1
|
Azuma Y, Gaweł S, Pasternak M, Woźnicka O, Pyza E, Heddle JG. Reengineering of an Artificial Protein Cage for Efficient Packaging of Active Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312286. [PMID: 38738740 DOI: 10.1002/smll.202312286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Indexed: 05/14/2024]
Abstract
Protein cages that readily encapsulate active enzymes of interest present useful nanotools for delivery and catalysis, wherein those with programmable disassembly characteristics serve as particularly attractive platforms. Here, a general guest packaging system based on an artificial protein cage, TRAP-cage, the disassembly of which can be induced by the addition of reducing agents, is established. In this system, TRAP-cage with SpyCatcher moieties in the lumen is prepared using genetic modification of the protein building block and assembled into a cage structure with either monovalent gold ions or molecular crosslinkers. The resulting protein cage can efficiently capture guest proteins equipped with a SpyTag by simply mixing them in an aqueous solution. This post-assembly loading system, which circumvents the exposure of guests to thiol-reactive crosslinkers, enables the packaging of enzymes possessing a catalytic cysteine or a metal cofactor while retaining their catalytic activity.
Collapse
Affiliation(s)
- Yusuke Azuma
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| | - Szymon Gaweł
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Monika Pasternak
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Olga Woźnicka
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Elżbieta Pyza
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| |
Collapse
|
2
|
Majsterkiewicz K, Stupka I, Borzęcka-Solarz K, Biela A, Gaweł S, Pasternak M, Heddle J. Artificial Protein Cages Assembled via Gold Coordination. Methods Mol Biol 2023; 2671:49-68. [PMID: 37308637 DOI: 10.1007/978-1-0716-3222-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Artificial protein cages made from multiple copies of a single protein can be produced such that they only assemble upon addition of a metal ion. Consequently, the ability to remove the metal ion triggers protein-cage disassembly. Controlling assembly and disassembly has many potential uses including cargo loading/unloading and hence drug delivery. TRAP-cage is an example of such a protein cage which assembles due to linear coordination bond formation with Au(I) which acts to bridge constituent proteins. Here we describe the method for production and purification of TRAP-cage.
Collapse
Affiliation(s)
| | - Izabela Stupka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Artur Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Szymon Gaweł
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Pasternak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jonathan Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
3
|
Majsterkiewicz K, Biela AP, Maity S, Sharma M, Piette BMAG, Kowalczyk A, Gaweł S, Chakraborti S, Roos WH, Heddle JG. Artificial Protein Cage with Unusual Geometry and Regularly Embedded Gold Nanoparticles. NANO LETTERS 2022; 22:3187-3195. [PMID: 35254086 PMCID: PMC9052746 DOI: 10.1021/acs.nanolett.1c04222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Artificial protein cages have great potential in a number of areas including cargo capture and delivery and as artificial vaccines. Here, we investigate an artificial protein cage whose assembly is triggered by gold nanoparticles. Using biochemical and biophysical methods we were able to determine both the mechanical properties and the gross compositional features of the cage which, combined with mathematical models and biophysical data, allowed the structure of the cage to be predicted. The accuracy of the overall geometrical prediction was confirmed by the cryo-EM structure determined to sub-5 Å resolution. This showed the cage to be nonregular but similar to a dodecahedron, being constructed from 12 11-membered rings. Surprisingly, the structure revealed that the cage also contained a single, small gold nanoparticle at each 3-fold axis meaning that each cage acts as a synthetic framework for regular arrangement of 20 gold nanoparticles in a three-dimensional lattice.
Collapse
Affiliation(s)
- Karolina Majsterkiewicz
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Postgraduate
School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw 02-091, Poland
| | - Artur P. Biela
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Institute
of Zoology and Biomedical Research, Department of Cell Biology and
Imaging, Jagiellonian University, Kraków 30-387, Poland
| | - Sourav Maity
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Groningen 9747 AG, Netherlands
| | - Mohit Sharma
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Postgraduate
School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw 02-091, Poland
| | | | - Agnieszka Kowalczyk
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Faculty of
Mathematics and Computer Science, Jagiellonian
University, Kraków 30-348, Poland
| | - Szymon Gaweł
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | | | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Groningen 9747 AG, Netherlands
| | - Jonathan G. Heddle
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
4
|
Audette GF, Yaseen A, Bragagnolo N, Bawa R. Protein Nanotubes: From Bionanotech towards Medical Applications. Biomedicines 2019; 7:biomedicines7020046. [PMID: 31234611 PMCID: PMC6630890 DOI: 10.3390/biomedicines7020046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023] Open
Abstract
Nanobiotechnology involves the study of structures found in nature to construct nanodevices for biological and medical applications with the ultimate goal of commercialization. Within a cell most biochemical processes are driven by proteins and associated macromolecular complexes. Evolution has optimized these protein-based nanosystems within living organisms over millions of years. Among these are flagellin and pilin-based systems from bacteria, viral-based capsids, and eukaryotic microtubules and amyloids. While carbon nanotubes (CNTs), and protein/peptide-CNT composites, remain one of the most researched nanosystems due to their electrical and mechanical properties, there are many concerns regarding CNT toxicity and biodegradability. Therefore, proteins have emerged as useful biotemplates for nanomaterials due to their assembly under physiologically relevant conditions and ease of manipulation via protein engineering. This review aims to highlight some of the current research employing protein nanotubes (PNTs) for the development of molecular imaging biosensors, conducting wires for microelectronics, fuel cells, and drug delivery systems. The translational potential of PNTs is highlighted.
