1
|
Yeh F, Jara-Oseguera A, Aldrich RW. Implications of a temperature-dependent heat capacity for temperature-gated ion channels. Proc Natl Acad Sci U S A 2023; 120:e2301528120. [PMID: 37279277 PMCID: PMC10268252 DOI: 10.1073/pnas.2301528120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
Temperature influences dynamics and state-equilibrium distributions in all molecular processes, and only a relatively narrow range of temperatures is compatible with life-organisms must avoid temperature extremes that can cause physical damage or metabolic disruption. Animals evolved a set of sensory ion channels, many of them in the family of transient receptor potential cation channels that detect biologically relevant changes in temperature with remarkable sensitivity. Depending on the specific ion channel, heating or cooling elicits conformational changes in the channel to enable the flow of cations into sensory neurons, giving rise to electrical signaling and sensory perception. The molecular mechanisms responsible for the heightened temperature-sensitivity in these ion channels, as well as the molecular adaptations that make each channel specifically heat- or cold-activated, are largely unknown. It has been hypothesized that a heat capacity difference (ΔCp) between two conformational states of these biological thermosensors can drive their temperature-sensitivity, but no experimental measurements of ΔCp have been achieved for these channel proteins. Contrary to the general assumption that the ΔCp is constant, measurements from soluble proteins indicate that the ΔCp is likely to be a function of temperature. By investigating the theoretical consequences for a linearly temperature-dependent ΔCp on the open-closed equilibrium of an ion channel, we uncover a range of possible channel behaviors that are consistent with experimental measurements of channel activity and that extend beyond what had been generally assumed to be possible for a simple two-state model, challenging long-held assumptions about ion channel gating models at equilibrium.
Collapse
Affiliation(s)
- Frank Yeh
- Institute for Neuroscience, University of Texas at Austin, Austin, TX78712
- Department of Neuroscience, University of Texas at Austin, Austin, TX78712
| | - Andrés Jara-Oseguera
- Institute for Neuroscience, University of Texas at Austin, Austin, TX78712
- Department of Neuroscience, University of Texas at Austin, Austin, TX78712
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
| | - Richard W. Aldrich
- Institute for Neuroscience, University of Texas at Austin, Austin, TX78712
- Department of Neuroscience, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
2
|
Omori A, Sasaki S, Kikukawa T, Shimono K, Miyauchi S. Elucidation of a Thermodynamical Feature Attributed to Substrate Binding to the Prokaryotic H +/Oligopeptide Cotransporter YdgR with Calorimetric Analysis: The Substrate Binding Driven by the Change in Entropy Implies the Release of Bound Water Molecules from the Binding Pocket. Biochemistry 2023. [PMID: 37163674 DOI: 10.1021/acs.biochem.2c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we have elucidated the substrate recognition mechanism by a prokaryotic H+/oligopeptide cotransporter, YdgR, using isothermal titration calorimetry. Under acidic conditions (pH 6.0), the binding of a dipeptide, Val-Ala, to YdgR elicited endothermic enthalpy, which compensated for the increase in entropy due to dipeptide binding. A series of dipeptides were used in the binding titration. The dipeptides represent Val-X and X-Val, where X is Ala, Ser, Val, Tyr, or Phe. Most dipeptides revealed endothermic enthalpy, which was completely compensated by the increase in entropy due to dipeptide binding. The change in enthalpy due to binding correlated well with the change in entropy, whereas the Gibbs free energy involved in the binding of the dipeptide to YdgR remained unchanged irrespective of dipeptide sequences, implying that the binding reaction was driven by entropy, that is, the release of bound water molecules in the binding pocket. It is also important to clarify that, based on the prediction of water molecules in the ligand-binding pocket of YdgR, the release of three bound water molecules in the putative substrate binding pocket occurred through binding to YdgR. In the comparison of Val-X and X-Val dipeptides, the N-terminal region of the binding pocket might contain more bound water molecules than the C-terminal region. In light of these findings, we suggest that bound water molecules might play an important role in substrate recognition and binding by YdgR.
Collapse
Affiliation(s)
- Akiko Omori
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shotaro Sasaki
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazumi Shimono
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda Nishi-ku, Kumamoto 860-0082, Japan
| | - Seiji Miyauchi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
3
|
Basu M, Hassan P. Influence of temperature and organic acid on self-assembly behavior of Pluronic F127. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Malicka W, Haag R, Ballauff M. Interaction of Heparin with Proteins: Hydration Effects. J Phys Chem B 2022; 126:6250-6260. [PMID: 35960645 DOI: 10.1021/acs.jpcb.2c04928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a thermodynamic investigation of the interaction of heparin with lysozyme in the presence of potassium glutamate (KGlu). The binding constant Kb is measured by isothermal titration calorimetry (ITC) in a temperature range from 288 to 310 K for concentrations of KGlu between 25 and 175 mM. The free energy of binding ΔGb derived from Kb is strongly decreasing with increasing concentration of KGlu, whereas the dependence of ΔGb on temperature T is found to be small. The decrease of ΔGb can be explained in terms of counterion release: Binding of lysozyme to the strong polyelectrolyte heparin liberates approximately three of the condensed counterions of heparin, thus increasing the entropy of the system. The dependence of ΔGb on T, on the other hand, is traced back to a change of hydration of the protein and the polyelectrolyte upon complex formation. This dependence is quantitatively described by the parameter Δw that depends on T and vanishes at a characteristic temperature T0. A comparison of the complex formation in the presence of KGlu with the one in the presence of NaCl demonstrates that the parameters related to hydration are changed considerably. The characteristic temperature T0 in the presence of KGlu solutions is considerably smaller than that in the presence of NaCl solutions. The change of specific heat Δcp is found to become more negative with increasing salt concentration: This finding agrees with the model-free analysis by the generalized van't Hoff equation. The entire analysis reveals a small but important change of the free energy of binding by hydration. It shows that these ion-specific Hofmeister effects can be modeled quantitatively in terms of a characteristic temperature T0 and a parameter describing the dependence of Δcp on salt concentration.
Collapse
Affiliation(s)
- Weronika Malicka
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
5
|
Ballauff M. Denaturation of proteins: electrostatic effects vs. hydration. RSC Adv 2022; 12:10105-10113. [PMID: 35424951 PMCID: PMC8968186 DOI: 10.1039/d2ra01167k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The unfolding transition of proteins in aqueous solution containing various salts or uncharged solutes is a classical subject of biophysics. In many cases, this transition is a well-defined two-stage equilibrium process which can be described by a free energy of transition ΔG u and a transition temperature T m. For a long time, it has been known that solutes can change T m profoundly. Here we present a phenomenological model that describes the change of T m with the solute concentration c s in terms of two effects: (i) the change of the number of correlated counterions Δn ci and (ii) the change of hydration expressed through the parameter Δw and its dependence on temperature expressed through the parameter dΔc p/dc s. Proteins always carry charges and Δn ci describes the uptake or release of counterions during the transition. Likewise, the parameter Δw measures the uptake or release of water during the transition. The transition takes place in a reservoir with a given salt concentration c s that defines also the activity of water. The parameter Δn ci is a measure for the gain or loss of free energy because of the release or uptake of ions and is related to purely entropic effects that scale with ln c s. Δw describes the effect on ΔG u through the loss or uptake of water molecules and contains enthalpic as well as entropic effects that scale with c s. It is related to the enthalpy of transition ΔH u through a Maxwell relation: the dependence of ΔH u on c s is proportional to the dependence of Δw on temperature. While ionic effects embodied in Δn ci are independent of the kind of salt, the hydration effects described through Δw are directly related to Hofmeister effects of the various salt ions. A comparison with literature data underscores the general validity of the model.
