1
|
Balakrishnan R, Mori M, Segota I, Zhang Z, Aebersold R, Ludwig C, Hwa T. Principles of gene regulation quantitatively connect DNA to RNA and proteins in bacteria. Science 2022; 378:eabk2066. [PMID: 36480614 PMCID: PMC9804519 DOI: 10.1126/science.abk2066] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein concentrations are set by a complex interplay between gene-specific regulatory processes and systemic factors, including cell volume and shared gene expression machineries. Elucidating this interplay is crucial for discerning and designing gene regulatory systems. We quantitatively characterized gene-specific and systemic factors that affect transcription and translation genome-wide for Escherichia coli across many conditions. The results revealed two design principles that make regulation of gene expression insulated from concentrations of shared machineries: RNA polymerase activity is fine-tuned to match translational output, and translational characteristics are similar across most messenger RNAs (mRNAs). Consequently, in bacteria, protein concentration is set primarily at the promoter level. A simple mathematical formula relates promoter activities and protein concentrations across growth conditions, enabling quantitative inference of gene regulation from omics data.
Collapse
Affiliation(s)
- Rohan Balakrishnan
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
| | - Matteo Mori
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
| | - Igor Segota
- Departments of Medicine and Pharmacology, University of California at San Diego, La Jolla, California 92093
| | - Zhongge Zhang
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| | - Ruedi Aebersold
- Faculty of Science, University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
2
|
Yoshida H, Wada A, Shimada T, Maki Y, Ishihama A. Coordinated Regulation of Rsd and RMF for Simultaneous Hibernation of Transcription Apparatus and Translation Machinery in Stationary-Phase Escherichia coli. Front Genet 2019; 10:1153. [PMID: 31867037 PMCID: PMC6904343 DOI: 10.3389/fgene.2019.01153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/22/2019] [Indexed: 02/01/2023] Open
Abstract
Transcription and translation in growing phase of Escherichia coli, the best-studied model prokaryote, are coupled and regulated in coordinate fashion. Accordingly, the growth rate-dependent control of the synthesis of RNA polymerase (RNAP) core enzyme (the core component of transcription apparatus) and ribosomes (the core component of translation machinery) is tightly coordinated to keep the relative level of transcription apparatus and translation machinery constant for effective and efficient utilization of resources and energy. Upon entry into the stationary phase, transcription apparatus is modulated by replacing RNAP core-associated sigma (promoter recognition subunit) from growth-related RpoD to stationary-phase-specific RpoS. The anti-sigma factor Rsd participates for the efficient replacement of sigma, and the unused RpoD is stored silent as Rsd–RpoD complex. On the other hand, functional 70S ribosome is transformed into inactive 100S dimer by two regulators, ribosome modulation factor (RMF) and hibernation promoting factor (HPF). In this review article, we overview how we found these factors and what we know about the molecular mechanisms for silencing transcription apparatus and translation machinery by these factors. In addition, we provide our recent findings of promoter-specific transcription factor (PS-TF) screening of the transcription factors involved in regulation of the rsd and rmf genes. Results altogether indicate the coordinated regulation of Rsd and RMF for simultaneous hibernation of transcription apparatus and translation machinery.
Collapse
Affiliation(s)
- Hideji Yoshida
- Department of Physics, Osaka Medical College, Takatsuki, Japan
| | - Akira Wada
- Yoshida Biological Laboratory, Kyoto, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Japan.,Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Yasushi Maki
- Department of Physics, Osaka Medical College, Takatsuki, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
3
|
Park YH, Um SH, Song S, Seok YJ, Ha NC. Structural basis for the sequestration of the anti-σ(70) factor Rsd from σ(70) by the histidine-containing phosphocarrier protein HPr. ACTA ACUST UNITED AC 2015; 71:1998-2008. [PMID: 26457424 DOI: 10.1107/s1399004715013759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/20/2015] [Indexed: 11/10/2022]
Abstract
Histidine-containing phosphocarrier protein (HPr) is a general component of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) involved in the phosphorylation-coupled transport of numerous sugars called PTS sugars. HPr mainly exists in a dephosphorylated form in the presence of PTS sugars in the medium, while its phosphorylation increases in the absence of PTS sugars. A recent study revealed that the dephosphorylated form of HPr binds and antagonizes the function of the antisigma factor Rsd. This anti-sigma factor sequesters the housekeeping sigma factor σ(70) to facilitate switching of the sigma subunit on RNA polymerase from σ(70) to the stress-responsive sigma factor σ(S) in stationary-phase cells. In this study, the structure of the complex of Rsd and HPr was determined at 2.1 Å resolution and revealed that the binding site for HPr on the surface of Rsd partly overlaps with that for σ(70). The localization of the phosphorylation site on HPr at the binding interface for Rsd explains why phosphorylation of HPr abolishes its binding to Rsd. The mutation of crucial residues involved in the HPr-Rsd interaction significantly influenced the competition between HPr and σ(70) for binding to Rsd both in vitro and in vivo. The results provide a structural basis for the linkage of global gene regulation to nutrient availability in the external environment.