Collapse
Affiliation(s)
- Gerald F Audette
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Ayat Yaseen
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Nicholas Bragagnolo
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Raj Bawa
- Patent Law Department, Bawa Biotech LLC, Ashburn, VA 20147, USA.
- Guanine Inc., Rensselaer, NY 12144-3463, USA.
- Pharmaceutical Research Institute of Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| |
Collapse
|
5
|
Malay AD, Miyazaki N, Biela A, Chakraborti S, Majsterkiewicz K, Stupka I, Kaplan CS, Kowalczyk A, Piette BMAG, Hochberg GKA, Wu D, Wrobel TP, Fineberg A, Kushwah MS, Kelemen M, Vavpetič P, Pelicon P, Kukura P, Benesch JLP, Iwasaki K, Heddle JG. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 2019; 569:438-442. [PMID: 31068697 DOI: 10.1038/s41586-019-1185-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/08/2019] [Indexed: 01/03/2023]
Abstract
Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery1, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein-protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging2,3. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein-protein interfaces. The addition of a gold (I)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S-Aui-S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(II) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.
Collapse
Affiliation(s)
- Ali D Malay
- Heddle Initiative Research Unit, RIKEN, Saitama, Japan.,Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, Saitama, Japan
| | - Naoyuki Miyazaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Artur Biela
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Soumyananda Chakraborti
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Majsterkiewicz
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Izabela Stupka
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Craig S Kaplan
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Agnieszka Kowalczyk
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | | | - Georg K A Hochberg
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Di Wu
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Tomasz P Wrobel
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Adam Fineberg
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Manish S Kushwah
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Mitja Kelemen
- Jožef Stefan Institute, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | | | | - Philipp Kukura
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Justin L P Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Kenji Iwasaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Jonathan G Heddle
- Heddle Initiative Research Unit, RIKEN, Saitama, Japan. .,Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
6
|
Nemchinova M, Balobanov V, Nikonova E, Lekontseva N, Mikhaylina A, Tishchenko S, Nikulin A. An Experimental Tool to Estimate the Probability of a Nucleotide Presence in the Crystal Structures of the Nucleotide-Protein Complexes. Protein J 2017; 36:157-165. [PMID: 28317076 DOI: 10.1007/s10930-017-9709-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A correlation between the ligand-protein affinity and the identification of the ligand in the experimental electron density maps obtained by X-ray crystallography has been tested for a number of RNA-binding proteins. Bacterial translation regulators ProQ, TRAP, Rop, and Hfq together with their archaeal homologues SmAP have been used. The equilibrium dissociation constants for the N-methyl-anthraniloyl-labelled adenosine and guanosine monophosphates titrated by the proteins have been determined by the fluorescent anisotropy measurements. The estimated stability of the nucleotide-protein complexes has been matched with a presence of the nucleotides in the structures of the proposed nucleotide-protein complexes. It has been shown that the ribonucleotides can be definitely identified in the experimental electron density maps at equilibrium dissociation constant <10 μM. At KD of 20-40 μM, long incubation of the protein crystals in the nucleotide solution is required to obtain the structures of the complexes. The complexes with KD value higher than 50 μM are not stable enough to survive in crystallization conditions.
Collapse
Affiliation(s)
- Maria Nemchinova
- Institute of Protein Research RAS, Pushchino, Russian Federation
| | - Vitaly Balobanov
- Institute of Protein Research RAS, Pushchino, Russian Federation
| | | | | | - Alisa Mikhaylina
- Institute of Protein Research RAS, Pushchino, Russian Federation
| | | | - Alexey Nikulin
- Institute of Protein Research RAS, Pushchino, Russian Federation.
| |
Collapse
|
7
|
Identification of a Residue (Glu60) in TRAP Required for Inducing Efficient Transcription Termination at the trp Attenuator Independent of Binding Tryptophan and RNA. J Bacteriol 2017; 199:JB.00710-16. [PMID: 28069823 DOI: 10.1128/jb.00710-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/31/2016] [Indexed: 11/20/2022] Open
Abstract
Transcription of the tryptophan (trp) operon in Bacillus subtilis is regulated by an attenuation mechanism. Attenuation is controlled by the trpRNA-binding attenuation protein (TRAP). TRAP binds to a site in the 5' leader region of the nascent trp transcript in response to the presence of excess intracellular tryptophan. This binding induces transcription termination upstream of the structural genes of the operon. In prior attenuation models, the role of TRAP was only to alter the secondary structure of the leader region RNA so as to promote formation of the trp attenuator, which was presumed to function as an intrinsic terminator. However, formation of the attenuator alone has been shown to be insufficient to induce efficient termination, indicating that TRAP plays an additional role in this process. To further examine the function of TRAP, we performed a genetic selection for mutant TRAPs that bind tryptophan and RNA but show diminished termination at the trp attenuator. Five such TRAP mutants were obtained. Four of these have substitutions at Glu60, three of which are Lys (E60K) substitutions and the fourth of which is a Val (E60V) substitution. The fifth mutant obtained contains a substitution at Ile63, which is on the same β-strand of TRAP as Glu60. Purified E60K TRAP binds tryptophan and RNA with properties similar to those of the wild type but is defective at inducing termination at the trp attenuator in vitroIMPORTANCE Prior models for attenuation control of the B. subtilis trp operon suggested that the only role for TRAP is to bind to the leader region RNA and alter its folding to induce formation of an intrinsic terminator. However, several recent studies suggested that TRAP plays an additional role in the termination mechanism. We hypothesized that this function could involve residues in TRAP other than those required to bind tryptophan and RNA. Here we obtained TRAP mutants with alterations at Glu60 that are deficient at inducing termination in the leader region while maintaining tryptophan and RNA binding properties similar to those of the WT protein. These studies provide additional evidence that TRAP-mediated transcription termination at the trp attenuator is neither intrinsic nor Rho dependent.