Collapse
Affiliation(s)
- Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
6
|
Edwards T, Foloppe N, Harris SA, Wells G. The future of biomolecular simulation in the pharmaceutical industry: what we can learn from aerodynamics modelling and weather prediction. Part 1. understanding the physical and computational complexity of in silico drug design. Acta Crystallogr D Struct Biol 2021; 77:1348-1356. [PMID: 34726163 PMCID: PMC8561735 DOI: 10.1107/s2059798321009712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/17/2021] [Indexed: 02/04/2023] Open
Abstract
The predictive power of simulation has become embedded in the infrastructure of modern economies. Computer-aided design is ubiquitous throughout industry. In aeronautical engineering, built infrastructure and materials manufacturing, simulations are routinely used to compute the performance of potential designs before construction. The ability to predict the behaviour of products is a driver of innovation by reducing the cost barrier to new designs, but also because radically novel ideas can be piloted with relatively little risk. Accurate weather forecasting is essential to guide domestic and military flight paths, and therefore the underpinning simulations are critical enough to have implications for national security. However, in the pharmaceutical and biotechnological industries, the application of computer simulations remains limited by the capabilities of the technology with respect to the complexity of molecular biology and human physiology. Over the last 30 years, molecular-modelling tools have gradually gained a degree of acceptance in the pharmaceutical industry. Drug discovery has begun to benefit from physics-based simulations. While such simulations have great potential for improved molecular design, much scepticism remains about their value. The motivations for such reservations in industry and areas where simulations show promise for efficiency gains in preclinical research are discussed. In this, the first of two complementary papers, the scientific and technical progress that needs to be made to improve the predictive power of biomolecular simulations, and how this might be achieved, is firstly discussed (Part 1). In Part 2, the status of computer simulations in pharma is contrasted with aerodynamics modelling and weather forecasting, and comments are made on the cultural changes needed for equivalent computational technologies to become integrated into life-science industries.
Collapse
Affiliation(s)
- Tom Edwards
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Sarah Anne Harris
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Geoff Wells
- School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
7
|
Interaction of Linear Polyelectrolytes with Proteins: Role of Specific Charge-Charge Interaction and Ionic Strength. Biomolecules 2021; 11:biom11091377. [PMID: 34572590 PMCID: PMC8472085 DOI: 10.3390/biom11091377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
We present a thermodynamic study of the interaction of synthetic, linear polyelectrolytes with bovine serum albumin (BSA). All polyelectrolytes are based on poly(allyl glycidyl ether) which has been modified by polymer-analogous reaction with anionic (-SO3Na), cationic (-NH3Cl or -NHMe2Cl) or zwitterionic groups (-NMe2(CH2)3SO3). While the anionic polymer shows a very weak interaction, the zwitterionic polymer exhibits no interaction with BSA (pI = 4.7) under the applied pH = 7.4, ionic strength (I = 23–80 mM) and temperature conditions (T = 20–37 °C). A strong binding, however, was observed for the polycations bearing primary amino or tertiary dimethyl amino groups, which could be analysed in detail by isothermal titration calorimetry (ITC). The analysis was done using an expression which describes the free energy of binding, ΔGb, as the function of the two decisive variables, temperature, T, and salt concentration, cs. The underlying model splits ΔGb into a term related to counterion release and a term related to water release. While the number of released counter ions is similar for both systems, the release of bound water is more important for the primary amine compared to the tertiary N,N-dimethyl amine presenting polymer. This finding is further traced back to a closer contact of the polymers’ protonated primary amino groups in the complex with oppositely charged moieties of BSA as compared to the bulkier protonated tertiary amine groups. We thus present an investigation that quantifies both driving forces for electrostatic binding, namely counterion release and change of hydration, which contribute to a deeper understanding with direct impact on future advancements in the biomedical field.
Collapse
|
8
|
Walkowiak JJ, Ballauff M. Interaction of Polyelectrolytes with Proteins: Quantifying the Role of Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100661. [PMID: 34194953 PMCID: PMC8224434 DOI: 10.1002/advs.202100661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Indexed: 05/11/2023]
Abstract
A theoretical model is presented for the free energy ΔGb of complex formation between a highly charged polyelectrolyte and a protein. The model introduced here comprises both the effect of released counterions and the uptake or release of water molecules during complex formation. The resulting expression for ΔGb is hence capable of describing the dependence of ΔGb on temperature as well as on the concentration of salt in the system: An increase of the salt concentration in the solution increases the activity of the ions and counterion release becomes less effective for binding. On the other hand, an increased salt concentration leads to the decrease of the activity of water in bulk. Hence, release of water molecules during complex formation will be more advantageous and lead to an increase of the magnitude of ΔGb and the binding constant. It is furthermore demonstrated that the release or uptake of water molecules is the origin of the marked enthalpy-entropy cancellation observed during complex formation of polyelectrolytes with proteins. The comparison with experimental data on complex formation between a synthetic (sulfated dendritic polyglycerol) and natural polyelectrolytes (DNA; heparin) with proteins shows full agreement with theory.
Collapse
Affiliation(s)
- Jacek J. Walkowiak
- Institut für Chemie und BiochemieFreie Universität BerlinTaktstraße 3Berlin14195Germany
- Aachen‐Maastricht Institute for Biobased MaterialsMaastricht UniversityBrightlands Chemelot Campus, Urmonderbaan 22Geleen6167 RDThe Netherlands
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinTaktstraße 3Berlin14195Germany
| |
Collapse
|
9
|
Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angew Chem Int Ed Engl 2021; 60:3882-3904. [PMID: 32589355 PMCID: PMC7894192 DOI: 10.1002/anie.202006457] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The counterions neutralizing the charges on polyelectrolytes such as DNA or heparin may dissociate in water and greatly influence the interaction of such polyelectrolytes with biomolecules, particularly proteins. In this Review we give an overview of studies on the interaction of proteins with polyelectrolytes and how this knowledge can be used for medical applications. Counterion release was identified as the main driving force for the binding of proteins to polyelectrolytes: Patches of positive charge become multivalent counterions of the polyelectrolyte and lead to the release of counterions from the polyelectrolyte and a concomitant increase in entropy. This is shown from investigations on the interaction of proteins with natural and synthetic polyelectrolytes. Special emphasis is paid to sulfated dendritic polyglycerols (dPGS). The Review demonstrates that we are moving to a better understanding of charge-charge interactions in systems of biological relevance. Research along these lines will aid and promote the design of synthetic polyelectrolytes for medical applications.