Collapse
Affiliation(s)
- Young Ha Park
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Si Hyeon Um
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Saemee Song
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yeong Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Nam Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
4
|
The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2014; 6:26-41. [PMID: 25249263 PMCID: PMC4286720 DOI: 10.1007/s13238-014-0100-x] [Citation(s) in RCA: 825] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/28/2014] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa causes severe and persistent infections in immune compromised individuals and cystic fibrosis sufferers. The infection is hard to eradicate as P. aeruginosa has developed strong resistance to most conventional antibiotics. The problem is further compounded by the ability of the pathogen to form biofilm matrix, which provides bacterial cells a protected environment withstanding various stresses including antibiotics. Quorum sensing (QS), a cell density-based intercellular communication system, which plays a key role in regulation of the bacterial virulence and biofilm formation, could be a promising target for developing new strategies against P. aeruginosa infection. The QS network of P. aeruginosa is organized in a multi-layered hierarchy consisting of at least four interconnected signaling mechanisms. Evidence is accumulating that the QS regulatory network not only responds to bacterial population changes but also could react to environmental stress cues. This plasticity should be taken into consideration during exploration and development of anti-QS therapeutics.
Collapse
|
5
|
Maillard AP, Girard E, Ziani W, Petit-Härtlein I, Kahn R, Covès J. The crystal structure of the anti-σ factor CnrY in complex with the σ factor CnrH shows a new structural class of anti-σ factors targeting extracytoplasmic function σ factors. J Mol Biol 2014; 426:2313-27. [PMID: 24727125 DOI: 10.1016/j.jmb.2014.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/19/2014] [Accepted: 04/03/2014] [Indexed: 11/25/2022]
Abstract
Gene expression in bacteria is regulated at the level of transcription initiation, a process driven by σ factors. The regulation of σ factor activity proceeds from the regulation of their cytoplasmic availability, which relies on specific inhibitory proteins called anti-σ factors. With anti-σ factors regulating their availability according to diverse cues, extracytoplasmic function σ factors (σ(ECF)) form a major signal transduction system in bacteria. Here, structure:function relationships have been characterized in an emerging class of minimal-size transmembrane anti-σ factors, using CnrY from Cupriavidus metallidurans CH34 as a model. This study reports the 1.75-Å-resolution structure of CnrY cytosolic domain in complex with CnrH, its cognate σ(ECF), and identifies a small hydrophobic knob in CnrY as the major determinant of this interaction in vivo. Unsuspected structural similarity with the molecular switch regulating the general stress response in α-proteobacteria unravels a new class of anti-σ factors targeting σ(ECF). Members of this class carry out their function via a 30-residue stretch that displays helical propensity but no canonical structure on its own.
Collapse
Affiliation(s)
- Antoine P Maillard
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France.
| | - Eric Girard
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Widade Ziani
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Isabelle Petit-Härtlein
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Richard Kahn
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Jacques Covès
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| |
Collapse
|
6
|
Bates SR, Quake SR. Mapping of protein-protein interactions of E. coli RNA polymerase with microfluidic mechanical trapping. PLoS One 2014; 9:e91542. [PMID: 24643045 PMCID: PMC3958368 DOI: 10.1371/journal.pone.0091542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/13/2014] [Indexed: 11/18/2022] Open
Abstract
The biophysical details of how transcription factors and other proteins interact with RNA polymerase are of great interest as they represent the nexus of how structure and function interact to regulate gene expression in the cell. We used an in vitro microfluidic approach to map interactions between a set of ninety proteins, over a third of which are transcription factors, and each of the four subunits of E. coli RNA polymerase, and we compared our results to those of previous large-scale studies. We detected interactions between RNA polymerase and transcription factors that earlier high-throughput screens missed; our results suggest that such interactions can occur without DNA mediation more commonly than previously appreciated.
Collapse
Affiliation(s)
- Steven R. Bates
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Stephen R. Quake
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Bioengineering and HHMI, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIA(Glc) (EIIA(Glc)) is known as the central processing unit of carbon metabolism and plays multiple roles, including regulation of adenylyl cyclase, the fermentation/respiration switch protein FrsA, glycerol kinase, and several non-PTS transporters, whereas the only known regulatory role of the E. coli histidine-containing phosphocarrier protein HPr is in the activation of glycogen phosphorylase. Because HPr is known to be more abundant than EIIA(Glc) in enteric bacteria, we assumed that there might be more regulatory mechanisms connected with HPr. The ligand fishing experiment in this study identified Rsd, an anti-sigma factor known to complex with σ(70) in stationary-phase cells, as an HPr-binding protein in E. coli. Only the dephosphorylated form of HPr formed a tight complex with Rsd and thereby inhibited complex formation between Rsd and σ(70). Dephosphorylated HPr, but not phosphorylated HPr, antagonized the inhibitory effect of Rsd on σ(70)-dependent transcriptions both in vivo and in vitro, and also influenced the competition between σ(70) and σ(S) for core RNA polymerase in the presence of Rsd. Based on these data, we propose that the anti-σ(70) activity of Rsd is regulated by the phosphorylation state-dependent interaction of HPr with Rsd.
