their natural clearance and dissociation under solution conditions unfavorable for amyloid formation in biological systems and industrial applications.
Collapse
Affiliation(s)
- Mantas Malisauskas
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE 90187, Sweden
| | | | | | | | | |
Collapse
|
46
|
Wu D, Ma D, Hao YY, Chu J, Wang YH, Zhuang YP, Zhang SL. Incomplete formation of intramolecular disulfide bond triggers degradation and aggregation of human consensus interferon-α mutant by Pichia pastoris. Appl Microbiol Biotechnol 2009; 85:1759-67. [DOI: 10.1007/s00253-009-2232-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
|
47
|
Maji SK, Wang L, Greenwald J, Riek R. Structure-activity relationship of amyloid fibrils. FEBS Lett 2009; 583:2610-7. [PMID: 19596006 DOI: 10.1016/j.febslet.2009.07.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 11/18/2022]
Abstract
Protein aggregation is a process in which proteins self-associate into imperfectly ordered macroscopic entities. Such aggregates are generally classified as either amorphous or highly ordered, the most common form of the latter being amyloid fibrils. Amyloid fibrils composed of cross-beta-sheet structure are the pathological hallmarks of several diseases including Alzheimer's disease, but are also associated with functional states such as the fungal HET-s prion. This review aims to summarize the recent high-resolution structural studies of amyloid fibrils in light of their (potential) activities. We propose that the repetitive nature of the cross-beta-sheet structure of amyloids is key for their multiple properties: the repeating motifs can translate a rather non-specific interaction into a specific one through cooperativity.
Collapse
Affiliation(s)
- Samir K Maji
- School of Bioscience and Bioengineering, IIT-Bombay, Powai, Mumbai, India.
| | | | | | | |
Collapse
|
48
|
Characterization of Oligomeric Species on the Aggregation Pathway of Human Lysozyme. J Mol Biol 2009; 387:17-27. [DOI: 10.1016/j.jmb.2009.01.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/23/2008] [Accepted: 01/25/2009] [Indexed: 12/13/2022]
|
49
|
Mishra P, Bhakuni V. Self-assembly of bacteriophage-associated hyaluronate lyase (HYLP2) into an enzymatically active fibrillar film. J Biol Chem 2009; 284:5240-9. [PMID: 18849564 DOI: 10.1074/jbc.m806730200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The in vitro assembly of a soluble protein into its mature fibrillar form is usually accompanied by loss of its functional activity. Our study is the first demonstration of a natural enzyme (HylP2) retaining its enzymatic activity on conversion from pre-fibril to mature fibril and supports the contention that minor conformational changes in the native folded form of a protein can lead to the formation of a functional fibril. Hyaluronate lyase (HylP2) is a natural enzyme of bacteriophage 10403 of Streptococcus pyogenes. At pH 5.0, the enzyme undergoes partial unfolding localized in its N-terminal domain while the C-terminal domain maintains its folded trimeric conformation. This structural variant of HylP2 retains about 70% enzymatic activity with hyaluronan. It further self-assembles into a fibrillar film in vitro through solvent-exposed nonpolar surfaces and intermolecular beta-sheet formation by the beta-strands in the protein. Interestingly, the mature fibrillar film of HylP2 also retains about 60 and 20% enzymatic activity for hyaluronic acid and chondroitin sulfate, respectively. The possession of broad substrate specificity by the fibrillar form of HylP2 indicates that fluctuations in pH, which do not lead to loss of functionality of HylP2, might assist in bacterial pathogenesis. The formation of fibrillar film-like structure has been observed for the first time among the hyaluronidase enzymes. After acquiring this film-like structure in bacteriophage, HylP2 still retains its enzymatic activity, which establishes that these fibrils are a genuinely acquired protein fold/structure.
Collapse
Affiliation(s)
- Parul Mishra
- Division of Molecular and Structural Biology, Central Drug Research Institute, Lucknow 226001, India
| | | |
Collapse
|
50
|
Espargaró A, Sabaté R, Ventura S. Kinetic and thermodynamic stability of bacterial intracellular aggregates. FEBS Lett 2008; 582:3669-73. [PMID: 18840434 DOI: 10.1016/j.febslet.2008.09.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/04/2008] [Accepted: 09/25/2008] [Indexed: 12/01/2022]
Abstract
Protein aggregation is related to many human disorders and constitutes a major bottleneck in protein production. However, little is known about the conformational properties of in vivo formed aggregates and how they relate to the specific polypeptides embedded in them. Here, we show that the kinetic and thermodynamic stability of the inclusion bodies formed by the Abeta42 Alzheimer peptide and its Asp19 alloform differ significantly and correlate with their amyloidogenic propensity and solubility inside the cell. Our results indicate that the nature of the polypeptide chain determines the specific conformational properties of intracellular aggregates. This implies that different protein inclusions impose dissimilar challenges to the cellular quality-control machinery.
Collapse
Affiliation(s)
- Alba Espargaró
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|