Collapse
Affiliation(s)
- Katharina Achazi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
- IRIS AdlershofHumboldt Universität zu BerlinZum Grossen Windkanal 612489BerlinGermany
| | - Jens Dernedde
- Charité-Universitätsmedizin BerlinInstitute of Laboratory MedicineClinical Chemistry, and PathobiochemistryCVK Augustenburger Platz 113353BerlinGermany
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood ResearchDepartment of Pathology and Laboratory MedicineLife Science InstituteDepartment of ChemistrySchool of Biomedical EngineeringUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| | - Gerd Multhaup
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| |
Collapse
|
10
|
Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Wechselwirkung von Polyelektrolyt‐Architekturen mit Proteinen und Biosystemen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katharina Achazi
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Matthias Ballauff
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
- IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 6 12489 Berlin Deutschland
| | - Jens Dernedde
- Charité-Universitätsmedizin Berlin Institut für Laboratoriumsmedizin Klinische Chemie und Pathobiochemie CVK Augustenburger Platz 1 13353 Berlin Deutschland
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research Department of Pathology and Laboratory Medicine Life Science Institute Department of Chemistry School of Biomedical Engineering University of British Columbia Vancouver V6T 1Z3 Kanada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics McGill University Montreal H3G 1Y6 Kanada
| | - Gerd Multhaup
- Department of Pharmacology and Therapeutics McGill University Montreal H3G 1Y6 Kanada
| |
Collapse
|
11
|
Walkowiak JJ, Ballauff M, Zimmermann R, Freudenberg U, Werner C. Thermodynamic Analysis of the Interaction of Heparin with Lysozyme. Biomacromolecules 2020; 21:4615-4625. [DOI: 10.1021/acs.biomac.0c00780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jacek Janusz Walkowiak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
12
|
Kutnowski N, Shmulevich F, Davidov G, Shahar A, Bar-Zvi D, Eichler J, Zarivach R, Shaanan B. Specificity of protein-DNA interactions in hypersaline environment: structural studies on complexes of Halobacterium salinarum oxidative stress-dependent protein hsRosR. Nucleic Acids Res 2019; 47:8860-8873. [PMID: 31310308 PMCID: PMC7145548 DOI: 10.1093/nar/gkz604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Interactions between proteins and DNA are crucial for all biological systems. Many studies have shown the dependence of protein–DNA interactions on the surrounding salt concentration. How these interactions are maintained in the hypersaline environments that halophiles inhabit remains puzzling. Towards solving this enigma, we identified the DNA motif recognized by the Halobactrium salinarum ROS-dependent transcription factor (hsRosR), determined the structure of several hsRosR–DNA complexes and investigated the DNA-binding process under extreme high-salt conditions. The picture that emerges from this work contributes to our understanding of the principles underlying the interplay between electrostatic interactions and salt-mediated protein–DNA interactions in an ionic environment characterized by molar salt concentrations.
Collapse
Affiliation(s)
- Nitzan Kutnowski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Fania Shmulevich
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Anat Shahar
- Macromolecular Crystallography Research Center, National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Dudy Bar-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Boaz Shaanan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| |
Collapse
|
13
|
Xu X, Ballauff M. Interaction of Lysozyme with a Dendritic Polyelectrolyte: Quantitative Analysis of the Free Energy of Binding and Comparison to Molecular Dynamics Simulations. J Phys Chem B 2019; 123:8222-8231. [DOI: 10.1021/acs.jpcb.9b07448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, 210094 Nanjing, P. R. China
| | - Matthias Ballauff
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
14
|
Binding of ferredoxin NADP + oxidoreductase (FNR) to plant photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:689-698. [PMID: 31336103 DOI: 10.1016/j.bbabio.2019.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
The binding of FNR to PSI has been postulated long ago, however, a clear evidence is still missing. In this work, using isothermal titration calorimetry (ITC), we found that FNR binds to photosystem I with its light harvesting complex I (PSI-LHCI) from C. reinhardtii with a 1:1 stoichiometry, a Kd of ~0.8 μM and ∆H of -20.7 kcal/mol. Titrations at different temperatures were used to determine the heat capacity change, ∆CP, of the binding, through which the size of the interface area between the proteins was assessed as ~3000 Å2. In a different set of ITC experiments, introduction of various sucrose concentrations was used to estimate that ~95 water molecules are released to the solvent. These observations support the notion of a binding site shared by few of the photosystem I - light harvesting complex I (PSI-LHCI) subunits in addition to PsaE. Based on these results, a hypothetical model was built for the binding site of FNR at PSI, using known crystallographic structures of: cyanobacterial PSI in complex with ferredoxin (Fd), plant PSI-LHCI and Fd:FNR complex from cyanobacteria. FNR binding site location is proposed to be at the foot of the stromal ridge and above the inner LHCI belt. It is expected to form contacts with PsaE, PsaB, PsaF and at least one of the LHCI. In addition, a ~4.5-fold increased affinity between FNR and PSI-LHCI under crowded 1 M sucrose environment led us to conclude that in C. reinhardtii FNR also functions as a subunit of PSI-LHCI.
Collapse
|
15
|
Hadži S, Kocman V, Oblak D, Plavec J, Lah J. Energetic Basis of AGCGA-Rich DNA Folding into a Tetrahelical Structure. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- San Hadži
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 Ljubljana Slovenia
| | - Vojč Kocman
- National Institute of Chemistry; Hajdrihova 19 Slovenia
| | - Domen Oblak
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 Ljubljana Slovenia
| | - Janez Plavec
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 Ljubljana Slovenia
- National Institute of Chemistry; Hajdrihova 19 Slovenia
| | - Jurij Lah
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 Ljubljana Slovenia
| |
Collapse
|
16
|
Hadži S, Kocman V, Oblak D, Plavec J, Lah J. Energetic Basis of AGCGA‐Rich DNA Folding into a Tetrahelical Structure. Angew Chem Int Ed Engl 2019; 58:2387-2391. [DOI: 10.1002/anie.201813502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 11/09/2022]
Affiliation(s)
- San Hadži
- Faculty of Chemistry and Chemical TechnologyUniversity of Ljubljana Večna pot 113 Ljubljana Slovenia
| | - Vojč Kocman
- National Institute of Chemistry Hajdrihova 19 Slovenia
| | - Domen Oblak
- Faculty of Chemistry and Chemical TechnologyUniversity of Ljubljana Večna pot 113 Ljubljana Slovenia
| | - Janez Plavec
- Faculty of Chemistry and Chemical TechnologyUniversity of Ljubljana Večna pot 113 Ljubljana Slovenia
- National Institute of Chemistry Hajdrihova 19 Slovenia
| | - Jurij Lah
- Faculty of Chemistry and Chemical TechnologyUniversity of Ljubljana Večna pot 113 Ljubljana Slovenia
| |
Collapse
|
17
|
Hydration differences between the major and minor grooves of DNA revealed from heat capacity measurements. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:131-138. [PMID: 30552448 PMCID: PMC6411667 DOI: 10.1007/s00249-018-1340-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/22/2018] [Accepted: 12/01/2018] [Indexed: 11/04/2022]
Abstract
The nature of water on the surface of a macromolecule is reflected in the temperature dependence of the heat effect, i.e., the heat capacity change, ΔCp, that accompanies its removal on forming a complex. The relationship between ΔCp and the nature of the surface dehydrated cannot be modeled for DNA by the use of small molecules, as previously done for proteins, since the contiguous surfaces of the grooves cannot be treated as the sum of small component molecules such as nucleotides. An alternative approach is used here in which ΔCp is measured for the formation of several protein/DNA complexes and the calculated contribution from protein dehydration subtracted to yield the heat capacity change attributable to dehydration of the DNA. The polar and apolar surface areas of the DNA dehydrated on complex formation were calculated from the known structures of the complexes, allowing heat capacity coefficients to be derived representing dehydration of unit surface area of polar and apolar surface in both grooves. Dehydration of apolar surfaces in both grooves is essentially identical and accompanied by a reduction in ΔCp by about 3 J K−1 mol−1 (Å2)−1, a value of somewhat greater magnitude than observed for proteins {ΔCp = − 1.79 J K−1 mol−1 (Å2)−1}. In contrast, dehydration of polar surfaces is very different in the two grooves: in the minor groove ΔCp increases by 2.7 J K−1 mol−1 (Å2)−1, but in the major groove, although ΔCp is also positive, it is low in value: + 0.4 J K−1 mol−1 (Å2)−1. Physical explanations for the magnitudes of ΔCp are discussed.