Collapse
|
8
|
Radiation damage within nucleoprotein complexes studied by macromolecular X-ray crystallography. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Imamura M, Uchihashi T, Ando T, Leifert A, Simon U, Malay AD, Heddle JG. Probing structural dynamics of an artificial protein cage using high-speed atomic force microscopy. NANO LETTERS 2015; 15:1331-5. [PMID: 25559993 DOI: 10.1021/nl5045617] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A cysteine-substituted mutant of the ring-shaped protein TRAP (trp-RNA binding attenuation protein) can be induced to self-assemble into large, monodisperse hollow spherical cages in the presence of 1.4 nm diameter gold nanoparticles. In this study we use high-speed atomic force microscopy (HS-AFM) to probe the dynamics of the structural changes related to TRAP interactions with the gold nanoparticle as well as the disassembly of the cage structure. The dynamic aggregation of TRAP protein in the presence of gold nanoparticles was observed, including oligomeric rearrangements, consistent with a role for gold in mediating intermolecular disulfide bond formation. We were also able to observe that the TRAP-cage is composed of multiple, closely packed TRAP rings in an apparently regular arrangement. A potential role for inter-ring disulfide bonds in forming the TRAP-cage was shown by the fact that ring-ring interactions were reversed upon the addition of reducing agent dithiothreitol. A dramatic disassembly of TRAP-cages was observed using HS-AFM after the addition of dithiothreitol. To the best of our knowledge, this is the first report to show direct high-resolution imaging of the disassembly process of a large protein complex in real time.
Collapse
Affiliation(s)
- Motonori Imamura
- Heddle Initiative Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Ihms EC, Zhou M, Zhang Y, Kleckner IR, McElroy CA, Wysocki VH, Gollnick P, Foster MP. Gene regulation by substoichiometric heterocomplex formation of undecameric TRAP and trimeric anti-TRAP. Proc Natl Acad Sci U S A 2014; 111:3442-7. [PMID: 24550461 PMCID: PMC3948263 DOI: 10.1073/pnas.1315281111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The control of tryptophan production in Bacillus is a paradigmatic example of gene regulation involving the interplay of multiple protein and nucleic acid components. Central to this combinatorial mechanism are the homo-oligomeric proteins TRAP (trp RNA-binding attenuation protein) and anti-TRAP (AT). TRAP forms undecameric rings, and AT assembles into triskelion-shaped trimers. Upon activation by tryptophan, the outer circumference of the TRAP ring binds specifically to a series of tandem sequences present in the 5' UTR of RNA transcripts encoding several tryptophan metabolism genes, leading to their silencing. AT, whose expression is up-regulated upon tryptophan depletion to concentrations not exceeding a ratio of one AT trimer per TRAP 11-mer, restores tryptophan production by binding activated TRAP and preventing RNA binding. How the smaller AT inhibitor prevents RNA binding at such low stoichiometries has remained a puzzle, in part because of the large RNA-binding surface on the tryptophan-activated TRAP ring and its high affinity for RNA. Using X-ray scattering, hydrodynamic, and mass spectrometric data, we show that the polydentate action of AT trimers can condense multiple intact TRAP rings into large heterocomplexes, effectively reducing the available contiguous RNA-binding surfaces. This finding reveals an unprecedented mechanism for substoichiometric inhibition of a gene-regulatory protein, which may be a widespread but underappreciated regulatory mechanism in pathways that involve homo-oligomeric or polyvalent components.
Collapse
Affiliation(s)
- Elihu C. Ihms
- Department of Chemistry and Biochemistry
- Biophysics Graduate Program, and
| | - Mowei Zhou
- Department of Chemistry and Biochemistry
| | - Yun Zhang
- Department of Chemistry and Biochemistry
| | - Ian R. Kleckner
- Department of Chemistry and Biochemistry
- Biophysics Graduate Program, and
| | - Craig A. McElroy
- College of Pharmacy, The Ohio State University, Columbus, OH 43210; and
| | | | - Paul Gollnick
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260
| | - Mark P. Foster
- Department of Chemistry and Biochemistry
- Biophysics Graduate Program, and
- Center for RNA Biology
| |
Collapse
|
11
|
Al-Furoukh N, Goffart S, Szibor M, Wanrooij S, Braun T. Binding to G-quadruplex RNA activates the mitochondrial GTPase NOA1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2933-2942. [PMID: 23933583 DOI: 10.1016/j.bbamcr.2013.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022]
Abstract
NOA1 is an evolutionary conserved, nuclear encoded GTPase essential for mitochondrial function and cellular survival. The function of NOA1 for assembly of mitochondrial ribosomes and regulation of OXPHOS activity depends on its GTPase activity, but so far no ligands have been identified that regulate the GTPase activity of NOA1. To identify nucleic acids that bind to the RNA-binding domain of NOA1 we employed SELEX (Systemic Evolution of Ligands by EXponential Enrichment) using recombinant mouse wildtype NOA1 and the GTPase mutant NOA1-K353R. We found that NOA1 binds specifically to oligonucleotides that fold into guanine tetrads (G-quadruplexes). Binding of G-quadruplex oligonucleotides stimulated the GTPase activity of NOA1 suggesting a regulatory link between G-quadruplex containing RNAs, NOA1 function and assembly of mitochondrial ribosomes.