Collapse
|
8
|
Affiliation(s)
- Sofia Österberg
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
| | | | - Victoria Shingler
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
| |
Collapse
|
9
|
Abstract
Alternative σ-factors of bacteria bind core RNA polymerase to program the specific promoter selectivity of the holoenzyme. Signal-responsive changes in the availability of different σ-factors redistribute the RNA polymerase among the distinct promoter classes in the genome for appropriate adaptive, developmental and survival responses. The σ(54) -factor is structurally and functionally distinct from all other σ-factors. Consequently, binding of σ(54) to RNA polymerase confers unique features on the cognate holoenzyme, which requires activation by an unusual class of mechano-transcriptional activators, whose activities are highly regulated in response to environmental cues. This review summarizes the current understanding of the mechanisms of transcriptional activation by σ(54) -RNA polymerase and highlights the impact of global regulatory factors on transcriptional efficiency from σ(54) -dependent promoters. These global factors include the DNA-bending proteins IHF and CRP, the nucleotide alarmone ppGpp, and the RNA polymerase-targeting protein DksA.
Collapse
|
10
|
Zafar MA, Shah IM, Wolf RE. Protein-protein interactions between sigma(70) region 4 of RNA polymerase and Escherichia coli SoxS, a transcription activator that functions by the prerecruitment mechanism: evidence for "off-DNA" and "on-DNA" interactions. J Mol Biol 2010; 401:13-32. [PMID: 20595001 PMCID: PMC2917807 DOI: 10.1016/j.jmb.2010.05.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 05/12/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
According to the prerecruitment hypothesis, Escherichia coli SoxS activates the transcription of the genes of the SoxRS regulon by forming binary complexes with RNA polymerase (RNAP) that scan the chromosome for class I and class II SoxS-dependent promoters. We showed previously that the alpha subunit's C-terminal domain plays a role in activating both classes of promoter by making protein-protein contacts with SoxS; some of these contacts are made in solution in the absence of promoter DNA, a critical prediction of the prerecruitment hypothesis. Here, we identified seven single-alanine substitutions of the region 4 of sigma(70) (sigma(70) R4) of RNAP that reduce SoxS activation of class II promoters. With genetic epistasis tests between these sigma(70) R4 mutants and positive control mutants of SoxS, we identified 10 pairs of amino acids that interact with each other in E. coli. Using the yeast two-hybrid system and affinity immobilization assays, we showed that SoxS and sigma(70) R4 can interact in solution (i.e., "off-DNA"). The interaction requires amino acids of the class I/II (but not the class II) positive control surface of SoxS, and five amino acids of sigma(70) R4 that reduce activation in E. coli also reduce the SoxS-sigma(70) R4 interaction in yeast. One of the epistatic interactions that occur in E. coli also occurs in the yeast two-hybrid system (i.e., off-DNA). Importantly, we infer that the five epistatic interactions occurring in E. coli that require an amino acid of the class II surface occur "on-DNA" at class II promoters. Finding that SoxS contacts sigma(70) R4 both off-DNA and on-DNA is consistent with the prerecruitment hypothesis. Moreover, SoxS is now the first example of an E. coli transcriptional activator that uses a single positive control surface to make specific protein-protein contacts with two different subunits of RNAP.
Collapse
Affiliation(s)
- M. Ammar Zafar
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | | | - Richard E. Wolf
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| |
Collapse
|
11
|
Pul Ü, Wurm R, Arslan Z, Geißen R, Hofmann N, Wagner R. Identification and characterization ofE. coliCRISPR-caspromoters and their silencing by H-NS. Mol Microbiol 2010; 75:1495-512. [DOI: 10.1111/j.1365-2958.2010.07073.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Li Z, Song F, Zhuang Z, Dunaway-Mariano D, Anderson KS. Monitoring enzyme catalysis in the multimeric state: direct observation of Arthrobacter 4-hydroxybenzoyl-coenzyme A thioesterase catalytic complexes using time-resolved electrospray ionization mass spectrometry. Anal Biochem 2009; 394:209-16. [PMID: 19635449 PMCID: PMC2743789 DOI: 10.1016/j.ab.2009.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/06/2009] [Accepted: 07/20/2009] [Indexed: 11/19/2022]
Abstract
The ability to examine real-time reaction kinetics for multimeric enzymes in their native state may offer unique insights into understanding the catalytic mechanism and its interplay with three-dimensional structure. In this study, we have used a time-resolved electrospray mass spectrometry approach to probe the kinetic mechanism of 4-hydroxybenzoyl-coenzyme A (4-HBA-CoA) thioesterase from Arthrobacter sp. strain SU in the millisecond time domain. Intact tetrameric complexes of 4-HBA-CoA thioesterase with up to four natural substrate (4-HBA-CoA) molecules bound were detected at times as early as 6 ms using an online rapid-mixing device directly coupled to an electrospray ionization time-of-flight mass spectrometer. Species corresponding to the formation of a folded tetramer of the thioesterase at charge states 16+, 17+, 18+, and 19+ around m/z 3800 were observed and assigned as individual tetramers of thioesterase and noncovalent complexes of the tetramers with up to four substrate and/or product molecules. Real-time evaluation of the reaction kinetics was accomplished by monitoring change in peak intensity corresponding to the substrate and product complexes of the tetrameric protein. The mass spectral data suggest that product 4-HBA is released from the active site of the enzyme prior to the release of product CoA following catalytic turnover. This study demonstrates the utility of this technique to provide additional molecular details for an understanding of the individual enzyme states during the thioesterase catalysis and ability to observe real-time interactions between enzyme and substrates and/or products in the millisecond time range.