Collapse
|
18
|
Thermodynamic Characterization of the Ca 2+-Dependent Interaction Between SOUL and ALG-2. Int J Mol Sci 2018; 19:ijms19123802. [PMID: 30501057 PMCID: PMC6321638 DOI: 10.3390/ijms19123802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022] Open
Abstract
SOUL, a heme-binding protein-2 (HEBP-2), interacts with apoptosis-linked gene 2 protein (ALG-2) in a Ca2+-dependent manner. To investigate the properties of the interaction of SOUL with ALG-2, we generated several mutants of SOUL and ALG-2 and analyzed the recombinant proteins using pulldown assay and isothermal titration calorimetry. The interaction between SOUL and ALG-2 (delta3-23ALG-2) was an exothermic reaction, with 1:1 stoichiometry and high affinity (Kd = 32.4 nM) in the presence of Ca2+. The heat capacity change (ΔCp) of the reaction showed a large negative value (−390 cal/K·mol), which suggested the burial of a significant nonpolar surface area or disruption of a hydrogen bond network that was induced by the interaction (or both). One-point mutation of SOUL Phe100 or ALG-2 Trp57 resulted in complete loss of heat change, supporting the essential roles of these residues for the interaction. Nevertheless, a truncated mutant of SOUL1-143 that deleted the domain required for the interaction with ALG-2 Trp57 still showed 1:1 binding to ALG-2 with an endothermic reaction. These results provide a better understanding of the target recognition mechanism and conformational change of SOUL in the interaction with ALG-2.
Collapse
|
19
|
Affiliation(s)
- Hasan Y. Alniss
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
20
|
Linking Temperature, Cation Concentration and Water Activity for the B to Z Conformational Transition in DNA. Molecules 2018; 23:molecules23071806. [PMID: 30037061 PMCID: PMC6099936 DOI: 10.3390/molecules23071806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/05/2022] Open
Abstract
High concentrations of Na+ or [Co(NH3)6]3+ can induce the B to Z conformational transition in alternating (dC-dG) oligo and polynucleotides. The use of short DNA oligomers (dC-dG)4 and (dm5C-dG)4 as models can allow a thermodynamic characterization of the transition. Both form right handed double helical structures (B-DNA) in standard phosphate buffer with 115 mM Na+ at 25 °C. However, at 2.0 M Na+ or 200 μM [Co(NH3)6]3+, (dm5C-dG)4 assumes a left handed double helical structure (Z-DNA) while the unmethylated (dC-dG)4 analogue remains right handed under those conditions. We have previously demonstrated that the enthalpy of the transition at 25 °C for either inducer can be determined using isothermal titration calorimetry (ITC). Here, ITC is used to investigate the linkages between temperature, water activity and DNA conformation. We found that the determined enthalpy for each titration varied linearly with temperature allowing determination of the heat capacity change (ΔCp) between the initial and final states. As expected, the ΔCp values were dependent upon the cation (i.e., Na+ vs. [Co(NH3)6]3+) as well as the sequence of the DNA oligomer (i.e., methylated vs. unmethylated). Osmotic stress experiments were carried out to determine the gain or loss of water by the oligomer induced by the titration. The results are discussed in terms of solvent accessible surface areas, electrostatic interactions and the role of water.
Collapse
|
21
|
Maggi F, M. Tang FH, Riley WJ. The Thermodynamic Links between Substrate, Enzyme, and Microbial Dynamics in Michaelis-Menten-Monod Kinetics. INT J CHEM KINET 2018. [DOI: 10.1002/kin.21163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Federico Maggi
- School of Civil Engineering; The University of Sydney; Sydney 2006 NSW Australia
| | - Fiona H. M. Tang
- School of Civil Engineering; The University of Sydney; Sydney 2006 NSW Australia
| | - William J. Riley
- Earth Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720
| |
Collapse
|
22
|
Lisi GP, Currier AA, Loria JP. Glutamine Hydrolysis by Imidazole Glycerol Phosphate Synthase Displays Temperature Dependent Allosteric Activation. Front Mol Biosci 2018; 5:4. [PMID: 29468164 PMCID: PMC5808140 DOI: 10.3389/fmolb.2018.00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
The enzyme imidazole glycerol phosphate synthase (IGPS) is a model for studies of long-range allosteric regulation in enzymes. Binding of the allosteric effector ligand N'-[5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) stimulates millisecond (ms) timescale motions in IGPS that enhance its catalytic function. We studied the effect of temperature on these critical conformational motions and the catalytic mechanism of IGPS from the hyperthermophile Thermatoga maritima in an effort to understand temperature-dependent allostery. Enzyme kinetic and NMR dynamics measurements show that apo and PRFAR-activated IGPS respond differently to changes in temperature. Multiple-quantum Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments performed at 303, 323, and 343 K (30, 50, and 70°C) reveal that millisecond flexibility is enhanced to a higher degree in apo IGPS than in the PRFAR-bound enzyme as the sample temperature is raised. We find that the flexibility of the apo enzyme is nearly identical to that of its PRFAR activated state at 343 K, whereas conformational motions are considerably different between these two forms of the enzyme at room temperature. Arrhenius analyses of these flexible sites show a varied range of activation energies that loosely correlate to allosteric communities identified by computational methods and reflect local changes in dynamics that may facilitate conformational sampling of the active conformation. In addition, kinetic assays indicate that allosteric activation by PRFAR decreases to 65-fold at 343 K, compared to 4,200-fold at 303 K, which mirrors the decreased effect of PRFAR on ms motions relative to the unactivated enzyme. These studies indicate that at the growth temperature of T. maritima, PFRAR is a weaker allosteric activator than it is at room temperature and illustrate that the allosteric mechanism of IGPS is temperature dependent.
Collapse
Affiliation(s)
- George P Lisi
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Allen A Currier
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
23
|
Serratos IN, Millán-Pacheco C, Garza-Ramos G, Pérez-Hernández G, Zubillaga RA. Exploring interfacial water trapping in protein-ligand complexes with multithermal titration calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:488-495. [PMID: 29307720 DOI: 10.1016/j.bbapap.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/02/2017] [Accepted: 01/03/2018] [Indexed: 11/18/2022]
Abstract
In this work, we examine the hypothesis about how trapped water molecules at the interface between triosephosphate isomerase (TIM) and either of two phosphorylated inhibitors, 2-phosphoglycolate (2PG) or phosphoglycolohydroxamate (PGH), can explain the anomalous highly negative binding heat capacities (ΔCp,b) of both complexes, TIM-2PG and TIM-PGH. We performed fluorimetric titrations of the enzyme with PGH inhibitor under osmotic stress conditions, using various concentrations of either osmolyte: sucrose, ethylene glycol or glycine betaine. We also analyze the binding processes under various stressor concentrations using a novel calorimetric methodology that allows ΔCp,b determinations in single experiments: Multithermal Titration Calorimetry. The binding constant of the TIM-PGH complex decreased gradually with the concentration of all osmolytes, but at diverse extents depending on the osmolyte nature. According to the osmotic stress theory, this decrease indicates that the number of water molecules associated with the enzyme increases with inhibitor binding, i.e. some solvent molecules became trapped. Additionally, the binding heat capacities became less negative at higher osmolyte concentrations, their final values depending on the osmolyte. These effects were also observed in the TIM-2PG complex using sucrose as stressor. Our results strongly suggest that some water molecules became immobilized when the TIM-inhibitor complexes were formed. A computational analysis of the hydration state of the binding site of TIM in both its free state and its complexed form with 2PG or PGH, based on molecular dynamics (MD) simulations in explicit solvent, showed that the binding site effectively immobilized additional water molecules after binding these inhibitors.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, C.P. 09340, Mexico.
| | - Cesar Millán-Pacheco
- Facultad de Farmacia. Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. C.P. 62209, Mexico.
| | - Georgina Garza-Ramos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico.