Collapse
Affiliation(s)
- Natalie Al-Furoukh
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.
| | - Steffi Goffart
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany; University of Eastern Finland, Department of Biology, Yliopistokatu 7, 80101 Joensuu, Finland.
| | - Marten Szibor
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.
| | - Sjoerd Wanrooij
- University of Gothenburg, Department of Medical Biochemistry and Cell Biology, Box 440, SE-40530, Göteborg, Sweden; Burgers Lab, Department of Biochemistry and Biophysics, Washington University, Campus Box 8231, 4566 Scott Avenue, MO 63110, St. Louis, USA.
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.
| |
Collapse
|
12
|
Mak ANS, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 2012; 335:716-9. [PMID: 22223736 DOI: 10.1126/science.1216211] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
DNA recognition by TAL effectors is mediated by tandem repeats, each 33 to 35 residues in length, that specify nucleotides via unique repeat-variable diresidues (RVDs). The crystal structure of PthXo1 bound to its DNA target was determined by high-throughput computational structure prediction and validated by heavy-atom derivatization. Each repeat forms a left-handed, two-helix bundle that presents an RVD-containing loop to the DNA. The repeats self-associate to form a right-handed superhelix wrapped around the DNA major groove. The first RVD residue forms a stabilizing contact with the protein backbone, while the second makes a base-specific contact to the DNA sense strand. Two degenerate amino-terminal repeats also interact with the DNA. Containing several RVDs and noncanonical associations, the structure illustrates the basis of TAL effector-DNA recognition.
Collapse
Affiliation(s)
- Amanda Nga-Sze Mak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-025 Seattle, WA 98019, USA
| | | | | | | | | |
Collapse
|
13
|
Kleckner IR, Gollnick P, Foster MP. Mechanisms of allosteric gene regulation by NMR quantification of microsecond-millisecond protein dynamics. J Mol Biol 2011; 415:372-81. [PMID: 22115774 DOI: 10.1016/j.jmb.2011.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/17/2011] [Accepted: 11/08/2011] [Indexed: 11/17/2022]
Abstract
The trp RNA-binding attenuation protein (TRAP) is a paradigmatic allosteric protein that regulates the tryptophan biosynthetic genes associated with the trp operon in bacilli. The ring-shaped 11-mer TRAP is activated for recognition of a specific trp-mRNA target by binding up to 11 tryptophan molecules. To characterize the mechanisms of tryptophan-induced TRAP activation, we have performed methyl relaxation dispersion (MRD) nuclear magnetic resonance (NMR) experiments that probe the time-dependent structure of TRAP in the microsecond-to-millisecond "chemical exchange" time window. We find significant side chain flexibility localized to the RNA and tryptophan binding sites of the apo protein and that these dynamics are dramatically reduced upon ligand binding. Analysis of the MRD NMR data provides insights into the structural nature of transiently populated conformations sampled in solution by apo TRAP. The MRD data are inconsistent with global two-state exchange, indicating that conformational sampling in apo TRAP is asynchronous. These findings imply a temporally heterogeneous population of structures that are incompatible with RNA binding and substantiate the study of TRAP as a paradigm for probing and understanding essential dynamics in allosteric, regulatory proteins.
Collapse
Affiliation(s)
- Ian R Kleckner
- Biophysics Program, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
14
|
Abstract
Allostery is vital to the function of many proteins. In some cases, rather than a direct steric effect, mutual modulation of ligand binding at spatially separated sites may be achieved through a change in protein dynamics. Thus changes in vibrational modes of the protein, rather than conformational changes, allow different ligand sites to communicate. Evidence for such an effect has been found in TRAP (trp RNA-binding attenuation protein), a regulatory protein found in species of Bacillus. TRAP is part of a feedback system to modulate expression of the trp operon, which carries genes involved in tryptophan synthesis. Negative feedback is thought to depend on binding of tryptophan-bound, but not unbound, TRAP to a specific mRNA leader sequence. We find that, contrary to expectations, at low temperatures TRAP is able to bind RNA in the absence of tryptophan, and that this effect is particularly strong in the case of Bacillus stearothermophilus TRAP. We have solved the crystal structure of this protein with no tryptophan bound, and find that much of the structure shows little deviation from the tryptophan-bound form. These data support the idea that tryptophan may exert its effect on RNA binding by TRAP through dynamic and not structural changes, and that tryptophan binding may be mimicked by low temperature.
Collapse
|
15
|
Shevtsov MB, Chen Y, Isupov MN, Leech A, Gollnick P, Antson AA. Bacillus licheniformis Anti-TRAP can assemble into two types of dodecameric particles with the same symmetry but inverted orientation of trimers. J Struct Biol 2010; 170:127-33. [PMID: 20138150 PMCID: PMC2896485 DOI: 10.1016/j.jsb.2010.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/21/2010] [Accepted: 01/23/2010] [Indexed: 01/07/2023]
Abstract
Anti-TRAP (AT) protein regulates expression of tryptophan biosynthetic genes by binding to the trp RNA-binding attenuation protein (TRAP) and preventing its interaction with RNA. Bacillus subtilis AT forms trimers that can either interact with TRAP or can further assemble into dodecameric particles. To determine which oligomeric forms are preserved in AT proteins of other Bacilli we studied Bacillus licheniformis AT which shares 66% sequence identity with the B. subtilis protein. We show that in solution B. licheniformis AT forms stable trimers. In crystals, depending on pH, such trimers assemble into two different types of dodecameric particles, both having 23 point group symmetry. The dodecamer formed at pH 6.0 has the same conformation as previously observed for B. subtilis AT. This dodecamer contains a large internal chamber with the volume of approximately 700 A(3), which is lined by the side chains of twelve valine residues. The presence of the hydrophobic chamber hints at the possibility that the dodecamer formation could be induced by binding of a ligand. Interestingly, in the dodecamer formed at pH 8.0 all trimers are turned inside out relatively to the form observed at pH 6.0.