Collapse
Affiliation(s)
- Zhili Li
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Feng Song
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Zhihao Zhuang
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Debra Dunaway-Mariano
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Karen S. Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Piper SE, Mitchell JE, Lee DJ, Busby SJW. A global view of Escherichia coli Rsd protein and its interactions. MOLECULAR BIOSYSTEMS 2009; 5:1943-7. [PMID: 19763331 DOI: 10.1039/b904955j] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Escherichia coli Rsd protein forms 1 : 1 complexes with sigma(70) protein, which is the major factor in determining promoter recognition by RNA polymerase. Here we describe measurements of the levels of Rsd, RNA polymerase, sigma(70) and the alternative sigma(38) factor. Rsd levels are sufficient to sequester a significant proportion of sigma(70) and immunoaffinity pull-down experiments show that this occurs in stationary phase but not in exponentially growing cells. Rsd expression is controlled by two promoters, P1 and P2. Experiments with lac fusions show that the P2 promoter is stronger than P1, that P2 is active in all phases of growth, and that this accounts for the high levels of Rsd.
Collapse
Affiliation(s)
- Sarah E Piper
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|
14
|
Abstract
6S RNA is a small, non-coding RNA that interacts with sigma(70)-RNA polymerase and downregulates transcription at many promoters during stationary phase. When bound to sigma(70)-RNA polymerase, 6S RNA is engaged in the active site of sigma(70)-RNA polymerase in a manner similar enough to promoter DNA that the RNA can serve as a template for RNA synthesis. It has been proposed that 6S RNA mimics the conformation of DNA during transcription initiation, suggesting contacts between RNA polymerase and 6S RNA or DNA may be similar. Here we demonstrate that region 4.2 of sigma(70) is critical for the interaction between 6S RNA and RNA polymerase. We define an expanded binding surface that encompasses positively charged residues throughout the recognition helix of the helix-turn-helix motif in region 4.2, in contrast to DNA binding that is largely focused on the N-terminal region of this helix. Furthermore, negatively charged residues in region 4.2 weaken binding to 6S RNA but do not similarly affect DNA binding. We propose that the binding sites for promoter DNA and 6S RNA on region 4.2 of sigma(70) are overlapping but distinct, raising interesting possibilities for how core promoter elements contribute to defining promoters that are sensitive to 6S RNA regulation.
Collapse
|
15
|
Inhibition of transcription in Staphylococcus aureus by a primary sigma factor-binding polypeptide from phage G1. J Bacteriol 2009; 191:3763-71. [PMID: 19376864 DOI: 10.1128/jb.00241-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The primary sigma factor of Staphylococcus aureus, sigma(SA), regulates the transcription of many genes, including several essential genes, in this bacterium via specific recognition of exponential growth phase promoters. In this study, we report the existence of a novel staphylococcal phage G1-derived growth inhibitory polypeptide, referred to as G1ORF67, that interacts with sigma(SA) both in vivo and in vitro and regulates its activity. Delineation of the minimal domain of sigma(SA) that is required for its interaction with G1ORF67 as amino acids 294 to 360 near the carboxy terminus suggests that the G1 phage-encoded anti-sigma factor may occlude the -35 element recognition domain of sigma(SA). As would be predicted by this hypothesis, the G1ORF67 polypeptide abolished both RNA polymerase core-dependent binding of sigma(SA) to DNA and sigma(SA)-dependent transcription in vitro. While G1ORF67 profoundly inhibits transcription when expressed in S. aureus cells in mode of action studies, our finding that G1ORF67 was unable to inhibit transcription when expressed in Escherichia coli concurs with its inability to inhibit transcription by the E. coli holoenzyme in vitro. These features demonstrate the selectivity of G1ORF67 for S. aureus RNA polymerase. We predict that G1ORF67 is one of the central polypeptides in the phage G1 strategy to appropriate host RNA polymerase and redirect it to phage reproduction.
Collapse
|
16
|
Yuan AH, Gregory BD, Sharp JS, McCleary KD, Dove SL, Hochschild A. Rsd family proteins make simultaneous interactions with regions 2 and 4 of the primary sigma factor. Mol Microbiol 2008; 70:1136-51. [PMID: 18826409 PMCID: PMC2581641 DOI: 10.1111/j.1365-2958.2008.06462.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial anti-sigma factors typically regulate sigma factor function by restricting the access of their cognate sigma factors to the RNA polymerase (RNAP) core enzyme. The Escherichia coli Rsd protein forms a complex with the primary sigma factor, sigma(70), inhibits sigma(70)-dependent transcription in vitro, and has been proposed to function as a sigma(70)-specific anti-sigma factor, thereby facilitating the utilization of alternative sigma factors. In prior work, Rsd has been shown to interact with conserved region 4 of sigma(70), but it is not known whether this interaction suffices to account for the regulatory functions of Rsd. Here we show that Rsd and the Rsd orthologue AlgQ, a global regulator of gene expression in Pseudomonas aeruginosa, interact with conserved region 2 of sigma(70). We show further that Rsd and AlgQ can interact simultaneously with regions 2 and 4 of sigma(70). Our findings establish that the abilities of Rsd and AlgQ to interact with sigma(70) region 2 are important determinants of their in vitro and in vivo activities.