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, Ciudad de México, C.P. 05348, Mexico.
| | - Rafael A Zubillaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, C.P. 09340, Mexico.
| |
Collapse
|
24
|
Samatanga B, Cléry A, Barraud P, Allain FHT, Jelesarov I. Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs. Nucleic Acids Res 2017; 45:6037-6050. [PMID: 28334819 PMCID: PMC5449602 DOI: 10.1093/nar/gkx136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/16/2017] [Indexed: 01/05/2023] Open
Abstract
RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the β-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM–ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process.
Collapse
Affiliation(s)
- Brighton Samatanga
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland.,Department of Biochemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Pierre Barraud
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Ilian Jelesarov
- Department of Biochemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
25
|
Bueno E, Robles EF, Torres MJ, Krell T, Bedmar EJ, Delgado MJ, Mesa S. Disparate response to microoxia and nitrogen oxides of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes. Nitric Oxide 2017; 68:137-149. [DOI: 10.1016/j.niox.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 01/25/2023]
|
26
|
Harish B, Swapna GVT, Kornhaber GJ, Montelione GT, Carey J. Multiple helical conformations of the helix-turn-helix region revealed by NOE-restrained MD simulations of tryptophan aporepressor, TrpR. Proteins 2017; 85:731-740. [PMID: 28120439 DOI: 10.1002/prot.25252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 11/11/2022]
Abstract
The nature of flexibility in the helix-turn-helix region of E. coli trp aporepressor has been unexplained for many years. The original ensemble of nuclear magnetic resonance (NMR structures showed apparent disorder, but chemical shift and relaxation measurements indicated a helical region. Nuclear Overhauser effect (NOE) data for a temperature-sensitive mutant showed more helical character in its helix-turn-helix region, but nevertheless also led to an apparently disordered ensemble. However, conventional NMR structure determination methods require all structures in the ensemble to be consistent with every NOE simultaneously. This work uses an alternative approach in which some structures of the ensemble are allowed to violate some NOEs to permit modeling of multiple conformational states that are in dynamic equilibrium. Newly measured NOE data for wild-type aporepressor are used as time-averaged distance restraints in molecular dynamics simulations to generate an ensemble of helical conformations that is more consistent with the observed NMR data than the apparent disorder in the previously reported NMR structures. The results indicate the presence of alternating helical conformations that provide a better explanation for the flexibility of the helix-turn-helix region of trp aporepressor. Structures representing these conformations have been deposited with PDB ID: 5TM0. Proteins 2017; 85:731-740. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - G V T Swapna
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Gregory J Kornhaber
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Gaetano T Montelione
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, New Jersey, 08544
| |
Collapse
|
27
|
Claveria-Gimeno R, Lanuza PM, Morales-Chueca I, Jorge-Torres OC, Vega S, Abian O, Esteller M, Velazquez-Campoy A. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site. Sci Rep 2017; 7:41635. [PMID: 28139759 PMCID: PMC5282554 DOI: 10.1038/srep41635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/22/2016] [Indexed: 01/09/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.
Collapse
Affiliation(s)
- Rafael Claveria-Gimeno
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, 50009, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain
| | - Pilar M Lanuza
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain.,Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Ignacio Morales-Chueca
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, 50009, Spain
| | - Olga C Jorge-Torres
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, 50009, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain.,Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain.,Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, 08908, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08907, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, 08010, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain.,Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain.,Fundacion ARAID, Government of Aragon, Zaragoza, 50018, Spain
| |
Collapse
|
28
|
Kinoshita M, Kim JY, Lin Y, Markova N, Hase T, Lee YH. Biochemical and Biophysical Methods to Examine the Effects of Site-Directed Mutagenesis on Enzymatic Activities and Interprotein Interactions. Methods Mol Biol 2017; 1498:439-460. [PMID: 27709594 DOI: 10.1007/978-1-4939-6472-7_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mutations in proteins often affect interactions with partner molecules, sequentially changing their activities and functions. In order to examine mutagenic effects, we herein describe practical and detailed protocols for enzymatic activity assays using ferredoxin (Fd)-NADP+ reductase (FNR) and sulfite reductase (SiR), which are electron-transferring enzymes for the Calvin cycle and sulfur assimilation in various organisms, respectively. Methods for isothermal titration calorimetry and nuclear magnetic resonance spectroscopy, which are very useful thermodynamically and mechanically for investigating the effects of mutations on intermolecular interactions, are also described with practical examples of the Fd-FNR binding system.
Collapse
Affiliation(s)
- Misaki Kinoshita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Ju Yaen Kim
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Yuxi Lin
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Natalia Markova
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Toshiharu Hase
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
29
|
Khodadadi J, Mirabbaszadeh K, Yarmohammadi M. Sequence dependency of the thermodynamic properties of long DNA double-strands. RSC Adv 2017. [DOI: 10.1039/c7ra05974d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Temperature and sequence dependency of the Pauli paramagnetic susceptibility (PMS) and electronic heat capacity (EHC) of selected configurations are investigated for π-electrons within a ladder model of long DNA double-strands acting as semiconducting nanowires.
Collapse
Affiliation(s)
- Jabbar Khodadadi
- Department of Energy Engineering and Physics
- Amirkabir University of Technology
- Tehran
- Iran
| | - Kavoos Mirabbaszadeh
- Department of Energy Engineering and Physics
- Amirkabir University of Technology
- Tehran
- Iran
| | - Mohsen Yarmohammadi
- Young Researchers and Elite Club
- Kermanshah Branch
- Islamic Azad University
- Kermanshah
- Iran
| |
Collapse
|
30
|
Arai S, Shibazaki C, Adachi M, Honjo E, Tamada T, Maeda Y, Tahara T, Kato T, Miyazaki H, Blaber M, Kuroki R. An insight into the thermodynamic characteristics of human thrombopoietin complexation with TN1 antibody. Protein Sci 2016; 25:1786-96. [PMID: 27419667 PMCID: PMC5029525 DOI: 10.1002/pro.2985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022]
Abstract
Human thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody-hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen-binding fragment (Fab) derived from the TN1 antibody (TN1-Fab). To clarify the mechanism by which hTPO is recognized by TN1-Fab the conformation of free TN1-Fab was determined to a resolution of 2.0 Å using X-ray crystallography and compared with the hTPO-bound form of TN1-Fab determined by a previous study. This structural comparison revealed that the conformation of TN1-Fab does not substantially change after hTPO binding and a set of 15 water molecules is released from the antigen-binding site (paratope) of TN1-Fab upon hTPO complexation. Interestingly, the heat capacity change (ΔCp) measured by ITC (-1.52 ± 0.05 kJ mol(-1) K(-1) ) differed significantly from calculations based upon the X-ray structure data of the hTPO-bound and unbound forms of TN1-Fab (-1.02 ∼ 0.25 kJ mol(-1) K(-1) ) suggesting that hTPO undergoes an induced-fit conformational change combined with significant desolvation upon TN1-Fab binding. The results shed light on the structural biology associated with neutralizing antibody recognition.