Collapse
Affiliation(s)
- Mikhail B. Shevtsov
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO1 5YW, UK
| | - Yanling Chen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Michail N. Isupov
- School of Biosciences, Henry Wellcome Building for Biocatalysis, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Andrew Leech
- Department of Biology, University of York, Heslington, York YO1 5DD, UK
| | - Paul Gollnick
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO1 5YW, UK,Corresponding author. Fax: +44 1904 328266.
| |
Collapse
|
16
|
Mercante J, Edwards AN, Dubey AK, Babitzke P, Romeo T. Molecular geometry of CsrA (RsmA) binding to RNA and its implications for regulated expression. J Mol Biol 2009; 392:511-28. [PMID: 19619561 DOI: 10.1016/j.jmb.2009.07.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 12/12/2022]
Abstract
The global regulatory protein CsrA binds to the 5'-untranslated leader of target transcripts and alters their translation and/or stability. CsrA is a symmetrical homodimer containing two identical RNA-binding surfaces. Gel shift assays with model RNA substrates now show that CsrA can bind simultaneously at two target sites within a transcript (bridging or dual-site binding). An intersite distance of approximately 18 nucleotides (nt) was optimal, although bridging occurred with an intersite distance of 10 to >or=63 nt. The close 10-nt spacing reduced the stability of dual-site binding, as competition for one site by a second CsrA dimer readily occurred. Both RNA-binding surfaces of a single CsrA protein were essential for efficient in vitro repression of a glgC'-'lacZ translational fusion that contains four CsrA target sites within the untranslated leader. Heterodimeric CsrA (HD-CsrA) containing a single R44A replacement, which was defective for binding at its mutant surface but bound RNA normally at its wild-type (WT) surface, was approximately 14-fold less effective at repression than homodimeric WT-CsrA. Furthermore, deletion of a CsrA target site of glgC that lies upstream from the Shine-Dalgarno sequence did not affect regulation by HD-CsrA but decreased regulation by WT-CsrA, confirming a regulatory role of dual-site binding. Finally, we propose a mechanism whereby a globular ribonucleoprotein complex is formed between CsrA and its noncoding RNA antagonist, CsrB. Because many target sites of CsrB are located closer together than is optimal for bridging, binding to nonadjacent sites should be energetically favored, causing multiple CsrA dimers to tether CsrB into the observed globular form rather than an extended CsrA-CsrB complex.
Collapse
Affiliation(s)
- Jeffrey Mercante
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
17
|
McGraw AP, Mokdad A, Major F, Bevilacqua PC, Babitzke P. Molecular basis of TRAP-5'SL RNA interaction in the Bacillus subtilis trp operon transcription attenuation mechanism. RNA (NEW YORK, N.Y.) 2009; 15:55-66. [PMID: 19033375 PMCID: PMC2612762 DOI: 10.1261/rna.1314409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/14/2008] [Indexed: 05/27/2023]
Abstract
Expression of the Bacillus subtilis trpEDCFBA operon is regulated by the interaction of tryptophan-activated TRAP with 11 (G/U)AG trinucleotide repeats that lie in the leader region of the nascent trp transcript. Bound TRAP prevents folding of an antiterminator structure and favors formation of an overlapping intrinsic terminator hairpin upstream of the trp operon structural genes. A 5'-stem-loop (5'SL) structure that forms just upstream of the triplet repeat region increases the affinity of TRAP-trp RNA interaction, thereby increasing the efficiency of transcription termination. Single-stranded nucleotides in the internal loop and in the hairpin loop of the 5'SL are important for TRAP binding. We show here that altering the distance between these two loops suggests that G7, A8, and A9 from the internal loop and A19 and G20 from the hairpin loop constitute two structurally discrete TRAP-binding regions. Photochemical cross-linking experiments also show that the hairpin loop of the 5'SL is in close proximity to the flexible loop region of TRAP during TRAP-5'SL interaction. The dimensions of B. subtilis TRAP and of a three-dimensional model of the 5'SL generated using the MC-Sym and MC-Fold pipeline imply that the 5'SL binds the protein in an orientation where the helical axis of the 5'SL is perpendicular to the plane of TRAP. This interaction not only increases the affinity of TRAP-trp leader RNA interaction, but also orients the downstream triplet repeats for interaction with the 11 KKR motifs that lie on TRAP's perimeter, increasing the likelihood that TRAP will bind in time to promote termination.