Collapse
Affiliation(s)
- Andy H Yuan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
17
|
England P, Westblade LF, Karimova G, Robbe-Saule V, Norel F, Kolb A. Binding of the unorthodox transcription activator, Crl, to the components of the transcription machinery. J Biol Chem 2008; 283:33455-64. [PMID: 18818199 PMCID: PMC2586269 DOI: 10.1074/jbc.m807380200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Indexed: 11/06/2022] Open
Abstract
The small regulatory protein Crl binds to sigmaS, the RNA polymerase stationary phase sigma factor. Crl facilitates the formation of the sigmaS-associated holoenzyme (EsigmaS) and thereby activates sigmaS-dependent genes. Using a real time surface plasmon resonance biosensor, we characterized in greater detail the specificity and mode of action of Crl. Crl specifically forms a 1:1 complex with sigmaS, which results in an increase of the association rate of sigmaS to core RNA polymerase without any effect on the dissociation rate of EsigmaS. Crl is also able to associate with preformed EsigmaS with a higher affinity than with sigmaS alone. Furthermore, even at saturating sigmaS concentrations, Crl significantly increases EsigmaS association with the katN promoter and the productive isomerization of the EsigmaS-katN complex, supporting a direct role of Crl in transcription initiation. Finally, we show that Crl does not bind to sigma70 itself but is able at high concentrations to form a weak and transient 1:1 complex with both core RNA polymerase and the sigma70-associated holoenzyme, leaving open the possibility that Crl might also exert a side regulatory role in the transcriptional activity of additional non-sigmaS holoenzymes.
Collapse
Affiliation(s)
- Patrick England
- Institut Pasteur, Plate-forme de Biophysique des Macromolécules et de leurs Interactions, Paris, France.
| | | | | | | | | | | |
Collapse
|
18
|
Bernardo LMD, Johansson LUM, Skärfstad E, Shingler V. sigma54-promoter discrimination and regulation by ppGpp and DksA. J Biol Chem 2008; 284:828-38. [PMID: 19008221 DOI: 10.1074/jbc.m807707200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma(54)-factor controls expression of a variety of genes in response to environmental cues. Much previous work has implicated the nucleotide alarmone ppGpp and its co-factor DksA in control of sigma(54)-dependent transcription in the gut commensal Escherichia coli, which has evolved to live under very different environmental conditions than Pseudomonas putida. Here we compared ppGpp/DksA mediated control of sigma(54)-dependent transcription in these two organisms. Our in vivo experiments employed P. putida mutants and manipulations of factors implicated in ppGpp/DksA mediated control of sigma(54)-dependent transcription in combination with a series of sigma(54)-promoters with graded affinities for sigma(54)-RNA polymerase. For in vitro analysis we used a P. putida-based reconstituted sigma(54)-transcription assay system in conjunction with DNA-binding plasmon resonance analysis of native and heterologous sigma(54)-RNA polymerase holoenzymes. In comparison with E. coli, ppGpp/DksA responsive sigma(54)-transcription in the environmentally adaptable P. putida was found to be more robust under low energy conditions that occur upon nutrient depletion. The mechanism behind this difference can be traced to reduced promoter discrimination of low affinity sigma(54)-promoters that is conferred by the strong DNA binding properties of the P. putida sigma(54)-RNA polymerase holoenzyme.
Collapse
|
19
|
The emerging role of MS in structure elucidation of protein-nucleic acid complexes. Biochem Soc Trans 2008; 36:723-31. [PMID: 18631148 DOI: 10.1042/bst0360723] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Developments in MS enable us to apply this technique to non-covalent complexes, defining their stoichiometry, subunit interactions and architectural organization. We illustrate the application of this non-covalent MS approach to uncovering the overall topological arrangements of subunits and interactions within RNA-protein complexes studied in our laboratory over the last 5 years. These studies exemplify the emerging role and potential of MS as a complementary structural biology methodology and demonstrate its unique niche in investigations of dynamic or heterogeneous protein-nucleic acid complexes, which are not accessible to classical high-resolution structural biology techniques.
Collapse
|
20
|
Differential mechanisms of binding of anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA to E. coli RNA polymerase lead to diverse physiological consequences. J Bacteriol 2008; 190:3434-43. [PMID: 18359804 DOI: 10.1128/jb.01792-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to sigma(70) with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with sigma(70) studied by using the yeast two-hybrid system revealed that region 4 of sigma(70) is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of sigma(70) as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to sigma(70).