Collapse
Affiliation(s)
- Shigeki Arai
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan.
| | - Chie Shibazaki
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Motoyasu Adachi
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Eijiro Honjo
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Taro Tamada
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Yoshitake Maeda
- Kyowa Hakko Kirin Co. Ltd, 3-6-6 Asahi-Cho, Machida, Tokyo, 194-8533, Japan
| | - Tomoyuki Tahara
- Kyowa Hakko Kirin Co. Ltd, 3-6-6 Asahi-Cho, Machida, Tokyo, 194-8533, Japan
| | - Takashi Kato
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
| | - Hiroshi Miyazaki
- Department of Innovative Drug Discovery and Development, Japan Agency for Medical Research and Development, 1-5-5 Nihonbashi-muromachi, Chuo, Tokyo, 103-0022, Japan
| | - Michael Blaber
- College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, Florida, 32306-4300, USA
| | - Ryota Kuroki
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| |
Collapse
|
31
|
Jakubec D, Hostas J, Laskowski RA, Hobza P, Vondrásek J. Large-Scale Quantitative Assessment of Binding Preferences in Protein-Nucleic Acid Complexes. J Chem Theory Comput 2016; 11:1939-48. [PMID: 26894243 DOI: 10.1021/ct501168n] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growing number of high-quality experimental (X-ray, NMR) structures of protein–DNA complexes has sufficient enough information to assess whether universal rules governing the DNA sequence recognition process apply. While previous studies have investigated the relative abundance of various modes of amino acid–base contacts (van der Waals contacts, hydrogen bonds), relatively little is known about the energetics of these noncovalent interactions. In the present study, we have performed the first large-scale quantitative assessment of binding preferences in protein–DNA complexes by calculating the interaction energies in all 80 possible amino acid–DNA base combinations. We found that several mutual amino acid–base orientations featuring bidentate hydrogen bonds capable of unambiguous one-to-one recognition correspond to unique minima in the potential energy space of the amino acid–base pairs. A clustering algorithm revealed that these contacts form a spatially well-defined group offering relatively little conformational freedom. Various molecular mechanics force field and DFT-D ab initio calculations were performed, yielding similar results.
Collapse
|
32
|
On the link between conformational changes, ligand binding and heat capacity. Biochim Biophys Acta Gen Subj 2016; 1860:868-878. [DOI: 10.1016/j.bbagen.2015.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
|
33
|
Arcus VL, Prentice EJ, Hobbs JK, Mulholland AJ, Van der Kamp MW, Pudney CR, Parker EJ, Schipper LA. On the Temperature Dependence of Enzyme-Catalyzed Rates. Biochemistry 2016; 55:1681-8. [DOI: 10.1021/acs.biochem.5b01094] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Vickery L. Arcus
- School
of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Erica J. Prentice
- School
of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Joanne K. Hobbs
- School
of Science, University of Waikato, Hamilton 3240, New Zealand
| | | | | | - Christopher R. Pudney
- Department
of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Emily J. Parker
- Biomolecular
Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch 8041, New Zealand
| | - Louis A. Schipper
- School
of Science, University of Waikato, Hamilton 3240, New Zealand
| |
Collapse
|
34
|
Jayaraman B, Mavor D, Gross JD, Frankel AD. Thermodynamics of Rev-RNA interactions in HIV-1 Rev-RRE assembly. Biochemistry 2015; 54:6545-54. [PMID: 26422686 DOI: 10.1021/acs.biochem.5b00876] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The HIV-1 protein Rev facilitates the nuclear export of intron-containing viral mRNAs by recognizing a structured RNA site, the Rev-response-element (RRE), contained in an intron. Rev assembles as a homo-oligomer on the RRE using its α-helical arginine-rich-motif (ARM) for RNA recognition. One unique feature of this assembly is the repeated use of the ARM from individual Rev subunits to contact distinct parts of the RRE in different binding modes. How the individual interactions differ and how they contribute toward forming a functional complex is poorly understood. Here we examine the thermodynamics of Rev-ARM peptide binding to two sites, RRE stem IIB, the high-affinity site that nucleates Rev assembly, and stem IA, a potential intermediate site during assembly, using NMR spectroscopy and isothermal titration calorimetry (ITC). NMR data indicate that the Rev-IIB complex forms a stable interface, whereas the Rev-IA interface is highly dynamic. ITC studies show that both interactions are enthalpy-driven, with binding to IIB being 20-30 fold tighter than to IA. Salt-dependent decreases in affinity were similar at both sites and predominantly enthalpic in nature, reflecting the roles of electrostatic interactions with arginines. However, the two interactions display strikingly different partitioning between enthalpy and entropy components, correlating well with the NMR observations. Our results illustrate how the variation in binding modes to different RRE target sites may influence the stability or order of Rev-RRE assembly and disassembly, and consequently its function.
Collapse
Affiliation(s)
- Bhargavi Jayaraman
- Department of Biochemistry and Biophysics and ‡Department of Pharmaceutical Chemistry, University of California , San Francisco, United States
| | - David Mavor
- Department of Biochemistry and Biophysics and ‡Department of Pharmaceutical Chemistry, University of California , San Francisco, United States
| | - John D Gross
- Department of Biochemistry and Biophysics and ‡Department of Pharmaceutical Chemistry, University of California , San Francisco, United States
| | - Alan D Frankel
- Department of Biochemistry and Biophysics and ‡Department of Pharmaceutical Chemistry, University of California , San Francisco, United States
| |
Collapse
|
35
|
Thermodynamics and solvent linkage of macromolecule-ligand interactions. Methods 2014; 76:51-60. [PMID: 25462561 DOI: 10.1016/j.ymeth.2014.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 02/06/2023] Open
Abstract
Binding involves two steps, desolvation and association. While water is ubiquitous and occurs at high concentration, it is typically ignored. In vitro experiments typically use infinite dilution conditions, while in vivo, the concentration of water is decreased due to the presence of high concentrations of molecules in the cellular milieu. This review discusses isothermal titration calorimetry approaches that address the role of water in binding. For example, use of D2O allows the contribution of solvent reorganization to the enthalpy component to be assessed. Further, the addition of osmolytes will decrease the water activity of a solution and allow effects on Ka to be determined. In most cases, binding becomes tighter in the presence of osmolytes as the desolvation penalty associated with binding is minimized. In other cases, the osmolytes prefer to interact with the ligand or protein, and if their removal is more difficult than shedding water, then binding can be weakened. These complicating layers can be discerned by different slopes in ln(Ka) vs osmolality plots and by differential scanning calorimetry in the presence of the osmolyte.
Collapse
|
36
|
Alniss HY, Salvia MV, Sadikov M, Golovchenko I, Anthony NG, Khalaf AI, MacKay SP, Suckling CJ, Parkinson JA. Recognition of the DNA minor groove by thiazotropsin analogues. Chembiochem 2014; 15:1978-90. [PMID: 25045155 DOI: 10.1002/cbic.201402202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 01/14/2023]
Abstract
Solution-phase self-association characteristics and DNA molecular-recognition properties are reported for three close analogues of minor-groove-binding ligands from the thiazotropsin class of lexitropsin molecules; they incorporate isopropyl thiazole as a lipophilic building block. Thiazotropsin B (AcImPy(iPr) ThDp) shows similar self-assembly characteristics to thiazotropsin A (FoPyPy(iPr) ThDp), although it is engineered, by incorporation of imidazole in place of N-methyl pyrrole, to swap its DNA recognition target from 5'-ACTAGT-3' to 5'-ACGCGT-3'. Replacement of the formamide head group in thiazotropsin A by nicotinamide in AIK-18/51 results in a measureable difference in solution-phase self-assembly character and substantially enhanced DNA association characteristics. The structures and associated thermodynamic parameters of self-assembled ligand aggregates and their complexes with their respective DNA targets are considered in the context of cluster targeting of DNA by minor-groove complexes.