Collapse
Affiliation(s)
- Adam P McGraw
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
18
|
Murtola T, Vattulainen I, Falck E. Insights into activation and RNA binding of trp RNA-binding attenuation protein (TRAP) through all-atom simulations. Proteins 2008; 71:1995-2011. [PMID: 18186477 DOI: 10.1002/prot.21878] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tryptophan biosynthesis in Bacillus stearothermophilus is regulated by a trp RNA binding attenuation protein (TRAP). It is a ring-shaped 11-mer of identical 74 residue subunits. Tryptophan binding pockets are located between adjacent subunits, and tryptophan binding activates TRAP to bind RNA. Here, we report results from all-atom molecular dynamics simulations of the system, complementing existing extensive experimental studies. We focus on two questions. First, we look at the activation mechanism, of which relatively little is known experimentally. We find that the absence of tryptophan allows larger motions close to the tryptophan binding site, and we see indication of a conformational change in the BC loop. However, complete deactivation seems to occur on much longer time scales than the 40 ns studied here. Second, we study the TRAP-RNA interactions. We look at the relative flexibilities of the different bases in the complex and analyze the hydrogen bonds between the protein and RNA. We also study the role of Lys37, Lys56, and Arg58, which have been experimentally identified as essential for RNA binding. Hydrophobic stacking of Lys37 with the nearby RNA base is confirmed, but we do not see direct hydrogen bonding between RNA and the other two residues, in contrast to the crystal structure. Rather, these residues seem to stabilize the RNA-binding surface, and their positive charge may also play a role in RNA binding. Simulations also indicate that TRAP is able to attract RNA nonspecifically, and the interactions are quantified in more detail using binding energy calculations. The formation of the final binding complex is a very slow process: within the simulation time scale of 40 ns, only two guanine bases become bound (and no others), indicating that the binding initiates at these positions. In general, our results are in good agreement with experimental studies, and provide atomic-scale insights into the processes.
Collapse
Affiliation(s)
- Teemu Murtola
- Laboratory of Physics and Helsinki Institute of Physics, Helsinki University of Technology, FI-02015 Espoo, Finland.
| | | | | |
Collapse
|
19
|
Chen Y, Gollnick P. Alanine scanning mutagenesis of anti-TRAP (AT) reveals residues involved in binding to TRAP. J Mol Biol 2008; 377:1529-43. [PMID: 18334255 DOI: 10.1016/j.jmb.2008.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/16/2008] [Accepted: 02/03/2008] [Indexed: 11/30/2022]
Abstract
The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic (trp) genes in response to changes in intracellular levels of free l-tryptophan in many Gram-positive bacteria. When activated by binding tryptophan, TRAP binds to the mRNAs of several genes involved in tryptophan metabolism, and down-regulates transcription or translation of these genes. Anti-TRAP (AT) is an antagonist of TRAP that binds to tryptophan-activated TRAP and prevents it from binding to its RNA targets, and thereby up-regulates trp gene expression. The crystal structure shows that AT is a cone-shaped trimer (AT(3)) with the N-terminal residues of the three subunits assembled at the apex of the cone and that these trimers can further assemble into a dodecameric (AT(12)) structure. Using alanine-scanning mutagenesis we found four residues, all located on the "top" region of AT(3), that are essential for binding to TRAP. Fluorescent labeling experiments further suggest that the top region of AT is in close juxtaposition to TRAP in the AT-TRAP complex. In vivo studies confirmed the importance of these residues on the top of AT in regulating TRAP mediated gene regulation.
Collapse
Affiliation(s)
- Yanling Chen
- Department of Biological Sciences, State University of New York, Buffalo, New York 14260-1300, USA
| | | |
Collapse
|
20
|
McGraw AP, Bevilacqua PC, Babitzke P. TRAP-5' stem loop interaction increases the efficiency of transcription termination in the Bacillus subtilis trpEDCFBA operon leader region. RNA (NEW YORK, N.Y.) 2007; 13:2020-33. [PMID: 17881743 PMCID: PMC2040092 DOI: 10.1261/rna.719507] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
TRAP regulates expression of the Bacillus subtilis trpEDCFBA operon by a transcription attenuation mechanism in which tryptophan-activated TRAP binds to 11 (G/U)AG repeats in the nascent trp leader transcript. Bound TRAP blocks formation of an antiterminator structure and allows formation of an overlapping intrinsic terminator upstream of the trp operon structural genes. A 5' stem-loop (5'SL) structure located upstream of the triplet repeat region also interacts with TRAP. TRAP-5'SL RNA interaction participates in the transcription attenuation mechanism by preferentially increasing the affinity of TRAP for the nascent trp leader transcript during the early stages of transcription, when only a few triplet repeats have been synthesized. Footprinting assays indicated that the 5'SL contacts TRAP through two discrete groups of single-stranded nucleotides that lie in the hairpin loop and in an internal loop. Filter binding and in vivo expression assays of 5'SL mutants established that G7, A8, and A9 from the internal loop, and A19 and G20 from the hairpin loop are critical for proper 5'SL function. These nucleotides are conserved among certain other 5'SL-containing organisms. Single-round transcription results indicated that the 5'SL increases the termination efficiency when transcription is fast; however, the influence of the 5'SL was lost when transcription was slowed by reducing the ribonucleoside triphosphate concentration. Since there is a limited amount of time for TRAP to bind to the nascent transcript and promote termination, our data suggest that the contribution of TRAP-5'SL interaction increases the rate of TRAP binding, which, in turn, increases the efficiency of transcription termination.