Collapse
|
21
|
Patikoglou GA, Westblade LF, Campbell EA, Lamour V, Lane WJ, Darst SA. Crystal structure of the Escherichia coli regulator of sigma70, Rsd, in complex with sigma70 domain 4. J Mol Biol 2007; 372:649-59. [PMID: 17681541 PMCID: PMC2083641 DOI: 10.1016/j.jmb.2007.06.081] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/19/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
The Escherichia coli Rsd protein binds tightly and specifically to the RNA polymerase (RNAP) sigma(70) factor. Rsd plays a role in alternative sigma factor-dependent transcription by biasing the competition between sigma(70) and alternative sigma factors for the available core RNAP. Here, we determined the 2.6 A-resolution X-ray crystal structure of Rsd bound to sigma(70) domain 4 (sigma(70)(4)), the primary determinant for Rsd binding within sigma(70). The structure reveals that Rsd binding interferes with the two primary functions of sigma(70)(4), core RNAP binding and promoter -35 element binding. Interestingly, the most highly conserved Rsd residues form a network of interactions through the middle of the Rsd structure that connect the sigma(70)(4)-binding surface with three cavities exposed on distant surfaces of Rsd, suggesting functional coupling between sigma(70)(4) binding and other binding surfaces of Rsd, either for other proteins or for as yet unknown small molecule effectors. These results provide a structural basis for understanding the role of Rsd, as well as its ortholog, AlgQ, a positive regulator of Pseudomonas aeruginosa virulence, in transcription regulation.
Collapse
|
22
|
Abstract
The fact that ions of macromolecular complexes produced by electrospray ionization can be maintained intact in a mass spectrometer has stimulated exciting new lines of research. In this review we chart the progress of this research from the observation of simple homo-oligomers to complex heterogeneous macromolecular assemblies of mega-Dalton proportions. The applications described herein not only confirm the status of mass spectrometry (MS) as a structural biology approach to complement X-ray analysis or electron microscopy, but also highlight unique attributes of the methodology. This is exemplified in studies of the biogenesis of macromolecular complexes and in the exchange of subunits between macromolecular complexes. Moreover, recent successes in revealing the overall subunit architecture of complexes are set to promote MS from a complementary approach to a structural biology tool in its own right.
Collapse
Affiliation(s)
- Michal Sharon
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
| | | |
Collapse
|
23
|
Mitchell JE, Oshima T, Piper SE, Webster CL, Westblade LF, Karimova G, Ladant D, Kolb A, Hobman JL, Busby SJW, Lee DJ. The Escherichia coli regulator of sigma 70 protein, Rsd, can up-regulate some stress-dependent promoters by sequestering sigma 70. J Bacteriol 2007; 189:3489-95. [PMID: 17351046 PMCID: PMC1855875 DOI: 10.1128/jb.00019-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli Rsd protein forms complexes with the RNA polymerase sigma(70) factor, but its biological role is not understood. Transcriptome analysis shows that overexpression of Rsd causes increased expression from some promoters whose expression depends on the alternative sigma(38) factor, and this was confirmed by experiments with lac fusions at selected promoters. The LP18 substitution in Rsd increases the Rsd-dependent stimulation of these promoter-lac fusions. Analysis with a bacterial two-hybrid system shows that the LP18 substitution in Rsd increases its interaction with sigma(70). Our experiments support a model in which the role of Rsd is primarily to sequester sigma(70), thereby increasing the levels of RNA polymerase containing the alternative sigma(38) factor.
Collapse
Affiliation(s)
- Jennie E Mitchell
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bernardo LMD, Johansson LUM, Solera D, Skärfstad E, Shingler V. The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma-dependent transcription. Mol Microbiol 2006; 60:749-64. [PMID: 16629675 DOI: 10.1111/j.1365-2958.2006.05129.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RNA polymerase-binding protein DksA is a cofactor required for guanosine tetraphosphate (ppGpp)-responsive control of transcription from sigma70 promoters. Here we present evidence: (i) that both DksA and ppGpp are required for in vivo sigma54 transcription even though they do not have any major direct effects on sigma54 transcription in reconstituted in vitro transcription and sigma-factor competition assays, (ii) that previously defined mutations rendering the housekeeping sigma70 less effective at competing with sigma54 for limiting amounts of core RNA polymerase similarly suppress the requirement for DksA and ppGpp in vivo and (iii) that the extent to which ppGpp and DksA affect transcription from sigma54 promoters in vivo reflects the innate affinity of the promoters for sigma54-RNA polymerase holoenzyme in vitro. Based on these findings, we propose a passive model for ppGpp/DksA regulation of sigma54-dependent transcription that depends on the potent negative effects of these regulatory molecules on transcription from powerful stringently regulated sigma70 promoters.