Collapse
Affiliation(s)
- Hasan Y Alniss
- Department of Pharmacy, An-Najah National University, University Street, Nablus (Palestine); Present address: Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 2J7 (Canada)
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Role of promoter DNA sequence variations on the binding of EGR1 transcription factor. Arch Biochem Biophys 2014; 549:1-11. [PMID: 24657079 DOI: 10.1016/j.abb.2014.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/02/2014] [Accepted: 03/10/2014] [Indexed: 12/20/2022]
Abstract
In response to a wide variety of stimuli such as growth factors and hormones, EGR1 transcription factor is rapidly induced and immediately exerts downstream effects central to the maintenance of cellular homeostasis. Herein, our biophysical analysis reveals that DNA sequence variations within the target gene promoters tightly modulate the energetics of binding of EGR1 and that nucleotide substitutions at certain positions are much more detrimental to EGR1-DNA interaction than others. Importantly, the reduction in binding affinity poorly correlates with the loss of enthalpy and gain of entropy-a trend indicative of a complex interplay between underlying thermodynamic factors due to the differential role of water solvent upon nucleotide substitution. We also provide a rationale for the physical basis of the effect of nucleotide substitutions on the EGR1-DNA interaction at atomic level. Taken together, our study bears important implications on understanding the molecular determinants of a key protein-DNA interaction at the cross-roads of human health and disease.
Collapse
|
38
|
Ramos JP, Le VH, Lewis EA. Role of Water in Netropsin Binding to an A2T2 Hairpin DNA Site: Osmotic Stress Experiments. J Phys Chem B 2013; 117:15958-65. [DOI: 10.1021/jp408077m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph P. Ramos
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Vu H. Le
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Edwin A. Lewis
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
39
|
Kabiri M, Bushnak I, McDermot MT, Unsworth LD. Toward a Mechanistic Understanding of Ionic Self-Complementary Peptide Self-Assembly: Role of Water Molecules and Ions. Biomacromolecules 2013; 14:3943-50. [DOI: 10.1021/bm401077b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Mark T. McDermot
- NanoLife
Group, National Institute for Nanotechnology, National Research Council (Canada), Edmonton, Alberta, Canada
| | - Larry D. Unsworth
- NanoLife
Group, National Institute for Nanotechnology, National Research Council (Canada), Edmonton, Alberta, Canada
| |
Collapse
|
40
|
Kuo TC, Lee PC, Tsai CW, Chen WY. Salt bridge exchange binding mechanism between streptavidin and its DNA aptamer--thermodynamics and spectroscopic evidences. J Mol Recognit 2013; 26:149-59. [PMID: 23345105 DOI: 10.1002/jmr.2260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/05/2012] [Accepted: 12/04/2012] [Indexed: 12/19/2022]
Abstract
Protein-nucleic acids binding driven by electrostatic interactions typically are characterized by the release of counter ions, and the salt-inhibited binding association constant (K(a)) and the magnitude of exothermic binding enthalpy (ΔH). Here, we report a non-classical thermodynamics of streptavidin (SA)-aptamer binding in NaCl (140-350 mM) solutions near room temperatures (23-27 °C). By using isothermal titration calorimetry (ITC) and circular dichroism (CD)/fluorescence spectroscopy, we found that the binding was enthalpy driven with a large entropy cost (ΔH -20.58 kcal mol(-1), TΔS -10.99 kcal mol(-1), and K(a) 1.08 × 10(7) M(-1) at 140 mM NaCl 25 °C). With the raise of salt concentrations, the ΔH became more exothermic, yet the K(a) was almost unchanged (ΔH -26.29 kcal mol(-1) and K(a) 1.50 × 10(7) M(-1) at 350 mM NaCl 25 °C). The data suggest that no counter Na(+) was released in the binding. Spectroscopy data suggest that the binding, with a stoichiometry of 2, was accompanied with substantial conformational changes on SA, and the changes were insensitive to the variation of salt concentrations. To account for the non-classical results, we propose a salt bridge exchange model. The intramolecular binding-site salt bridge(s) of the free SA and the charged phosphate group of aptamers re-organize to form the binding complex by forming a new intermolecular salt bridge(s). The salt bridge exchange binding process requires minimum amount of counter ions releasing but dehydration of the contacting surface of SA and the aptamer. The energy required for dehydration is reduced in the case of binding solution with higher salt concentration and account for the higher binding exothermic mainly.
Collapse
Affiliation(s)
- Tai-Chih Kuo
- Department of Biochemistry, Taipei Medical University, Taipei, 11031, Taiwan
| | | | | | | |
Collapse
|
41
|
Binding thermodynamics of a glutamate transporter homolog. Nat Struct Mol Biol 2013; 20:634-40. [PMID: 23563139 PMCID: PMC3711778 DOI: 10.1038/nsmb.2548] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 02/25/2013] [Indexed: 12/02/2022]
Abstract
Glutamate transporters catalyze concentrative uptake of the neurotransmitter into glial cells and neurons. Their transport cycle involves binding and release of the substrate on the extra- and intracellular sides of the plasma membranes, and translocation of the substrate-binding site across the lipid bilayers. The energy of the ionic gradients, mainly sodium, fuels the cycle. Here, we used a cross-linking approach to trap a glutamate transporter homologue from Pyrococcus horikoshii in key conformational states with substrate-binding site facing either the extracellular or intracellular sides of the membrane to study their binding thermodynamics. We show that the chemical potential of sodium ions in solution is exclusively coupled to substrate binding and release, and not to substrate translocation. Despite the structural symmetry, the binding mechanisms are distinct on the opposite sides of the membrane and more complex than the current models suggest.
Collapse
|
42
|
Serpersu EH, Norris AL. Effect of protein dynamics and solvent in ligand recognition by promiscuous aminoglycoside-modifying enzymes. Adv Carbohydr Chem Biochem 2012; 67:221-48. [PMID: 22794185 DOI: 10.1016/b978-0-12-396527-1.00005-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Engin H Serpersu
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
43
|
Nazari M, Fan HY, Heerklotz H. Effect of hydrophobic interactions on volume and thermal expansivity as derived from micelle formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14129-14136. [PMID: 22950856 DOI: 10.1021/la302276n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Volumetric parameters have long been used to elucidate the phenomena governing the stability of protein structures, ligand binding, or transitions in macromolecular or colloidal systems. In spite of much success, many problems remain controversial. For example, hydrophobic groups have been discussed to condense adjacent water to a volume lower than that of bulk water, causing a negative contribution to the volume change of unfolding. However, expansivity data were interpreted in terms of a structure-making effect that expands the water interacting with the solute. We have studied volume and expansivity effects of transfer of alkyl chains into micelles by pressure perturbation calorimetry and isothermal titration calorimetry. For a series of alkyl maltosides and glucosides, the methylene group contribution to expansivity was obtained as 5 uL/(mol K) in a micelle (mimicking bulk hydrocarbon) but 27 uL/(mol K) in water (20 °C). The latter value is virtually independent of temperature and similar to that obtained from hydrophobic amino acids. Methylene contributions of micellization are about -60 J/(mol K) to heat capacity and 2.7 mL/mol to volume. Our data oppose the widely accepted assumption that water-exposed hydrophobic groups yield a negative contribution to expansivity at low temperature that would imply a structure-making, water-expanding effect.