Collapse
Affiliation(s)
- Adam P McGraw
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
21
|
Barbolina MV, Kristoforov R, Manfredo A, Chen Y, Gollnick P. The rate of TRAP binding to RNA is crucial for transcription attenuation control of the B. subtilis trp operon. J Mol Biol 2007; 370:925-38. [PMID: 17555767 PMCID: PMC2034321 DOI: 10.1016/j.jmb.2007.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/08/2007] [Accepted: 05/09/2007] [Indexed: 11/29/2022]
Abstract
The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic and transport genes in Bacillus subtilis in response to changes in the levels of intracellular tryptophan. Transcription of the trpEDCFBA operon is controlled by an attenuation mechanism involving two overlapping RNA secondary structures in the 5' leader region of the trp transcript; TRAP binding promotes formation of a transcription terminator structure that halts transcription prior to the structural genes. TRAP consists of 11 identical subunits and is activated to bind RNA by binding up to 11 molecules of L-tryptophan. The TRAP binding site in the leader region of the trp operon mRNA consists of 11 (G/U)AG repeats. We examined the importance of the rate of TRAP binding to RNA for the transcription attenuation mechanism. We compared the properties of two types of TRAP 11-mers: homo-11-mers composed of 11 wild-type subunits, and hetero-11-mers with only one wild-type subunit and ten mutant subunits defective in binding either RNA or tryptophan. The hetero-11-mers bound RNA with only slightly diminished equilibrium binding affinity but with slower on-rates as compared to WT TRAP. The hetero-11-mers showed significantly decreased ability to induce transcription termination in the trp leader region when examined using an in vitro attenuation system. Together these results indicate that the rate of TRAP binding to RNA is a crucial factor in TRAP's ability to control attenuation.
Collapse
Affiliation(s)
- Maria V Barbolina
- Department of Biological Sciences, State University of New York, Buffalo, New York, USA
| | | | | | | | | |
Collapse
|
22
|
Nie M, Htun H. Different modes and potencies of translational repression by sequence-specific RNA-protein interaction at the 5'-UTR. Nucleic Acids Res 2006; 34:5528-40. [PMID: 17023487 PMCID: PMC1635260 DOI: 10.1093/nar/gkl584] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To determine whether sequence-specific RNA–protein interaction at the 5′-untranslated region (5′-UTR) can potently repress translation in mammalian cells, a bicistronic translational repression assay was developed to permit direct assessment of RNA–protein interaction and translational repression in transiently transfected living mammalian cells. Changes in cap-dependent yellow fluorescent protein (YFP) and internal ribosome entry sequence (IRES)-dependent cyan fluorescent protein (CFP) translation were monitored by fluorescence microscopy. Selective repression of YFP or coordinate repression of both YFP and CFP translation occurred, indicating two distinct modes by which RNA-binding proteins repress translation through the 5′-UTR. Interestingly, a single-stranded RNA-binding protein from Bacillus subtilis, tryptophan RNA-binding attenuation protein (TRAP), showed potent translational repression, dependent on the level of TRAP expression and position of its cognate binding site within the bicistronic reporter transcript. As the first of its class to be examined in mammalian cells, its potency in repression of translation through the 5′-UTR may be a general feature for this class of single-stranded RNA-binding proteins. Finally, a one-hybrid screen based on translational repression through the 5′-UTR identified linkers supporting full-translational repression as well as a range of partial repression by TRAP within the context of a fusion protein.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Obstetrics and Gynecology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- Department of Molecular and Medical Pharmacology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
| | - Han Htun
- Department of Obstetrics and Gynecology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- Department of Molecular and Medical Pharmacology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- To whom correspondence should be addressed. Tel: +1 310 206 3015; Fax: +1 310 206 3670;
| |
Collapse
|
23
|
|
24
|
Payal V, Gollnick P. Substitutions of Thr30 provide mechanistic insight into tryptophan-mediated activation of TRAP binding to RNA. Nucleic Acids Res 2006; 34:2933-42. [PMID: 16738132 PMCID: PMC1474065 DOI: 10.1093/nar/gkl383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TRAP is an 11 subunit RNA binding protein that regulates expression of genes involved in tryptophan biosynthesis and transport in Bacillus subtilis. TRAP is activated to bind RNA by binding up to 11 molecules of l-tryptophan in pockets formed by adjacent subunits. The precise mechanism by which tryptophan binding activates TRAP is not known. Thr30 is in the tryptophan binding pocket. A TRAP mutant in which Thr30 is substituted with Val (T30V) does not bind tryptophan but binds RNA constitutively, suggesting that Thr30 plays a key role in the activation mechanism. We have examined the effects of other substitutions of Thr30. TRAP proteins with small beta-branched aliphatic side chains at residue 30 bind RNA constitutively, whereas those with a small polar side chain show tryptophan-dependent RNA binding. Several mutant proteins exhibited constitutive RNA binding that was enhanced by tryptophan. Although the tryptophan and RNA binding sites on TRAP are distinct and are separated by approximately 7.5 A, several substitutions of residues that interact with the bound RNA restored tryptophan binding to T30V TRAP. These observations support the hypothesis that conformational changes in TRAP relay information between the tryptophan and RNA binding sites of the protein.
Collapse
Affiliation(s)
| | - Paul Gollnick
- To whom correspondence should be addressed. Tel: +1 716 645 2363, ext. 189; Fax: +1 716 645 2975;
| |
Collapse
|
25
|
Gollnick P, Babitzke P, Antson A, Yanofsky C. Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis. Annu Rev Genet 2006; 39:47-68. [PMID: 16285852 DOI: 10.1146/annurev.genet.39.073003.093745] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus subtilis uses novel regulatory mechanisms in controlling expression of its genes of tryptophan synthesis and transport. These mechanisms respond to changes in the intracellular concentrations of free tryptophan and uncharged tRNA(Trp). The major B. subtilis protein that regulates tryptophan biosynthesis is the tryptophan-activated RNA-binding attenuation protein, TRAP. TRAP is a ring-shaped molecule composed of 11 identical subunits. Active TRAP binds to unique RNA segments containing multiple trinucleotide (NAG) repeats. Binding regulates both transcription termination and translation in the trp operon, and translation of other coding regions relevant to tryptophan metabolism. When there is a deficiency of charged tRNA(Trp), B. subtilis forms an anti-TRAP protein, AT. AT antagonizes TRAP function, thereby increasing expression of all the genes regulated by TRAP. Thus B. subtilis and Escherichia coli respond to identical regulatory signals, tryptophan and uncharged tRNA(Trp), yet they employ different mechanisms in regulating trp gene expression.