Collapse
|
25
|
Abstract
Bacteria use small signal molecules in order to monitor their population density and coordinate gene regulation in a process called quorum sensing. In Gram-negative bacteria, the most common signal molecules are acylated homoserine lactones. Several Pseudomonas species produce acylated homoserine lactones that control important functions including pathogenicity and plant growth promotion. Many reports indicate that the quorum sensing systems of Pseudomonas are significantly regulated and interconnected with regulons of other global regulators. The integration of quorum sensing into additional regulatory circuits increases the range of environmental and metabolic signals beyond that of cell density, as well as further tuning the timing of the response. This review will focus on the regulation of quorum sensing in Pseudomonas, highlighting a complex response that might serve a given species to adapt in its particular environment.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| |
Collapse
|
26
|
Raffaelle M, Kanin EI, Vogt J, Burgess RR, Ansari AZ. Holoenzyme Switching and Stochastic Release of Sigma Factors from RNA Polymerase In Vivo. Mol Cell 2005; 20:357-66. [PMID: 16285918 DOI: 10.1016/j.molcel.2005.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/09/2005] [Accepted: 10/07/2005] [Indexed: 11/29/2022]
Abstract
We investigated the binding of E. coli RNA polymerase holoenzymes bearing sigma70, sigma(S), sigma32, or sigma54 to the ribosomal RNA operons (rrn) in vivo. At the rrn promoter, we observed "holoenzyme switching" from Esigma70 to Esigma(S) or Esigma32 in response to environmental cues. We also examined if sigma factors are retained by core polymerase during transcript elongation. At the rrn operons, sigma70 translocates briefly with the elongating polymerase and is released stochastically from the core polymerase with an estimated half-life of approximately 4-7 s. Similarly, at gadA and htpG, operons that are targeted by Esigma(S) and Esigma32, respectively, we find that sigma(S) and sigma32 also dissociate stochastically, albeit more rapidly than sigma70, from the elongating core polymerase. Up to approximately 70% of Esigma70 (the major vegetative holoenzyme) in rapidly growing cells is engaged in transcribing the rrn operons. Thus, our results suggest that at least approximately 70% of cellular holoenzymes release sigma70 during transcript elongation. Release of sigma factors during each round of transcription provides a simple mechanism for rapidly reprogramming polymerase with the relevant sigma factor and is consistent with the occurrence of a "sigma cycle" in vivo.
Collapse
Affiliation(s)
- Marni Raffaelle
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Ambrosi C, Tiburzi F, Imperi F, Putignani L, Visca P. Involvement of AlgQ in transcriptional regulation of pyoverdine genes in Pseudomonas aeruginosa PAO1. J Bacteriol 2005; 187:5097-107. [PMID: 16030202 PMCID: PMC1196021 DOI: 10.1128/jb.187.15.5097-5107.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to iron limitation, Pseudomonas aeruginosa produces the fluorescent siderophore pyoverdine. Transcription of pyoverdine biosynthetic (pvd) genes is driven by the iron starvation sigma factor PvdS, which is negatively regulated by the Fur-Fe(II) holorepressor. We studied the effect of AlgQ, the Escherichia coli Rsd orthologue, on pyoverdine production by P. aeruginosa PAO1. AlgQ is a global regulatory protein which activates alginate, ppGpp, and inorganic polyphosphate synthesis through a cascade involving nucleoside diphosphate kinase (Ndk). AlgQ is also capable of interacting with region 4 of RpoD. In a reconstituted E. coli system, PvdS-dependent transcription from the pvdA promoter was doubled by the multicopy algQ gene. The P. aeruginosa DeltaalgQ mutant exhibited a moderate but reproducible reduction in pyoverdine production compared with wild-type PAO1, as a result of a decline in transcription of pvd genes. PvdS expression was not affected by the algQ mutation. Single-copy algQ fully restored pyoverdine production and expression of pvd genes in the DeltaalgQ mutant, while ndk did not. An increased intracellular concentration of RpoD mimicked the DeltaalgQ phenotype, whereas PvdS overexpression suppressed the algQ mutation. E. coli rsd could partially substitute for algQ in transcriptional modulation of pvd genes. We propose that AlgQ acts as an anti-sigma factor for RpoD, eliciting core RNA polymerase recruitment by PvdS and transcription initiation at pvd promoters. AlgQ provides a link between the pyoverdine and alginate regulatory networks. These systems have similarities in responsiveness and physiological function: both depend on alternative sigma factors, respond to nutrient starvation, and act as virulence determinants for P. aeruginosa.
Collapse
Affiliation(s)
- Cecilia Ambrosi
- Dipartimento di Biologia, Università di Roma Tre, Viale G. Marconi 446, 00146 Roma, Italy.