Collapse
Affiliation(s)
- Mozhgan Nazari
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
44
|
Lin HK, Chase SF, Laue TM, Jen-Jacobson L, Trakselis MA. Differential temperature-dependent multimeric assemblies of replication and repair polymerases on DNA increase processivity. Biochemistry 2012; 51:7367-82. [PMID: 22906116 DOI: 10.1021/bi300956t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differentiation of binding accurate DNA replication polymerases over error prone DNA lesion bypass polymerases is essential for the proper maintenance of the genome. The hyperthermophilic archaeal organism Sulfolobus solfataricus (Sso) contains both a B-family replication (Dpo1) and a Y-family repair (Dpo4) polymerase and serves as a model system for understanding molecular mechanisms and assemblies for DNA replication and repair protein complexes. Protein cross-linking, isothermal titration calorimetry, and analytical ultracentrifugation have confirmed a previously unrecognized dimeric Dpo4 complex bound to DNA. Binding discrimination between these polymerases on model DNA templates is complicated by the fact that multiple oligomeric species are influenced by concentration and temperature. Temperature-dependent fluorescence anisotropy equilibrium binding experiments were used to separate discrete binding events for the formation of trimeric Dpo1 and dimeric Dpo4 complexes on DNA. The associated equilibria are found to be temperature-dependent, generally leading to improved binding at higher temperatures for both polymerases. At high temperatures, DNA binding of Dpo1 monomer is favored over binding of Dpo4 monomer, but binding of Dpo1 trimer is even more strongly favored over binding of Dpo4 dimer, thus providing thermodynamic selection. Greater processivities of nucleotide incorporation for trimeric Dpo1 and dimeric Dpo4 are also observed at higher temperatures, providing biochemical validation for the influence of tightly bound oligomeric polymerases. These results separate, quantify, and confirm individual and sequential processes leading to the formation of oligomeric Dpo1 and Dpo4 assemblies on DNA and provide for a concentration- and temperature-dependent discrimination of binding undamaged DNA templates at physiological temperatures.
Collapse
Affiliation(s)
- Hsiang-Kai Lin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | |
Collapse
|
45
|
Xu Y, Oruganti SV, Gopalan V, Foster MP. Thermodynamics of coupled folding in the interaction of archaeal RNase P proteins RPP21 and RPP29. Biochemistry 2012; 51:926-35. [PMID: 22243443 DOI: 10.1021/bi201674d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have used isothermal titration calorimetry (ITC) to identify and describe binding-coupled equilibria in the interaction between two protein subunits of archaeal ribonuclease P (RNase P). In all three domains of life, RNase P is a ribonucleoprotein complex that is primarily responsible for catalyzing the Mg²⁺-dependent cleavage of the 5' leader sequence of precursor tRNAs during tRNA maturation. In archaea, RNase P has been shown to be composed of one catalytic RNA and up to five proteins, four of which associate in the absence of RNA as two functional heterodimers, POP5-RPP30 and RPP21-RPP29. Nuclear magnetic resonance studies of the Pyrococcus furiosus RPP21 and RPP29 proteins in their free and complexed states provided evidence of significant protein folding upon binding. ITC experiments were performed over a range of temperatures, ionic strengths, and pH values, in buffers with varying ionization potentials, and with a folding-deficient RPP21 point mutant. These experiments revealed a negative heat capacity change (ΔC(p)), nearly twice that predicted from surface accessibility calculations, a strong salt dependence for the interaction, and proton release at neutral pH, but a small net contribution from these to the excess ΔC(p). We considered potential contributions from protein folding and burial of interfacial water molecules based on structural and spectroscopic data. We conclude that binding-coupled protein folding is likely responsible for a significant portion of the excess ΔC(p). These findings provide novel structural and thermodynamic insights into coupled equilibria that allow specificity in macromolecular assemblies.
Collapse
Affiliation(s)
- Yiren Xu
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | |
Collapse
|
46
|
Alniss HY, Anthony NG, Khalaf AI, Mackay SP, Suckling CJ, Waigh RD, Wheate NJ, Parkinson JA. Rationalising sequence selection by ligand assemblies in the DNA minor groove: the case for thiazotropsin A. Chem Sci 2012. [DOI: 10.1039/c2sc00630h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Xi H, Davis E, Ranjan N, Xue L, Hyde-Volpe D, Arya DP. Thermodynamics of nucleic acid "shape readout" by an aminosugar. Biochemistry 2011; 50:9088-113. [PMID: 21863895 PMCID: PMC3673541 DOI: 10.1021/bi201077h] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized as playing an equally important role in DNA recognition. Competition dialysis, UV, flourescent intercalator displacement (FID), computational docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, the results suggest the following. (1) Neomycin binds three RNA structures [16S A site rRNA, poly(rA)·poly(rA), and poly(rA)·poly(rU)] with high affinities (K(a) ~ 10(7) M(-1)). (2) The binding of neomycin to A-form GC-rich oligomer d(A(2)G(15)C(15)T(2))(2) has an affinity comparable to those of RNA structures. (3) The binding of neomycin to DNA·RNA hybrids shows a 3-fold variance that can be attributed to their structural differences [for poly(dA)·poly(rU), K(a) = 9.4 × 10(6) M(-1), and for poly(rA)·poly(dT), K(a) = 3.1 × 10(6) M(-1)]. (4) The interaction of neomycin with DNA triplex poly(dA)·2poly(dT) yields a binding affinity (K(a)) of 2.4 × 10(5) M(-1). (5) Poly(dA-dT)(2) shows the lowest association constant for all nucleic acids studied (K(a) < 10(5)). (6) Neomycin binds to G-quadruplexes with K(a) values of ~10(4)-10(5) M(-1). (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin's affinity for various nucleic acid structures can be ranked as follows: RNAs and GC-rich d(A(2)G(15)C(15)T(2))(2) structures > poly(dA)·poly(rU) > poly(rA)·poly(dT) > T·A-T triplex, G-quadruplex, B-form AT-rich, or GC-rich DNA sequences. The results illustrate the first example of a small molecule-based "shape readout" of different nucleic acid conformations.
Collapse
Affiliation(s)
- Hongjuan Xi
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Erik Davis
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Liang Xue
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - David Hyde-Volpe
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
48
|
Nagatoishi S, Isono N, Tsumoto K, Sugimoto N. Hydration is required in DNA G-quadruplex-protein binding. Chembiochem 2011; 12:1822-6. [PMID: 21671334 DOI: 10.1002/cbic.201100264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Indexed: 01/26/2023]
Affiliation(s)
- Satoru Nagatoishi
- Frontier Institute for Biomolecular Engineering Research, Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
49
|
Kozlov AG, Lohman TM. E. coli SSB tetramer binds the first and second molecules of (dT)(35) with heat capacities of opposite sign. Biophys Chem 2011; 159:48-57. [PMID: 21636209 DOI: 10.1016/j.bpc.2011.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/02/2011] [Accepted: 05/02/2011] [Indexed: 11/17/2022]
Abstract
We have previously shown that formation of a 1:1 fully wrapped complex of Escherichia coli SSB tetramer with (dT)(70) displays a temperature-dependent sign reversal of the binding heat capacity (ΔC(P)). Here we examine SSB binding to shorter oligodeoxynucleotides ((dX)(35)) to probe whether this effect requires binding of one or two (dX)(35) molecules per SSB tetramer. We find that the ΔC(P) for the first molecule of (dX)(35) is always negative. However, a sign reversal of ΔC(P) from negative to positive occurs with increasing temperature for binding of the second (dX)(35). This striking behavior of ΔC(P) for the second (dX)(35) appears linked to conformational changes within the ssDNA-SSB complex that are required to form a fully wrapped (SSB)(65) binding mode. These results also underscore that binding heat capacities of macromolecular interactions have multiple origins that cannot be understood simply on the basis of examining static structures.
Collapse
Affiliation(s)
- Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | |
Collapse
|
50
|
Kong L, Liu Z, Hu X, Liu S. Absorption, Fluorescence and Resonance Rayleigh Scattering Spectra of Interaction of Papain with Calf Thymus DNA. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|