Collapse
Affiliation(s)
- Paul Gollnick
- Department of Biological Sciences, State University of New York, Buffalo, New York 14260, USA.
| | | | | | | |
Collapse
|
26
|
Shevtsov MB, Chen Y, Gollnick P, Antson AA. Crystal structure of Bacillus subtilis anti-TRAP protein, an antagonist of TRAP/RNA interaction. Proc Natl Acad Sci U S A 2005; 102:17600-5. [PMID: 16306262 PMCID: PMC1308913 DOI: 10.1073/pnas.0508728102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Bacillus subtilis the anti-TRAP protein (AT) is produced in response to the accumulation of uncharged tRNA(Trp). AT regulates expression of genes involved in tryptophan biosynthesis and transport by binding to the tryptophan-activated trp RNA-binding attenuation protein (TRAP) and preventing its interaction with several mRNAs. Here, we report the x-ray structure of AT at 2.8 angstroms resolution, showing that the protein subunits assemble into tight trimers. Four such trimers are further associated into a 12-subunit particle in which individual trimers are related by twofold and threefold symmetry axes. Twelve DnaJ-like, cysteine-rich zinc-binding domains form spikes on the surface of the dodecamer. Available data suggest several possible ways for AT to interact with the 11-subunit TRAP. Interaction between the two symmetry-mismatching molecules could be assisted by the flexible nature of AT zinc-binding domains.
Collapse
Affiliation(s)
- Mikhail B Shevtsov
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, United Kingdom
| | | | | | | |
Collapse
|
27
|
Schmitz-Linneweber C, Williams-Carrier R, Barkan A. RNA immunoprecipitation and microarray analysis show a chloroplast Pentatricopeptide repeat protein to be associated with the 5' region of mRNAs whose translation it activates. THE PLANT CELL 2005; 17:2791-804. [PMID: 16141451 PMCID: PMC1242273 DOI: 10.1105/tpc.105.034454] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/25/2005] [Accepted: 08/17/2005] [Indexed: 05/04/2023]
Abstract
Plant nuclear genomes encode hundreds of predicted organellar RNA binding proteins, few of which have been connected with their physiological RNA substrates and functions. In fact, among the largest family of putative RNA binding proteins in plants, the pentatricopeptide repeat (PPR) family, no physiologically relevant RNA ligands have been firmly established. We used the chloroplast-splicing factor CAF1 to demonstrate the fidelity of a microarray-based method for identifying RNAs associated with specific proteins in chloroplast extract. We then used the same method to identify RNAs associated with the maize (Zea mays) PPR protein CRP1. Two mRNAs whose translation is CRP1-dependent were strongly and specifically enriched in CRP1 coimmunoprecipitations. These interactions establish CRP1 as a translational regulator by showing that the translation defects in crp1 mutants are a direct consequence of the absence of CRP1. Additional experiments localized these interactions to the 5' untranslated regions and suggested a possible CRP1 interaction motif. These results enhance understanding of the PPR protein family by showing that a PPR protein influences gene expression through association with specific mRNAs in vivo, suggesting an unusual mode of RNA binding for PPR proteins, and highlighting the possibility that translational regulation may be a particularly common function of PPR proteins. Analogous methods should have broad application for the study of native RNA-protein interactions in both mitochondria and chloroplasts.
Collapse
|
28
|
Gollnick P, Antson A. Going for RNA repeats. Nat Struct Mol Biol 2005; 12:289-90. [PMID: 15809648 DOI: 10.1038/nsmb0405-289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Barbolina MV, Li X, Gollnick P. Bacillus subtilis TRAP binds to its RNA target by a 5' to 3' directional mechanism. J Mol Biol 2005; 345:667-79. [PMID: 15588817 DOI: 10.1016/j.jmb.2004.10.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 10/21/2004] [Accepted: 10/24/2004] [Indexed: 11/21/2022]
Abstract
TRAP is an 11 subunit RNA-binding protein that regulates expression of the Bacillus subtilis trpEDCFBA operon by transcription attenuation and translation control mechanisms. Tryptophan-activated TRAP acts by binding to a site in the 5'-untranslated leader region of trp mRNA consisting of 11 (G/U)AG repeats. We used mung bean nuclease footprinting to analyze the interaction of TRAP with several artificial binding sites composed of 11 GAG repeats in nucleic acids that lack secondary structure. Affinities for individual repeats within a binding site did not vary significantly. In contrast, the association rate constants were highest for repeats at the 5' end and lowest for those at the 3' end of all binding sites tested. These results indicate that TRAP binds to its RNA targets by first associating with one or more repeat at the 5' end of its binding site followed by wrapping the remainder of binding site around the protein in a 5' to 3' direction. This directional binding is novel among RNA-binding proteins. We suggest that this mechanism of binding is important for TRAP-mediated transcription attenuation control of the trp operon.
Collapse
Affiliation(s)
- Maria V Barbolina
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | | | | |
Collapse
|