| | | | | | | | | |
Collapse
|
29
|
Hinton DM, Pande S, Wais N, Johnson XB, Vuthoori M, Makela A, Hook-Barnard I. Transcriptional takeover by σ appropriation: remodelling of the σ 70 subunit of Escherichia coli RNA polymerase by the bacteriophage T4 activator MotA and co-activator AsiA. Microbiology (Reading) 2005; 151:1729-1740. [PMID: 15941982 DOI: 10.1099/mic.0.27972-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of bacteriophage T4 middle promoters, which occurs about 1 min after infection, uses two phage-encoded factors that change the promoter specificity of the host RNA polymerase. These phage factors, the MotA activator and the AsiA co-activator, interact with theσ70specificity subunit ofEscherichia coliRNA polymerase, which normally contacts the −10 and −35 regions of host promoter DNA. Like host promoters, T4 middle promoters have a good match to the canonicalσ70DNA element located in the −10 region. However, instead of theσ70DNA recognition element in the promoter's −35 region, they have a 9 bp sequence (a MotA box) centred at −30, which is bound by MotA. Recent work has begun to provide information about the MotA/AsiA system at a detailed molecular level. Accumulated evidence suggests that the presence of MotA and AsiA reconfigures protein–DNA contacts in the upstream promoter sequences, without significantly affecting the contacts ofσ70with the −10 region. This type of activation, which is called ‘σappropriation’, is fundamentally different from other well-characterized models of prokaryotic activation in which an activator frequently serves to forceσ70to contact a less than ideal −35 DNA element. This review summarizes the interactions of AsiA and MotA withσ70, and discusses how these interactions accomplish the switch to T4 middle promoters by inhibiting the typical contacts of the C-terminal region ofσ70, region 4, with the host −35 DNA element and with other subunits of polymerase.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suchira Pande
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neelowfar Wais
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xanthia B Johnson
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Madhavi Vuthoori
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Makela
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - India Hook-Barnard
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Pineda M, Gregory BD, Szczypinski B, Baxter KR, Hochschild A, Miller ES, Hinton DM. A family of anti-sigma70 proteins in T4-type phages and bacteria that are similar to AsiA, a Transcription inhibitor and co-activator of bacteriophage T4. J Mol Biol 2005; 344:1183-97. [PMID: 15561138 DOI: 10.1016/j.jmb.2004.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 09/30/2004] [Accepted: 10/05/2004] [Indexed: 11/24/2022]
Abstract
Anti-sigma70 factors interact with sigma70 proteins, the specificity subunits of prokaryotic RNA polymerase. The bacteriophage T4 anti-sigma70 protein, AsiA, binds tightly to regions 4.1 and 4.2 of the sigma70 subunit of Escherichia coli RNA polymerase and inhibits transcription from sigma70 promoters that require recognition of the canonical sigma70 -35 DNA sequence. In the presence of the T4 transcription activator MotA, AsiA also functions as a co-activator of transcription from T4 middle promoters, which retain the canonical sigma70 -10 consensus sequence but have a MotA box sequence centered at -30 rather than the sigma70 -35 sequence. The E.coli anti-sigma70 protein Rsd also interacts with region 4.2 of sigma70 and inhibits transcription from sigma70 promoters. Our sequence comparisons of T4 AsiA with Rsd, with the predicted AsiA orthologs of the T4-type phages RB69, 44RR, KVP40, and Aeh1, and with AlgQ, a regulator of alginate production in Pseudomonas aeruginosa indicate that these proteins share conserved amino acid residues at positions known to be important for the binding of T4 AsiA to sigma70 region 4. We show that, like T4 AsiA, Rsd binds to sigma70 in a native protein gel and, as with T4 AsiA, a L18S substitution in Rsd disrupts this complex. Previous work has assigned sigma70 amino acid F563, within region 4.1, as a critical determinant for AsiA binding. This residue is also involved in the binding of sigma70 to the beta-flap of core, suggesting that AsiA inhibits transcription by disrupting the interaction between sigma70 region 4.1 and the beta-flap. We find that as with T4 AsiA, the interaction of KVP40 AsiA, Rsd, or AlgQ with sigma70 region 4 is diminished by the substitution F563Y. We also demonstrate that like T4 AsiA and Rsd, KVP40 AsiA inhibits transcription from sigma70-dependent promoters. We speculate that the phage AsiA orthologs, Rsd, and AlgQ are members of a related family in T4-type phage and bacteria, which interact similarly with primary sigma factors. In addition, we show that even though a clear MotA ortholog has not been identified in the KVP40 genome and the phage genome appears to lack typical middle promoter sequences, KVP40 AsiA activates transcription from T4 middle promoters in the presence of T4 MotA. We speculate that KVP40 encodes a protein that is dissimilar in sequence, but functionally equivalent, to T4 MotA.
Collapse
Affiliation(s)
- Melissa Pineda
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 8, Room 2A-13, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Ilag LL, Westblade LF, Deshayes C, Kolb A, Busby SJW, Robinson CV. Mass spectrometry of Escherichia coli RNA polymerase: interactions of the core enzyme with sigma70 and Rsd protein. Structure 2004; 12:269-75. [PMID: 14962387 DOI: 10.1016/j.str.2004.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 10/08/2003] [Accepted: 10/09/2003] [Indexed: 11/18/2022]
Abstract
The E. coli RNA polymerase core enzyme is a multisubunit complex of 388,981 Da. To initiate transcription at promoters, the core enzyme associates with a sigma subunit to form holo RNA polymerase. Here we have used nanoflow electrospray mass spectrometry, coupled with tandem mass spectrometry, to probe the interaction of the RNA polymerase core enzyme with the most abundant sigma factor, sigma70. The results show remarkably well-resolved spectra for both the core and holo RNA polymerases. The regulator of sigma70, Rsd protein, has previously been identified as a protein that binds to free sigma70. We show that Rsd also interacts with core enzyme. In addition, by adding increasing amounts of Rsd, we show that sigma70 is displaced from holo RNA polymerase, resulting in complexes of Rsd with core and sigma70. The results argue for a model in which Rsd not only sequesters sigma70, but is also an effector of core RNA polymerase.
Collapse
Affiliation(s)
- Leopold L Ilag
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | | | |
Collapse
|